
http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Taming Heterogeneity and
Distribution in sCPS

Franck Fleurey, Brice Morin, Olivier Barais

franck.fleurey@sintef.no

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What heterogeneity and distribution?
• Isn't Internet of Things about having everything

connected and available in the cloud?

2

Service End-users

Centralized implementation
"in the cloud"

Cloud(s)

Service developers
and providers

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Limitations of centralized approaches
• Very easy to develop, evolve and maintain but…
 Underexploits "Things" capabilities
 Does not allow real-time or critical services
 Not resource efficient (bandwidth)
 Not robust
 Does not scale

3

Good solution when
possible but not sufficient
in many realistic cases

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Distributing the implementation

• The service implementation is distributed to exploit the
infrastructure

4

Servers

Gateways

Things

Service

Cloud(s)

End-users

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Benefits of HD-Services

• Complex to develop, lots of different skills involved but…
 Allows fully exploiting the features of each platforms
 Allow for local and/or decentralized decision making
 Robust to partial and/or temporary failures
 Push processing close to data sources
 Allow for real-time and critical services
 Can scale in a "big data" context

5

In practice for more and
more real-world services
are HD-Services

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What are the problems? (1/6)

• Here is an example infrastructure

6

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What are the problems? (2/6)

• Here is the software components needed for the service

7

Service

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What are the problems? (3/6)

• Heterogeneous infrastructure and technologies are needed

8

Service
Web Interface

Client-side
Javascript

Cloud back-end
(eg. Linux/JAVA)

Database

Gateway
(Embedded Linux)

Proprietary
Protocol

Sensor/Device
(Microcontroller)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What are the problems? (4/6)
• A lot of different expertise are needed

 Both for development and runtime deployment/maintenance

9

Service
Web Interface

Client-side
Javascript

Cloud back-end
(eg. Linux/JAVA)

Database

Gateway
(Embedded Linux)

Proprietary
Protocol

Sensor/Device
(Microcontroller)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What are the problems? (5/6)
• Someone needs to coordinate all experts

 Design the different components, their functionality and interractions

10

Web Interface

Client-side
Javascript

Cloud back-end
(eg. Linux/JAVA)

Database

Gateway
(Embedded Linux)

Proprietary
Protocol

Sensor/Device
(Microcontroller)

Service
architect

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What are the problems? (6/6)
• Large heterogeneous teams need to collaborate

 A service architect / developer
 Many "platform experts"
 Complex and expensive
 Unavailable to small actors

• Service maintenance and evolutions
• Infrastructure is dynamic

 Constant evolution/adaptation

• (Early) Validation?
• Software reuse?

11

Challenging and expensive

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

State of the practice

• State of the art / practice
 Solution 1: Centralized service which uses devices "as-is"

o Most common practice. Simple but restrictive.
 Solution 2: Avoid problems by carefully selecting platforms

o For which software frameworks pre-exist (eg. Arduino libs / shields)
 Solution 3: Hide behind an homogeneous software layer

o OS + generic or specific middleware platforms (eg. JAVA/JVM)
 Solution 4: Custom develop manually all pieces of software

o Can exploit full potential but very expensive (eg. automotive)
 Solution 5: Fully fledged Model-Driven "PIM/PSM" approach

o Good separation of concerns but impractical and too exclusive

• Non of the above allow exploiting the full continuum of
platforms to its full potential (and at a reasonable cost)

12

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

HEADS Approach

13

Service
operator

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

HEADS Approach

14

Domain Specific
Modelling Language

Code Generation
Framework

Deployment and
Runtime

(1)

(2)

(3)

Service
operator

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

1. Domain Specific Modelling Language

• Based on the state of the art
 Architecture (Components, Connectors, etc.)
 Asynchronous messages / events
 Composite state machines
 Action Language
 Deployment model

• Used as a commons model for integration
 Not to replace individual modelling tools, programming

frameworks or legacy components
 Complete enough to fully implement the logic of the

integration
 All the way to deployment (and runtime management)

15

(ThingML)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

1. Domain Specific Modelling Language

16

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

2. Code Generation Framework

17

Thing(s)

