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What heterogeneity and distribution?  
• Isn't Internet of Things about having everything 

connected and available in the cloud? 
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Limitations of centralized approaches 
• Very easy to develop, evolve and maintain but… 
 Underexploits "Things" capabilities 
 Does not allow real-time or critical services 
 Not resource efficient (bandwidth) 
 Not robust 
 Does not scale 
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Good solution when  
possible but not sufficient 
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Distributing the implementation 

• The service implementation is distributed to exploit the 
infrastructure 
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Benefits of HD-Services 

• Complex to develop, lots of different skills involved but… 
 Allows fully exploiting the features of each platforms 
 Allow for local and/or decentralized decision making 
 Robust to partial and/or temporary failures 
 Push processing close to data sources 
 Allow for real-time and critical services 
 Can scale in a "big data" context 
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In practice for more and  
more real-world services 
are HD-Services 
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What are the problems? (1/6) 

• Here is an example infrastructure 
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What are the problems? (2/6) 

• Here is the software components needed for the service 
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What are the problems? (3/6) 

• Heterogeneous infrastructure and technologies are  needed 
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What are the problems? (4/6) 
• A lot of different expertise are needed 

 Both for development and runtime deployment/maintenance 
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What are the problems? (5/6) 
• Someone needs to coordinate all experts 

 Design the different components, their functionality and interractions 
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What are the problems? (6/6) 
• Large heterogeneous teams need to collaborate 

 A service architect / developer 
 Many "platform experts" 
 Complex and expensive 
 Unavailable to small actors 

• Service maintenance and evolutions 
• Infrastructure is dynamic 

 Constant evolution/adaptation 

• (Early) Validation? 
• Software reuse? 

11 

Challenging and expensive 



http://heads-project.eu 
Franck Fleurey, SEsCPS Workshop, 17/05/2015 

State of the practice 

• State of the art / practice 
 Solution 1: Centralized service which uses devices "as-is" 

o Most common practice. Simple but restrictive. 
 Solution 2: Avoid problems by carefully selecting platforms 

o For which software frameworks pre-exist (eg. Arduino libs / shields) 
 Solution 3: Hide behind an homogeneous software layer 

o OS + generic or specific middleware platforms (eg. JAVA/JVM) 
 Solution 4: Custom develop manually all pieces of software 

o Can exploit full potential but very expensive (eg. automotive) 
 Solution 5: Fully fledged Model-Driven "PIM/PSM" approach 

o Good separation of concerns but impractical and too exclusive 

• Non of the above allow exploiting the full continuum of 
platforms to its full potential (and at a reasonable cost) 
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HEADS Approach 
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HEADS Approach 
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1. Domain Specific Modelling Language 

• Based on the state of the art 
 Architecture (Components, Connectors, etc.) 
 Asynchronous messages / events 
 Composite state machines 
 Action Language 
 Deployment model 

• Used as a commons model for integration 
 Not to replace individual modelling tools, programming 

frameworks or legacy components 
 Complete enough to fully implement the logic of the 

integration 
 All the way to deployment (and runtime management) 
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(ThingML) 
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1. Domain Specific Modelling Language 
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2. Code Generation Framework 
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3. Deployment and Runtime 

• On the level of the architecture model 
 Nodes, Components, Connectors, Channels 

• "Models@runtime" + Causal connection 
 Deployment 
 Monitoring 
 Adaptation 

• Support heterogeneous components 
 Not "yet another middleware" 
 Easy to extend for supporting new execution platforms 
 Easy support for managing legacy/proprietary  

components 
 
 

18 

(Kevoree) 



http://heads-project.eu 
Franck Fleurey, SEsCPS Workshop, 17/05/2015 

Conclusion 
• Experiences using (part of) the HEADS approach 

 Medical Rehabilitation Robotic System 
 Unmanned vehicles (aerial and subsea) 
 Smart home and ambient assisted living 
 Media system 

• Status of the implementation 
 Initial version is available, tutorial are available 
 Fully open-source 

• Ongoing work and challenges 
 Modelling of complex-event processing 
 Modelling of different communication semantics 
 Code generation for resource constrained devices 
 Verification and Validation (Analysis, early testing, stub generation, etc.) 
 Evaluation of the code generation framework 

• More info and apraoch implementation  
 ThingML: http://www.thingml.org 
 Kevoree: http://www.kevoree.org 
 HEADS: http://www.heads-project.eu 
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Thanks for your attention! 

