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This Talk – Three Themes
 Theme 1: CPS is challenging in fundamental ways

 Heterogeneity
 Complexity
 Uncertainty

 Theme 2: SE can help … but with modifications
 Model-driven engineering
 Architecture (and abstraction in general)
 Tools

 Theme 3: But SE needs more to make it “smart” 
 Dealing with uncertainty
 Important special case: human-in-the-loop systems
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Outline
 Characteristics of cyber-physical systems and the role of models

 Today’s model-based CPS methods have many problems

 Difficult to make trade-offs and ensure consistency/completeness

 Difficult to integrate the different modeling approaches

 Difficult to integrate humans “in the loop”

 Approach: 

 Unified representation through extensions of software architecture and 
using architectural views to support heterogeneous modeling and analysis

 Tools for dependency analysis and coordination

 Stochastic multi-player games

 Various examples along the way

 Quad-rotors, Smart highways, Real-time systems, Smart homes
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Cyber-Physical Systems
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What is a Cyber-Physical System?
 Many of today’s systems involve complex combinations of 

software and physical elements

 Examples:
 Energy-efficient buildings (heating, cooling, power, …)

 Smart electric grid

 Transportation: automotive control, rail control, air traffic control

 Security systems

 Smart homes

 These are hard to design and implement
 Requires expertise from many domains, including control systems, 

networking, software applications, etc.

 Often difficult to analyze and test
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Problems
Today’s approaches to designing cyber-physical systems (CPS)

 Inherantly multi-discplinary

 Requires a variety of formalisms and methods : 

 physical dynamics

 control law development

 hardware platform

 software architecture

 Problem 1: Making tradeoffs across different engineering 
dimensions and domains

 Problem 2: Completeness and consistency of models

 Problem 3: Performing whole-system analyses

 Problem 4: Accounting for human behavior
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Example CPS: STARMAC
 Stanford Testbed for Autonomous Rotorcraft for Multi-

Agent Control (http://hybrid.eecs.berkeley.edu/starmac/)

 Four rotors, arranged symmetrically on frame
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Do they represent the system?



Are the views consistent?

?



Is there a unifying representation?

?



What we would like
 An approach that unifies both cyber and physical 

design

 Allows one to describe the complete system

 Supports tradeoff analysis

 But allows a multiplicity of models and analyses

 Detects inconsistencies and mismatched assumptions

 Can reason about completeness of design models

 Supported by tools

 Allowing automated checking and linkage to legacy 
analysis tools
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Approach (work in progress)

1. Extend software architecture to support both 
physical and cyber elements through a CPS 
architectural style

2. Support heterogeneous models and analyses 
through views

3. Determine consistency criteria for multiple 
views

4. Support development through extensions to 
software architecture modeling tools
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Software Architecture
 Models a system as a graph of components and 

connectors
 Components: computational elements (databases, servers, 

etc)
 Connectors: communication pathways (RMI, http, etc)
 Properties: abstract behavior of elements (expected load, 

latencies, transaction rates)

 Benefits of software architecture
 Abstraction reduces complexity
 Supports design-time analysis and tradeoffs

 However, does not usually consider physical 
modeling, beyond simple sensors and actuators
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Extended with Physical Elements
 Include physical system as a set of interacting 

components with shared variables/coupled 
constraints

 Components: Physical elements (mechanical, electrical, 
thermal, environmental,…)

 Connectors: Physical interactions (conservation laws, 
energy flows, …)

 Behavior: Dynamic behavior of elements (DAEs, LHA, 
…)

 Bridging elements link physical elements to cyber 
elements
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Quadrotor (base) Architectural Model

Cyber elements

Bridging elements

Physical elements
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Behavioral Modeling
 Behaviors are associated with subsets of the 

architecture suitable for analysis 

 Ex 1: Simulink model focuses on control performance, 
abstracts scheduling and communication jitter in 
software.

 Ex 2: Software behavior modeling focuses on commun-
ication between position ground station and position 
controller, abstracts away physical aspects.

 Leads to need for multiple models

 Tailored to particular behavior/analysis

 Related via the base architectural model through views
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Models as Architectural Views
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STARMAC Architectural Views
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Simulink Architecture View
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Simulink Model
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Gnd_Station
QuadRotor

FSP Architecture View
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Process Algebra View

 Can check, e.g., liveness
 If user tells ground station to move rotor to location A, ground 

station will eventually receive a status message from the position 
controller that it is at new location

 Allows us to reason about connection over lossy, wireless network

 Retry (TCP) connector allows liveness property to be satisfied
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What about Consistency?
 Structural consistency between the base 

architecture and a view

 Determines if a view represents a valid abstraction of the 
base architecture

 Weak: All elements of a view must be derived (via 
encapsulation) from the base architecture

 Special case is communication integrity: Two 
components in a view cannot interact unless they can 
also interact in the base architecture

 Strong: Every component in the base architecture is 
accounted for in the view (possibly within an 
encapsulation boundary)
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Graph Analysis for View Consistency
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Structural Inconsistency in STARMAC

Weak 

Inconsistency



Tools: AcmeStudio
component/connector types

analysis plugins

 Extensible framework for architecture design and analysis

 Adaptation to CPS: 

 support for associations between architectural views

 augmenting views with semantic attributes and analysis

 analysis plug-in for system-level verification
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Semantic Consistency
 Each view and associated analyses guarantees 

certain properties

 By analyzing properties represented in the view

 By generating the values of other properties – e.g., 
allocation of processes to processors

 Each view makes assumptions about the parts of 
system that it is NOT modeling.