Ports / Messages / Thing API

State Machine Implementation

Actions/Expressions/Functions

Configuration

Connectors / Channels

Message queuing / FIFOs

Initialization and "Main"

Scheduling / Dispatch

Projects structure / build script

ThingML Model

Generated code

(1)

(2)

(3)

(8)

(7)

(6)

(5)

(4)

ThingML code generation framework
With 8 different variation points

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

3. Deployment and Runtime

• On the level of the architecture model
 Nodes, Components, Connectors, Channels

• "Models@runtime" + Causal connection
 Deployment
 Monitoring
 Adaptation

• Support heterogeneous components
 Not "yet another middleware"
 Easy to extend for supporting new execution platforms
 Easy support for managing legacy/proprietary

components

18

(Kevoree)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Conclusion
• Experiences using (part of) the HEADS approach

 Medical Rehabilitation Robotic System
 Unmanned vehicles (aerial and subsea)
 Smart home and ambient assisted living
 Media system

• Status of the implementation
 Initial version is available, tutorial are available
 Fully open-source

• Ongoing work and challenges
 Modelling of complex-event processing
 Modelling of different communication semantics
 Code generation for resource constrained devices
 Verification and Validation (Analysis, early testing, stub generation, etc.)
 Evaluation of the code generation framework

• More info and apraoch implementation
 ThingML: http://www.thingml.org
 Kevoree: http://www.kevoree.org
 HEADS: http://www.heads-project.eu

19

http://www.thingml.org/
http://www.kevoree.org/
http://www.heads-project.eu/

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Thanks for your attention!

• Questions?

• More questions: franck.fleurey@sintef.no

20

mailto:franck.fleurey@sintef.no

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

HEADS Aproach

21

Plugin

Plugin

Plugin

Service
developer

Platform
Experts

Service
implementation

Infrastructure

IDE

Service
operator

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

What is ThingML ?

 A DSL to model distributed reactive systems
 IoT systems, embedded systems, sensor networks, ...

 Components, State machines and action language
 « Main stream » MDE

 Contribution of ThingML
 « Complete » action language
 Slots, Mixins and Aspects instead of Inheritance and Composites
 Enforced encapsulation and actors semantics

 Target Platforms and Applications
 MDE for resource constrained systems (microcontrollers, IoT)
 Development of applications distributed across heterogeneous

hardware
 Other types of reactive systems?

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Why ThingML ?

 Typical MDE benefits
 Reduce development, maintenance and evolution costs
 Perform verifications and analysis on the models
 Model application at a platform independent level

 No existing approach can deal with microcontrollers
 ThingML can run on hardware less than 1ko of RAM

 No existing approach is really platform independent
 Since actions are written in the target language

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

ThingML Goals

• Provide tools and methods
 For each actor to concentrate on his task
 For decoupling the tasks of different actors
 Using state of the art software engineering practices

o Modularity, reusability, runtime deployment, continuous
integration, validation, etc…

 Cost efficient and practically usable
o No large overhead, integrated with legacy systems, etc…

 24

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

The ThingML tools
 Based on Eclipse / EMF Metamodel
 Textual Syntax with EMFText

 For good usability and productivity
 To keep the development cost of the editor(s) reasonable

 Graphical exports (graphML, graphviz, …)
 Static well formedness and type checker
 Equivalent compilers for a set of platforms

 C/C++ for different microcontrollers, linux, embedded linux
 Java for computers, smartphones, …
 Javascript (NodeJS)
 Maybe others if needed

 Generators for communication channels
 Easy to distribute ThingML IDE

 Standalone and lightweight IDE
 Eclipse plugins

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Devolopping the ThingML tools

 Technologies
 Eclipse / EMF and EMFText for metamodels and editors
 Scala for constraints, transformation and code generation
 Swing lightweight standalone editor

 Continuous integration process (using our thingml.org cloud server)
 Maintain a code repository : Github open-source forge based on git
 Automate the build : Maven build tool + Jenkins server
 Make the build self-testing : Maven + JUnit
 Everyone commits to the baseline every day : Github
 Every commit (to baseline) should be built : Github triggers Jenkins
 Keep the build fast : About 2 minutes at this point
 Test in a clone of the production environment : Maven
 Make it easy to get the latest deliverables : Archiva, Jenkins web interface
 Everyone can see the results of the latest build : Jenkins web interface
 Automate deployment : Java Web Start (JNLP)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

