
David Garlan

Carnegie Mellon University
Pittsburgh, PA, USA

May 17, 2015

Software Engineering for Smart Cyber-Physical Systems

Acknowledgements
 Joint work with faculty

 Bruce Krogh (Electrical Engineering)

 Andre Platzer (Computer Science)

 Bradley Schmerl (Software Engineering)

 Javier Camara (Software Engineering

 … and students
 Ajinkya Bhave (multi-view synthesis)

 Akshay Rajhans (compositional verification)

 Ivan Rutchkin (architecture and tools)

 Roykrong Sukkerd (task automation)

 With funding/support from
 National Science Foundation

 Bosch Corporation

 Toyota Corporation

2

This Talk – Three Themes
 Theme 1: CPS is challenging in fundamental ways

 Heterogeneity
 Complexity
 Uncertainty

 Theme 2: SE can help … but with modifications
 Model-driven engineering
 Architecture (and abstraction in general)
 Tools

 Theme 3: But SE needs more to make it “smart”
 Dealing with uncertainty
 Important special case: human-in-the-loop systems

3

Outline
 Characteristics of cyber-physical systems and the role of models

 Today’s model-based CPS methods have many problems

 Difficult to make trade-offs and ensure consistency/completeness

 Difficult to integrate the different modeling approaches

 Difficult to integrate humans “in the loop”

 Approach:

 Unified representation through extensions of software architecture and
using architectural views to support heterogeneous modeling and analysis

 Tools for dependency analysis and coordination

 Stochastic multi-player games

 Various examples along the way

 Quad-rotors, Smart highways, Real-time systems, Smart homes

4

Cyber-Physical Systems

5

What is a Cyber-Physical System?
 Many of today’s systems involve complex combinations of

software and physical elements

 Examples:
 Energy-efficient buildings (heating, cooling, power, …)

 Smart electric grid

 Transportation: automotive control, rail control, air traffic control

 Security systems

 Smart homes

 These are hard to design and implement
 Requires expertise from many domains, including control systems,

networking, software applications, etc.

 Often difficult to analyze and test

6

Problems
Today’s approaches to designing cyber-physical systems (CPS)

 Inherantly multi-discplinary

 Requires a variety of formalisms and methods :

 physical dynamics

 control law development

 hardware platform

 software architecture

 Problem 1: Making tradeoffs across different engineering
dimensions and domains

 Problem 2: Completeness and consistency of models

 Problem 3: Performing whole-system analyses

 Problem 4: Accounting for human behavior

7

Example CPS: STARMAC
 Stanford Testbed for Autonomous Rotorcraft for Multi-

Agent Control (http://hybrid.eecs.berkeley.edu/starmac/)

 Four rotors, arranged symmetrically on frame

8

Battery

Ultrasonic Ranger

High Level
Control Processor

Low Level
Control Processor

GPS

Electronics
Interface

Brushless Motors

IMU

Multiple Models

Physical Model

Multiple Models

Physical ModelControl Model

Multiple Models

Software Model

Physical ModelControl Model

Multiple Models

Software Model

Physical ModelControl Model

Hardware Model

Do they represent the system?

Are the views consistent?

?

Is there a unifying representation?

?

What we would like
 An approach that unifies both cyber and physical

design

 Allows one to describe the complete system

 Supports tradeoff analysis

 But allows a multiplicity of models and analyses

 Detects inconsistencies and mismatched assumptions

 Can reason about completeness of design models

 Supported by tools

 Allowing automated checking and linkage to legacy
analysis tools

17

Approach (work in progress)

1. Extend software architecture to support both
physical and cyber elements through a CPS
architectural style

2. Support heterogeneous models and analyses
through views

3. Determine consistency criteria for multiple
views

4. Support development through extensions to
software architecture modeling tools

18

Software Architecture
 Models a system as a graph of components and

connectors
 Components: computational elements (databases, servers,

etc)
 Connectors: communication pathways (RMI, http, etc)
 Properties: abstract behavior of elements (expected load,

latencies, transaction rates)

 Benefits of software architecture
 Abstraction reduces complexity
 Supports design-time analysis and tradeoffs

 However, does not usually consider physical
modeling, beyond simple sensors and actuators

19

Extended with Physical Elements
 Include physical system as a set of interacting

components with shared variables/coupled
constraints

 Components: Physical elements (mechanical, electrical,
thermal, environmental,…)

 Connectors: Physical interactions (conservation laws,
energy flows, …)

 Behavior: Dynamic behavior of elements (DAEs, LHA,
…)

 Bridging elements link physical elements to cyber
elements

20

Quadrotor (base) Architectural Model

Cyber elements

Bridging elements

Physical elements

21

Behavioral Modeling
 Behaviors are associated with subsets of the

architecture suitable for analysis

 Ex 1: Simulink model focuses on control performance,
abstracts scheduling and communication jitter in
software.