 May assume that certain invariants hold

 May consume values that other analyses produce

 How can we represent and check these?



Case Study: CICAS*
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*http://www.its.dot.gov/cicas/

* Cooperative 
Intersection 
Collision 
Avoidance
Systems 



CICAS Sub-problem
Stop Sign Assist

 Decide if it is safe to enter an intersection.

Research: 
 Combining structural and semantic reasoning. 
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CICAS-SSA
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CICAS base architecture

37



Semantic & structural hierarchies
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Maintaining Semantic Consistency 
with Heterogeneous Models
 Example: thread scheduling in multi-processor 

systems.

 Research problems: 

 Understanding dependencies between different views

 Sequencing CPS analyses.

 Approach

 Use AADL* models to represent CPS structure/semantics

 Assume-guarantee reasoning about CPS analyses.

 Contract verification in multiple logics and domains.

* SAE Architecture Analysis and Design Language
http://www.aadl.info/aadl/currentsite/ 
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Example of Analyses
● Security (confidentiality) analysis

– Based on security levels of threads, determine which 
threads can be collocated on one processor.

● Bin packing (real-time allocation) analysis

– Allocate processes to processors.

● Frequency scaling (power efficiency) analysis

– Minimize the processor frequency to meet the task 
deadlines.

● Model checking (safety) analysis

– Assuming the threads are scheduled correctly, check if the 
system is safe.
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Analysis Composition Problem
● Analyses have semantic interdependencies – how can 

we be sure we do not violate them? 

– E.g., scheduling needs collocation restrictions

● Analyses rely on each other to work correctly – how 

to ensure correct composition?

– E.g., frequency scaling relies on correct scheduling
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Dependency Graph
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Example Analyses: assumptions & guarantees
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Analysis Framework Design
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Human-in-the-loop
 Many CPSs have humans in the loop

 Smart homes with occupants

 Air traffic control operators

 Automated driving

 Introduces a new problem: how/when to involve 
humans in the CPS?
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Example: Indoor Air Quality Control

Air quality sensors

Air purifier

Dehumidifier
Occupant

Task:
• Maintain air quality at healthy levels
• Minimize energy consumption



Challenges

Air quality sensors

Air purifier

Dehumidifier
Occupant

Dynamic environment

Uncertainty

Interaction with people



Today’s Practice: Rule-based Control
Based on heuristics

Event-Condition-Action rules
IF occupants_at_home and PM2.5>12

THEN turn on air purifier

Problems

 Complexity

 Determining if all conditions are accounted for

 Managing conflicts

 Reasoning about properties and qualities of tasks



Approach: Automated Planning
Key idea: Given a set of models and a 

property specification, automatically 
generate a plan

Benefits:
 No programming – task management is 

automatically generated

 Models are simpler (and more reusable) than 
code

 Tools can provide formal guarantees about 
properties and qualities of tasks



Engineering Process
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Proposed Engineering Process
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Proposed Engineering Process
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Stochastic Multiplayer Games 
(SMGs)
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Strategy Synthesis of SMGs
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Indoor Air Quality Control: 
Human-in-the-Loop

Air quality sensors

Air purifier
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Human Actuator

Humans have their own objectives & priorities

Uncertainty from humans

Human experience



Delegation
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Opportunity-Willingness-Capability
 Opportunity

 Prerequisites for task performance

 Willingness

 Desire of participants to perform task

 Capability

 Capability of participants to perform task



Example OWC Model
τ = open windows

Types Elements Functions

Opportunity Participant’s location Opportunity function = is 
participant at home?

Willingness Participant’s availability • If participant is busy:
Willingness probability = 0.2

• If participant is not busy:
Willingness probability = 0.9

Capability Participant’s age range • If participant is adult:
Capability probability = 1.0

• If participant is senior:
Capability probability = 0.6

Given opportunity, success probability of τ is WP*CP



OWC Model in Delegation
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Conclusion
 CPS requires unified treatment of cyber and physical 

aspects of systems design
 We are exploring the integration of heterogeneous 

modeling and analysis through architecture views
 Provides formal criteria for structural and semantic 

consistency
 Can be supported by tools that manage dependencies

 Humans in the loop require special treatment
 We are investigating stochastic multi-player games to do 

automated control synthesis

 Many challenges remain
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This Talk – Three Themes
 Theme 1: CPS is challenging in fundamental ways

 Heterogeneity
 Complexity
 Uncertainty

 Theme 2: SE can help … but with modifications
 Model-driven engineering
 Architecture (and abstraction in general)
 Tools

 Theme 3: But SE needs more to  make it “smart” 
 Dealing with continuous behavior
 Dealing with humans
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The End
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Other case studies: Robotics
Robotic control – drive to destination, 

avoiding collision with obstacles.

Research problems: 

 Architecture-aware hybrid modeling.

 Architectural support for theorem proving.
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Example: Robot collision avoidance
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Robot Obstacle

• A robot and an obstacle move in a one-dimensional space.
• The robot periodically senses the surrounding and may 

decide to accelerate or brake. 
• The robot knows the bounds and senses the obstacle’s location.
• Obstacle is assumed to travel at less than maximum speed.

Safety property: robot does not collide with the obstacle or the 
bounds.



Robot trajectory
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Exposing Architecture
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Component: robot

Component: obstacle

Connector: robot senses obstacle 
immediately and precisely

Robot’s property: control 
algorithm

Obstacle’s property: control 
algorithm

Robot’s property: physics

Solution: annotations