ThingML: Architecture Model

Distance
Sensor

Left Wheel
control

Right Wheel
control

Movement control

Robot control

Collision
Sensor

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

ThingML: Component

Wheel Controller
Port

Reusable unit
(Black box)

<= forward(speed:int)
<= backward(speed:int)
<= stop()
=> wheel_position(position: int)

Messages

Left Wheel
control

Right Wheel
control

instances

component type (Thing)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

ThingML: State Machines

Control Port

Wheel Controller

Stopped

Forward

backward

?stop

?stop

?forward

?backward

!wheel_position

!wheel_position

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

ThingML: Action Language

Forward
?forward

on entry do
 reset_wheel_position()
 motor_start()
end
...

action do
 motor_set_speed(speed)
 motor_set_direction(FW)
end

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Blink example state machine
thing Blink includes LedMsgs, TimerMsgs
{
 required port HW
 {
 sends led_toggle, timer_start
 receives timer_timeout
 }

 statechart BlinkImpl init Blinking
 {
 state Blinking
 {
 on entry HW!timer_start (1000)

 transition -> Blinking
 event HW?timer_timeout
 action HW!led_toggle ()
 }
 }
}

Blink

Stopped

?timer_timeout
!led_toggle()

on entry
!timer_start(1000)

HW

<= timer_timeout()
=> led_toggle()
=> timer_start(delay:int)

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Blink example and instance groups

Timer:Timer

do: DigitalOutput
pin: IOPin

Arduino Board

app: BlinkApplication

led: Led

led group

Led
HW

HW
timer

io group

configuration BlinkArduino
{
group led : LedArduino
set led.io.digital_output.pin = DigitalPin:PIN_13
// The timer
instance timer : TimerArduino
// The blink application
instance app : Blink
connector app.HW => led.led.Led
connector app.HW => timer.timer
}

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

ThingML Editor

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Thing(s)

Ports / Messages / Thing API

State Machine Implementation

Actions/Expressions/Functions

Configuration

Connectors / Channels

Message queuing / FIFOs

Initialization and "Main"

Scheduling / Dispatch

Projects structure / build script

ThingML Model

Generated code

(1)

(2)

(3)

(8)

(7)

(6)

(5)

(4)

ThingML code generation framework
With 8 different variation points

ThingML code generation framework

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(1) Actions / Expressions / Functions

• Scope
 Depends only on the target language
 Can be reused for different platforms

• Implementation
 Visitor on the ThingML meta-model

• Customizable by
 Implementing a new visitor for a new language
 Inheriting from an exiting visitor and overriding some

of its methods

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(2) State machine implementation

• Scope
 Specific to a specific state machine implementation

strategy.
 Can generate either the complete state machine in the

target language or leverage a state machine framework on
the target platform

• Implementation
 Abstract state machine code generator
 A set of reusable helpers to calculate states, transitions

and events according to the common ThingML semantics.
• Customization
 Implement the abstract state machine generator

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(3) Ports / Messages / Thing APIs

• Scope
 Depends on the language best practices
 Depends on how components should be "packaged" on the target platform

o Can generate any custom API for the Things
o Can generate towards exiting middleware / OS

 Can/should produce "manually usable" APIs
 Different generators can be used for different things

• Implementation
 Visitor on the "Thing" part of the metamodel
 Helpers to collapse fragments and gathers all the elements of a thing

(messages, ports, functions, etc).
• Customization

 Implement a new visitor for a new target language / platform
 Inherit from an existing visitor for light customization

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(4) Connectors / channels

• Scope
 Depends on how messages are transported from on thing

to the next using the Things APIs
 Can be local and/or remote, includes the serialization,

transport through networks and deserialization
 Different generators can be used for different ports

• Implementation
 Abstract generator for serialization, deserialization and

transport
• Customization
 Implement new concrete generators
 Easy to reuse serialization and just override transport

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(5) Message Queuing / FIFOs

• Scope
 Asynchronous behaviour of messages
 Can target existing message frameworks or middleware or

use custom made FIFOs
 Different generators can be used for different ports

• Implementation
 Abstract generator which can be customized
 Helpers to calculate the sets of messages to be handled

(combines fragments and prunes unused messages).
• Customization
 Inherit and implement the abstract generator

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(6) Scheduling / Dispatch

• Scope
 Implements the main loop of the program, schedules the

activation of the components and dispatches the incoming
messages

 Relies on underlying OS and libraries of the target
platform.

