Verification and Validation In
Cyber-Physical Systems:
Research Challenges

and a Way Forward

Xi (James) Zheng
Christine Julien

The Center for Advanced Research in Software Engineering
The University of Texas at Austin

Does this look familiar?

Too complicated!
Not reproducible!
Dangerous!

il ////F_ﬁlC

Or Is this more your cup of tea?

= —

—
=
P

é/®\ o
A

CH f
@ tads (
ILAYERNUM+1; i++) { L
\); J<TRAINUM; j++) {
t k=i+1: k<LAYERNUM+1: k++) {

o</ Not representative!
/ Time consuming!

®
o—&

Problem Statement

Opportunity:
Empirical evidence of the use and effectiveness of verification
and validation strategies in CPS is largely anecdotal

Gap:
It is not clear what is truly demanded by modern CPS with
respect to tools and techniques for verification and validation

Challenges: Real world scale, dynamics, safety, repeatability

This work starts with an empirical study of the state of
the art and state of the practice of verification and
validation of cyber-physical systems. It uses this study
to motivate essential research directions for CPS V&V.

Strongly Held Belief 1

CPS developers are generally unfamiliar with traditional
software verification and validation methodologies

« CPS developers are often domain experts, not software
engineering experts

« Many often have a very different view of the software
engineering process than we traditionally do

Strongly Held Belief 2

High-level programming languages (e.g., Java) are not
applicable to CPS

« Many CPS developers prefer low-level languages like
nesC and other proprietary languages

* However, many also choose languages like Java, C++,
Python, etc.

“A programming language like
Java is not applicable to systems
with hard real-time constraints”

Strongly
Disagree

Strongly Held Belief 3

Resource constraints (e.g., CPU, memory, and storage)
are a major issue in developing and debugging CPS

* Low levels (e.g., sensor implementations) have to be
concerned about resource constraints

 However, many of the tasks of CPS developers are
constrained to the higher (application layers)

— Developers assume lower levels have abstracted away resource
constraint concerns

Strongly Held Belief 4

Existing model checking and other formal techniques are
insufficient to meet CPS applications’ needs

 CPS developers believe that formal techniques:
— Have learning curves that are too steep
— Are computationally inefficient for large-scale systems

« However, CPS developers commonly desire to use formal
techniques, at least for components of the system

Strongly Held Belief 4 (More detalls)

There Is a significant gap in between models of
computing and communications and models of physics
that makes applying them jointly in CPS challenging.

« CPS inherently intertwines cyber and physical

— But tools and techniques for debugging the CPS generally focus on
one or the other (often depending on the expertise of the user)

« Teaser: conceptually, models ought to be practically
usable, e.g., for testing and debugging

Strongly Held Belief 5

An ad hoc, trial-and-error approach to development is
the state of the art for CPS systems

+ 91.3% of the survey respondents either “Agree” or
“Strongly Agree” with this statement

Key Takeaways

« Tral-and-error testing (which is the state of the practice)
does not provide sufficient rigor in error detection

« Formal methods provide a desired level of expressiveness
but are neither intuitive nor efficient

« Existing simulation tools are limited in their capabilities to
jointly model physical and cyber components

What's a girl to do? A research roadmap

Assertion-based programming for CPS
— Intuitive yet expressive specifications of correctness

Online monitoring framework

— Runtime monitors for CPS including time synchronization across
distributed actors

Connecting to real-time simulation

— Dynamic binding of runtime monitors to the real physical
environment or simulated aspects of it

Addressing uncertainties

— Making even the deterministic simulated environment behave more
like a real world

The Brace Framework

Annotated
CPS Program

4> cps
J Assertion

CPS Brace
Developers Assertion
-
& T
-l MATLAB
SIMULINK |

(— CPS Target
Environment
// r
)
Deployable i
Brace CPS Program a
Framework | > A -
-~
A
Bmd Force
tuators
- j.\-’/\
-{/ S T
ﬂ Q .z. '. (1
OpreN DyNaMICS ENGINE™ __..//

Questions?

Xi (James) Zheng

Christine Julien (c.julien@utexas.edu)
The Center for Advanced Research in Software Engineering
The University of Texas at Austin