• Questions? 
 
 
 
 
 
 

• More questions: franck.fleurey@sintef.no 
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HEADS Aproach 
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What is ThingML ? 

 A DSL to model distributed reactive systems 
 IoT systems, embedded systems, sensor networks, ... 

 Components, State machines and action language 
 « Main stream » MDE  

 Contribution of ThingML 
 « Complete » action language 
 Slots, Mixins and Aspects instead of Inheritance and Composites 
 Enforced encapsulation and actors semantics 

 Target Platforms and Applications 
 MDE for resource constrained systems (microcontrollers, IoT) 
 Development of applications distributed across heterogeneous 

hardware 
 Other types of reactive systems? 
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Why ThingML ? 

 Typical MDE benefits 
 Reduce development, maintenance and evolution costs 
 Perform verifications and analysis on the models 
 Model application at a platform independent level 
 

 No existing approach can deal with microcontrollers 
 ThingML can run on hardware less than 1ko of RAM 
 

 No existing approach is really platform independent 
 Since actions are written in the target language 
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ThingML Goals 

• Provide tools and methods 
 For each actor to concentrate on his task 
 For decoupling the tasks of different actors 
 Using state of the art software engineering practices 

o Modularity, reusability, runtime deployment, continuous 
integration, validation, etc… 

 Cost efficient and practically usable 
o No large overhead, integrated with legacy systems, etc… 
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The ThingML tools 
 Based on Eclipse / EMF Metamodel 
 Textual Syntax with EMFText 

 For good usability and productivity 
 To keep the development cost of the editor(s) reasonable  

 Graphical exports (graphML, graphviz, …) 
 Static well formedness and type checker 
 Equivalent compilers for a set of platforms 

 C/C++ for different microcontrollers, linux, embedded linux 
 Java for computers, smartphones, … 
 Javascript (NodeJS) 
 Maybe others if needed 

 Generators for communication channels 
 Easy to distribute ThingML IDE 

 Standalone and lightweight IDE 
 Eclipse plugins 
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Devolopping the ThingML tools 

 Technologies 
 Eclipse / EMF and EMFText for metamodels and editors 
 Scala for constraints, transformation and code generation 
 Swing lightweight standalone editor 

 Continuous integration process (using our thingml.org cloud server) 
 Maintain a code repository : Github open-source forge based on git 
 Automate the build : Maven build tool + Jenkins server 
 Make the build self-testing : Maven + JUnit 
 Everyone commits to the baseline every day : Github 
 Every commit (to baseline) should be built : Github triggers Jenkins 
 Keep the build fast : About 2 minutes at this point 
 Test in a clone of the production environment : Maven 
 Make it easy to get the latest deliverables : Archiva, Jenkins web interface 
 Everyone can see the results of the latest build : Jenkins web interface 
 Automate deployment : Java Web Start (JNLP) 
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ThingML: Architecture Model 
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ThingML: Component 

Wheel Controller 
Port 

Reusable unit 
(Black box) 

<= forward(speed:int) 
<= backward(speed:int) 
<= stop() 
=> wheel_position(position: int) 

Messages 

Left Wheel 
control 

Right Wheel 
control 

instances 

component type (Thing) 



http://heads-project.eu 
Franck Fleurey, SEsCPS Workshop, 17/05/2015 

ThingML: State Machines 
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ThingML: Action Language 

Forward 
?forward 

on entry do 
   reset_wheel_position() 
   motor_start() 
end 
... 

action do 
  motor_set_speed(speed) 
  motor_set_direction(FW) 
end  
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Blink example state machine 
thing Blink includes LedMsgs, TimerMsgs 
{ 
    required port HW  
    {  
        sends led_toggle, timer_start 
        receives timer_timeout 
    } 
 
    statechart BlinkImpl init Blinking  
    {     
        state Blinking  
        {     
            on entry HW!timer_start (1000) 
             
            transition -> Blinking  
            event HW?timer_timeout  
            action HW!led_toggle ()  
        } 
    } 
} 

Blink 

Stopped 

?timer_timeout 
!led_toggle() 

on entry  
!timer_start(1000) 

HW 

<= timer_timeout() 
=> led_toggle() 
=> timer_start(delay:int) 
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Blink example and instance groups 