 Can generate a custom scheduler for microcontroller
applications.

• Implementation
 Template + Helper

• Customization
 Create of modify an existing template

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(7) Initialization and "main"

• Scope
 Generate the entry point and initialize the

components and connectors
 Depends on the target languages and traget

frameworks
• Implementation
 Template + Helper providing the set of components

and connectors to instantiate
• Customization
 Create or modify a template

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

(9) Project structure / build script

• Scope
 Produce the right file structure, additional project files

and/or build scripts
 Can be customize to fit a specific target environment

(makefiles, maven files, etc)

• Implementation
 Abstract generator with access to buffers containing all the

generated code.

• Customization
 Create a concrete generator. Possibility to use templates.

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Consistency checking

• A suite of tests (27) written in ThingML
 Takes characters as inputs (or nothing)
 Generates characters as outputs

• A set of platform specific harness (also in ThingML)
 For C/Linux, Java, Node.js
 Write outputs into a file (or simply crash if severe bug)

• Discussion
 Testing ThingML using ThingML: possible bugs that hide each

others…
 …less and less probable as the number of compilers augments

48

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

Current test results

• Java: 100%, C/Linux:96%, Node.js (started 10/14): 81%, now 100%

49

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

• Cloud (Amazon, Flexiant, Rackspace, etc)
• Mini-Cloud (Openstack + Docker)
• Android (Java + Android)
• Cubietruck "cloud" (Linux + Docker)
• Raspberry Pi (Linux)
• Arduino Yun (dd-wrt linux + AVR µC)
• Arduino (AVR µC)
• TI ARM/MSP µC

• Home automation and wearable devices

50

Experimental platforms and "lab"

http://heads-project.eu
Franck Fleurey, SEsCPS Workshop, 17/05/2015

I2C, gpio,
serial,

analog, etc

SPI

Reset

Serial

ATmega
32u4

Sensors,
Actuators

Linino
AR 9331 Server

Client

IP Network

USB programming and
debugging interface

Servers and databases

Laptops, smartphones

Yun

The code of the application is
distributed on the different nodes of
the infrastructure

Simple IoT Infrastructure Example

	Taming Heterogeneity and Distribution in sCPS
	What heterogeneity and distribution?
	Limitations of centralized approaches
	Distributing the implementation
	Benefits of HD-Services
	What are the problems? (1/6)
	What are the problems? (2/6)
	What are the problems? (3/6)
	What are the problems? (4/6)
	What are the problems? (5/6)
	What are the problems? (6/6)
	State of the practice
	HEADS Approach
	HEADS Approach
	1. Domain Specific Modelling Language
	1. Domain Specific Modelling Language
	2. Code Generation Framework
	3. Deployment and Runtime
	Conclusion
	Thanks for your attention!
	HEADS Aproach
	What is ThingML ?
	Why ThingML ?
	ThingML Goals
	The ThingML tools
	Devolopping the ThingML tools
	ThingML: Architecture Model
	ThingML: Component
	ThingML: State Machines
	ThingML: Action Language
	Blink example state machine
	Blink example and instance groups
	ThingML Editor
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	ThingML code generation framework
	(1) Actions / Expressions / Functions
	(2) State machine implementation
	(3) Ports / Messages / Thing APIs
	(4) Connectors / channels
	(5) Message Queuing / FIFOs
	(6) Scheduling / Dispatch
	(7) Initialization and "main"
	(9) Project structure / build script
	Consistency checking
	Current test results
	Slide Number 50
	Slide Number 51

