
Verification and Validation in 

Cyber-Physical Systems: 

Research Challenges 

and a Way Forward

Xi (James) Zheng

Christine Julien

The Center for Advanced Research in Software Engineering

The University of Texas at Austin



Does this look familiar?

Too complicated!

Not reproducible!

Dangerous!



Or is this more your cup of tea?

Not representative!

Time consuming!



Problem Statement

This work starts with an empirical study of the state of 

the art and state of the practice of verification and 

validation of cyber-physical systems. It uses this study 

to motivate essential research directions for CPS V&V.

Opportunity: 

Empirical evidence of the use and effectiveness of verification

and validation strategies in CPS is largely anecdotal

Gap: 

It is not clear what is truly demanded by modern CPS with 

respect to tools and techniques for verification and validation

Challenges: Real world scale, dynamics, safety, repeatability



Strongly Held Belief 1

CPS developers are generally unfamiliar with traditional 

software verification and validation methodologies

• CPS developers are often domain experts, not software 

engineering experts

• Many often have a very different view of the software 

engineering process than we traditionally do



Strongly Held Belief 2

High-level programming languages (e.g., Java) are not 

applicable to CPS

• Many CPS developers prefer low-level languages like 

nesC and other proprietary languages

• However, many also choose languages like Java, C++, 

Python, etc.
“A programming language like 
Java is not applicable to systems 
with hard real-time constraints” 



Strongly Held Belief 3

Resource constraints (e.g., CPU, memory, and storage) 

are a major issue in developing and debugging CPS

• Low levels (e.g., sensor implementations) have to be 

concerned about resource constraints

• However, many of the tasks of CPS developers are 

constrained to the higher (application layers)

– Developers assume lower levels have abstracted away resource 

constraint concerns



Strongly Held Belief 4

Existing model checking and other formal techniques are 

insufficient to meet CPS applications’ needs

• CPS developers believe that formal techniques: 

– Have learning curves that are too steep

– Are computationally inefficient for large-scale systems

• However, CPS developers commonly desire to use formal 

techniques, at least for components of the system



Strongly Held Belief 4 (More details)

There is a significant gap in between models of 

computing and communications and models of physics 

that makes applying them jointly in CPS challenging.

• CPS inherently intertwines cyber and physical

– But tools and techniques for debugging the CPS generally focus on 

one or the other (often depending on the expertise of the user) 

• Teaser: conceptually, models ought to be practically 

usable, e.g., for testing and debugging



Strongly Held Belief 5

An ad hoc, trial-and-error approach to development is 

the state of the art for CPS systems

• 91.3% of the survey respondents either “Agree” or 

“Strongly Agree” with this statement



Key Takeaways

• Trial-and-error testing (which is the state of the practice) 

does not provide sufficient rigor in error detection

• Formal methods provide a desired level of expressiveness 

but are neither intuitive nor efficient

• Existing simulation tools are limited in their capabilities to 

jointly model physical and cyber components



What’s a girl to do? A research roadmap

• Assertion-based programming for CPS

– Intuitive yet expressive specifications of correctness

• Online monitoring framework

– Runtime monitors for CPS including time synchronization across 

distributed actors

• Connecting to real-time simulation

– Dynamic binding of runtime monitors to the real physical 

environment or simulated aspects of it

• Addressing uncertainties

– Making even the deterministic simulated environment behave more 

like a real world



The Brace Framework



Questions?

Xi (James) Zheng

Christine Julien (c.julien@utexas.edu)

The Center for Advanced Research in Software Engineering

The University of Texas at Austin