 Ex 2: Software behavior modeling focuses on commun-
ication between position ground station and position
controller, abstracts away physical aspects.

 Leads to need for multiple models

 Tailored to particular behavior/analysis

 Related via the base architectural model through views

22

Models as Architectural Views

Control
Model

Mx

XR
My

YR

X

BAR
Y

BAR

Base CPS Architecture

Hardware
Model

Arch. View X Arch. View Y

Control
Arch.

Hardware
Arch.

model-to-architectural-view relations

architectural -view-to-base-arch. relations

23

STARMAC Architectural Views

TCP UDP

Model

Arch.
View

Base
Arch.

Hardware (AADL) Software (FSP) Physical (Modelica)

Simulink Architecture View

25

Simulink Model

26

Gnd_Station
QuadRotor

FSP Architecture View

27

Process Algebra View

 Can check, e.g., liveness
 If user tells ground station to move rotor to location A, ground

station will eventually receive a status message from the position
controller that it is at new location

 Allows us to reason about connection over lossy, wireless network

 Retry (TCP) connector allows liveness property to be satisfied

28

Gnd_Station
QuadRotor

TCP UDP

What about Consistency?
 Structural consistency between the base

architecture and a view

 Determines if a view represents a valid abstraction of the
base architecture

 Weak: All elements of a view must be derived (via
encapsulation) from the base architecture

 Special case is communication integrity: Two
components in a view cannot interact unless they can
also interact in the base architecture

 Strong: Every component in the base architecture is
accounted for in the view (possibly within an
encapsulation boundary)

29

Graph Analysis for View Consistency
0

2

13

4 5

6

10

7 8 9

12

13

11

0

1

4

3

5 2

6
1 0

3

5

4 7

89

2
0

4
3

2

1

5

6

7

Physical View
Simulink View

Hardware View

BA
0

2

13

4 5

6

10

7 8 9

12

13

11

0

1

4

3

5 2

6
1 0

3

5

4 7

89

2
0

4
3

2

1

5

6

7

Physical View
Simulink View

Hardware View

BA

generation
of component

connectivity graph

Consistency of views analyzed
as graph morphisms1

1VFLib Graph Matching Library: http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html 30

Structural Inconsistency in STARMAC

Weak

Inconsistency

Tools: AcmeStudio
component/connector types

analysis plugins

 Extensible framework for architecture design and analysis

 Adaptation to CPS:

 support for associations between architectural views

 augmenting views with semantic attributes and analysis

 analysis plug-in for system-level verification

32

Semantic Consistency
 Each view and associated analyses guarantees

certain properties

 By analyzing properties represented in the view

 By generating the values of other properties – e.g.,
allocation of processes to processors

 Each view makes assumptions about the parts of
system that it is NOT modeling.

 May assume that certain invariants hold

 May consume values that other analyses produce

 How can we represent and check these?

Case Study: CICAS*

34

*http://www.its.dot.gov/cicas/

* Cooperative
Intersection
Collision
Avoidance
Systems

CICAS Sub-problem
Stop Sign Assist

 Decide if it is safe to enter an intersection.

Research:
 Combining structural and semantic reasoning.

35

CICAS-SSA

36

CICAS base architecture

37

Semantic & structural hierarchies

38

Maintaining Semantic Consistency
with Heterogeneous Models
 Example: thread scheduling in multi-processor

systems.

 Research problems:

 Understanding dependencies between different views

 Sequencing CPS analyses.

 Approach

 Use AADL* models to represent CPS structure/semantics

 Assume-guarantee reasoning about CPS analyses.

 Contract verification in multiple logics and domains.

* SAE Architecture Analysis and Design Language
http://www.aadl.info/aadl/currentsite/

39

Error behavior

modelScheduling model

Security model
Frequency

scaling model

40

Modeling Ecosystem

AADL system

model

Frequency

scaling

analysis

Error

analysis 1

Security

analysis

Scheduling

analysis

Error

analysis 2

Example of Analyses
● Security (confidentiality) analysis

– Based on security levels of threads, determine which
threads can be collocated on one processor.

● Bin packing (real-time allocation) analysis

– Allocate processes to processors.

● Frequency scaling (power efficiency) analysis

– Minimize the processor frequency to meet the task
deadlines.

● Model checking (safety) analysis

– Assuming the threads are scheduled correctly, check if the
system is safe.

42

Analysis Composition Problem
● Analyses have semantic interdependencies – how can

we be sure we do not violate them?

– E.g., scheduling needs collocation restrictions

● Analyses rely on each other to work correctly – how

to ensure correct composition?