Timer:Timer 

do: DigitalOutput 
pin: IOPin 

Arduino Board 

app: BlinkApplication 

led: Led 

led group 

Led 
HW 

HW 
timer 

io group 

configuration BlinkArduino 
{        
group led : LedArduino 
set led.io.digital_output.pin = DigitalPin:PIN_13 
// The timer 
instance timer : TimerArduino 
// The blink application 
instance app : Blink 
connector app.HW => led.led.Led 
connector app.HW => timer.timer 
} 
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ThingML Editor 
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(1) Actions / Expressions / Functions  

• Scope 
 Depends only on the target language 
 Can be reused for different platforms 

• Implementation 
 Visitor on the ThingML meta-model 

• Customizable by 
 Implementing a new visitor for a new language 
 Inheriting from an exiting visitor and overriding some 

of its methods 
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(2) State machine implementation 

• Scope 
 Specific to a specific state machine implementation 

strategy. 
 Can generate either the complete state machine in the 

target language or leverage a state machine framework on 
the target platform 

• Implementation 
 Abstract state machine code generator 
 A set of reusable helpers to calculate states, transitions 

and events according to the common ThingML semantics. 
• Customization 
 Implement the abstract state machine generator 
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(3) Ports / Messages / Thing APIs  

• Scope 
 Depends on the language best practices 
 Depends on how components should be "packaged" on the target platform 

o Can generate any custom API for the Things 
o Can generate towards exiting middleware / OS 

 Can/should produce "manually usable" APIs 
 Different generators can be used for different things 

• Implementation 
 Visitor on the "Thing" part of the metamodel 
 Helpers to collapse fragments  and gathers all the elements of a thing 

(messages, ports, functions, etc).  
• Customization  

 Implement a new visitor for a new target language / platform 
 Inherit from an existing visitor for light customization 
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(4) Connectors / channels 

• Scope 
 Depends on how messages are transported from on thing 

to the next using the Things APIs 
 Can be local and/or remote, includes the serialization, 

transport through networks and deserialization 
 Different generators can be used for different ports 

• Implementation 
 Abstract generator for serialization, deserialization and 

transport 
• Customization 
 Implement new concrete generators 
 Easy to reuse serialization and just override transport 
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(5) Message Queuing / FIFOs  

• Scope 
 Asynchronous behaviour of messages 
 Can target existing message frameworks or middleware or 

use custom made FIFOs 
 Different generators can be used for different ports 

• Implementation 
 Abstract generator which can be customized 
 Helpers to calculate the sets of messages to be handled 

(combines fragments and prunes unused messages). 
• Customization 
 Inherit and implement the abstract generator 
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(6) Scheduling / Dispatch  

• Scope 
 Implements the main loop of the program, schedules the 

activation of the components and dispatches the incoming 
messages 

 Relies on underlying OS and libraries of the target 
platform. 

 Can generate a custom scheduler for microcontroller 
applications. 

• Implementation 
 Template + Helper 

• Customization 
 Create of modify an existing template 
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(7) Initialization and "main"  

• Scope 
 Generate the entry point and initialize the 

components and connectors 
 Depends on the target languages and traget 

frameworks 
• Implementation 
 Template + Helper providing the set of components 

and connectors to instantiate 
• Customization 
 Create or modify a template 
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(9) Project structure / build script  

• Scope 
 Produce the right file structure, additional project files 

and/or build scripts 
 Can be customize to fit a specific target environment 

(makefiles, maven files, etc) 

• Implementation 
 Abstract generator with access to buffers containing all the 

generated code. 

• Customization 
 Create a concrete generator. Possibility to use templates. 
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Consistency checking 

• A suite of tests (27) written in ThingML 
 Takes characters as inputs (or nothing) 
 Generates characters as outputs 

• A set of platform specific harness (also in ThingML) 
 For C/Linux, Java, Node.js 
 Write outputs into a file (or simply crash if severe bug) 

• Discussion 
 Testing ThingML using ThingML: possible bugs that hide each 

others… 
 …less and less probable as the number of compilers augments 
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Current test results 

• Java: 100%, C/Linux:96%, Node.js (started 10/14): 81%, now 100% 
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• Cloud (Amazon, Flexiant, Rackspace, etc) 
• Mini-Cloud (Openstack + Docker) 
• Android (Java + Android) 
• Cubietruck "cloud" (Linux + Docker) 
• Raspberry Pi (Linux) 
• Arduino Yun (dd-wrt linux + AVR µC) 
• Arduino (AVR µC) 
• TI ARM/MSP µC 

 
• Home automation and wearable devices 
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Experimental platforms and "lab" 
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