– E.g., frequency scaling relies on correct scheduling

43

Security

analysis

Scheduling

analysis

Frequency scaling

analysis

Dependency Graph

44

Security analysis

Bin packing

Frequency scaling

Model checking

In: processes and

threads with

security classes

Out: collocation

info

Execution order

In: threads with

collocation info,

processes, and

processors

Out: allocation to

processors

In: processes

allocated to

processors

Out:

processor

frequencies

In: processes

allocated to

processors

Out:

deadlock

safety

Example Analyses: assumptions & guarantees

45

Security analysis

Bin packing

Frequency scaling

Model checking

Pre: true

Post: not

collocated with

what is prohibited

Pre: not

collocated with

what is prohibited

Post: true

Pre: no

preemption

for shorter

deadlines

Post: true

Pre:

deadlines are

equal to

periods

Post: true

Execution order

Analysis Framework Design

46

Eclipse

OSATE
Analyses

contracts

and source

Concrete model

source

Graph

Constructor

Graph of

analyses

DB

Constructor

…

Z3

Spin

Model

DB

(SQL)

DB assumption

checker

Analysis

executor

Logical

compiler

Data flow

Human-in-the-loop
 Many CPSs have humans in the loop

 Smart homes with occupants

 Air traffic control operators

 Automated driving

 Introduces a new problem: how/when to involve
humans in the CPS?

47

Example: Indoor Air Quality Control

Air quality sensors

Air purifier

Dehumidifier
Occupant

Task:
• Maintain air quality at healthy levels
• Minimize energy consumption

Challenges

Air quality sensors

Air purifier

Dehumidifier
Occupant

Dynamic environment

Uncertainty

Interaction with people

Today’s Practice: Rule-based Control
Based on heuristics

Event-Condition-Action rules
IF occupants_at_home and PM2.5>12

THEN turn on air purifier

Problems

 Complexity

 Determining if all conditions are accounted for

 Managing conflicts

 Reasoning about properties and qualities of tasks

Approach: Automated Planning
Key idea: Given a set of models and a

property specification, automatically
generate a plan

Benefits:
 No programming – task management is

automatically generated

 Models are simpler (and more reusable) than
code

 Tools can provide formal guarantees about
properties and qualities of tasks

Engineering Process

Planner

Instantiator

Task Plan

Models

Proposed Engineering Process

Planner

Instantiator

Task Plan

Models

- Properties
- Qualities

Proposed Engineering Process

Planner

Instantiator

Task Plan

Models

- System
- Environment
- Human participation

Proposed Engineering Process

Planner

Instantiator

Task Plan

Models

Proposed Engineering Process

Planner

Instantiator

Task Plan

Models

Proposed Engineering Process

Planner

Instantiator

Task Plan

Models

Proposed Engineering Process

Planner

Instantiator

Task Plan

Models

Stochastic Multiplayer Games
(SMGs)

Home=vacant
AirQuality=low

Home=vacant
AirQuality=high

Home=vacant
AirQuality=low

Turn on
air purifier No-Op

Home=occupied
AirQuality=high

Home=vacant
AirQuality=high

Home=occupied
AirQuality=low

Home=vacant
AirQuality=low

Occupants
come home

No-Op Occupants
come home

No-Op

p=0.8 p=0.2 p=0.8 p=0.2r=1r=2

System action

Environment event

Strategy Synthesis of SMGs

Home=vacant
AirQuality=low

Home=vacant
AirQuality=hig

h

Home=vacant
AirQuality=low

Turn on
air purifier No-Op

Home=occupie
d

AirQuality=hig
h

Home=vacant
AirQuality=hig

h

Home=occupie
d

AirQuality=low

Home=vacant
AirQuality=low

Occupants
come home

No-Op Occupants
come home

No-Op

p=0.8 p=0.2 p=0.8 p=0.2r=1r=2

Property: <<sys>> Rr
max=?[F goal]System action

Environment event

Indoor Air Quality Control:
Human-in-the-Loop

Air quality sensors

Air purifier

Dehumidifier
Occupant/

Human Actuator

Humans have their own objectives & priorities

Uncertainty from humans

Human experience

Delegation

Home=occupie
d

AirQuality=low

Home=occupie
d

AirQuality=hig
h

Home=occupie
d

AirQuality=low

Turn on
air purifier

Delegate “open windows”
to occupants

Home=vacant
AirQuality=hig

h

Home=occupie
d

AirQuality=hig
h

Home=occupie
d

AirQuality=hig
h

Home=occupie
d

AirQuality=low

Occupants
leave home

No-Op Occupants
open windows

No-Op

p=0.8 p=0.2 p=0.9 p=0.1

r=2

r=2

r=0

System action

Environment event

Human action

Opportunity-Willingness-Capability
 Opportunity

 Prerequisites for task performance

 Willingness

 Desire of participants to perform task

 Capability

 Capability of participants to perform task

Example OWC Model
τ = open windows

Types Elements Functions

Opportunity Participant’s location Opportunity function = is
participant at home?

Willingness Participant’s availability • If participant is busy:
Willingness probability = 0.2

• If participant is not busy:
Willingness probability = 0.9

Capability Participant’s age range • If participant is adult:
Capability probability = 1.0

• If participant is senior:
Capability probability = 0.6

Given opportunity, success probability of τ is WP*CP

OWC Model in Delegation
Participant=

<at home, senior,
busy>

AirQuality=low

Participant=
<at home, senior,

busy>
AirQuality=low

Delegate “open windows”
to participant

Participant=
<at home, senior,

busy>
AirQuality=high

Participant=
<at home, senior,

busy>
AirQuality=low

Participant
opens
windows

No-Op

p=0.12 p=0.88

r=2 r=0

Participant=
<at home, adult,

not busy>
AirQuality=low

Participant=
<at home, adult,

not busy>
AirQuality=low

Delegate “open windows”
to participant

Participant=
<at home, adult,

not busy>
AirQuality=high

Participant=
<at home, adult,

not busy>
AirQuality=low

Participant
opens
windows

No-Op

p=0.9 p=0.1

r=2 r=0

Conclusion
 CPS requires unified treatment of cyber and physical

aspects of systems design
 We are exploring the integration of heterogeneous

modeling and analysis through architecture views
 Provides formal criteria for structural and semantic

consistency
 Can be supported by tools that manage dependencies

 Humans in the loop require special treatment
 We are investigating stochastic multi-player games to do

automated control synthesis

 Many challenges remain

66

This Talk – Three Themes
 Theme 1: CPS is challenging in fundamental ways

 Heterogeneity
 Complexity
 Uncertainty

 Theme 2: SE can help … but with modifications
 Model-driven engineering
 Architecture (and abstraction in general)
 Tools

 Theme 3: But SE needs more to make it “smart”
 Dealing with continuous behavior
 Dealing with humans

67

References

 Ivan Ruchkin, Bradley Schmerl and David Garlan. Architectural
Abstractions for Hybrid Programs. In Proc. of the 18th International ACM
Sigsoft Symposium on Component-Based Software Engineering (CBSE
2015), Montréal, May 2015.

 A. Y. Bhave, D. Garlan, B. Krogh, A. Rajhans and B. Schmerl. Augmenting
Software Architectures with Physical Components. In Proc. of the
Embedded Real Time Software and Systems Conference (ERTS^2 2010),
May 2010.

 Bhave, A., B.H. Krogh, D. Garlan, and B. Schmerl. View Consistency in
Architectures for Cyber-Physical Systems. In 2011 IEEE/ACM International
Conference on Cyber-Physical Systems (ICCPS), 151-160, 2011.

 Rajhans, Akshay, and Bruce H. Krogh. Heterogeneous Verification of
Cyber-physical Systems Using Behavior Relations. In Proceedings of the
15th ACM International Conference on Hybrid Systems: Computation and
Control, 35-44. HSCC’12. New York, NY, USA: ACM, 2012.

68

 A. Rajhans, S.-W. Cheng, B. Schmerl, D. Garlan, B. Krogh, C.
Agbi and A. Y. Bhave. An Architectural Approach to the Design
and Analysis of Cyber-Physical Systems. In Electronic
Communications of the EASST, Vol. 21: Multi-Paradigm
Modeling, 2009.

 A. Y. Bhave, B. Krogh, D. Garlan and B. Schmerl. Multi-domain
Modeling of Cyber-Physical Systems using Architectural Views.
In Proceedings of the 1st Analytic Virtual Integration of Cyber-
Physical Systems Workshop, 2010. Co-located with RTSS 2010.

 A. Rajhans, A. Y. Bhave, S. Loos, B. Krogh, A. Platzer and D.
Garlan. Using Parameters in Architectural Views to Support
Heterogeneous Design and Verification. In 50th IEEE
Conference on Decision and Control (CDC) and European
Control Conference (ECC) December 2011.

69

The End

70

Auxiliary Slides

71

Other case studies: Robotics
Robotic control – drive to destination,

avoiding collision with obstacles.

Research problems:

 Architecture-aware hybrid modeling.

 Architectural support for theorem proving.

72

Example: Robot collision avoidance

73

Robot Obstacle

• A robot and an obstacle move in a one-dimensional space.
• The robot periodically senses the surrounding and may

decide to accelerate or brake.
• The robot knows the bounds and senses the obstacle’s location.
• Obstacle is assumed to travel at less than maximum speed.

Safety property: robot does not collide with the obstacle or the
bounds.

Robot trajectory

74

Exposing Architecture

75

Component: robot

Component: obstacle

Connector: robot senses obstacle
immediately and precisely

Robot’s property: control
algorithm

Obstacle’s property: control
algorithm

Robot’s property: physics

Solution: annotations

