
An Application Conflict Detection
and Resolution Method

 for Smart Homes

Miki Yagita
1st year master’s course

@ The University of Tokyo, Japan

Supervisers:
Assoc. Prof. Fuyuki Ishikawa, Prof. Shinichi Honiden

1

IoT - Internet of Things
A relatively new concept: “inter-connecting
devices that were not connected before.”

U.S. National Intelligence Council chooses IoT to be
one of the six technologies that will most
influence the world by 2025.

One application of IoT is the Smart Homes.

2

[1] National Intelligence Council, Disruptive Civil Technologies April 2008,
http://www.fas.org/irp/nic/disruptive.pdf

http://www.fas.org/irp/nic/disruptive.pdf

Smart Home

3

sensors
(CO2 sensor)

apps
(CO2 monitor)

actuators
(window)

control

provide
 data

home environment
get data change

notify
state

App conflict
Generally, there are multiple apps installed

 → conflict between apps

Two types of App conflict

• Sensor control conflict

• Actuator control conflict

4

App conflict

5

Generally, there are multiple apps installed

 → conflict between apps

Two types of App conflict

• Sensor control conflict : relatively easy to solve

• Actuator control conflict

Our work focuses on this type of conflict

Example: Actuator control conflict
CO2Monitor_App

what: opens window1

when: status of CO2_Sensor is “high”

secureWindow_App

what: closes window1

when: status of the residents are “Away” or “Asleep”

 → possible conflict regarding window1 (actuator)

6

Related Work: DepSys[8]

7

Actuator conflict detection/resolution at install-time

Problems:
1. Only apps that run synchronously (with time) are

supported
2. Creates a total order between apps which is not

flexible
3. Does not specify how the app priority is created
→ Our system overcomes these three limitations

[8] Munir et al., “DepSys: Dependency Aware Integration of Cyber-Physical Systems for Smart Homes”
ICCPS’14

Problem (1)

8

No conflict detection/resolution for apps that run
asynchronously

Notice that even this simple app is operating
asynchronously

CO2Monitor_App

what: opens window1

when: the status of CO2_Sensor is “high”

Problem (2)

9

Creating a total order between all apps does not provide a
flexible resolution of conflicts.

CO2Monitor_App

what: opens window1

when: the status of CO2_Sensor is “high”

secureWindow_App

what: closes window1

when: the status of the residents are “Away” or “Asleep”

Users may want:

residents “Away” → secureWindow_App > CO2Monitor_App

residents “Asleep” → secureWindow_App < CO2Monitor_App

Approach
With metadata of apps, actuators, and sensors,
check each situations of conflicts by model-
checking

 → supports asynchronous apps (sol. to prob. 1) by

 using model-checking

 → a flexible conflict resolution (sol. to prob. 2) by

 using situations (explained later) of conflicts

10

System Overview

Parser

Checker

Resolver

11

The Parser module:

Inputs metadata of apps,
actuators, and sensors

Outputs a metaData object for
further use in the system

metaData object

12

sensors

apps

actuators

control
when and what

provide
 data

home environmentget what

what effect is
caused

notify
state

‘metaData’ object

‘effect’

13

An effect is how actuator affects the environment

a direct effect

e.g.) “heater = On” → “Temperature = Higher”

a non-direct effect

e.g.) “heater = On” → “Temperature = Higher”

 → “Humidity = Lower”

 → we only take into account direct effects

i.e. highschool physics

System Overview

Parser

Checker

Resolver

14

The Checker module:

Inputs the metaData object

Outputs one conflict from
each situation

metaData object

System Overview

Parser

Checker

Resolver

15

The Resolver module:

Inputs one conflict from each
situation

Outputs queries for the users

‘situation’

16

situations: equivalence classes to categorise actuator conflicts

1. which app was running first

→ especially: when priority of two apps are same/similar

2. why did the app run

→ secureWindow_App closes window1 when the status of
the residents are “Away” or “Asleep”

 “Away” and “Asleep” create two different situations

Evaluation (1)
Through implementation (by hand) of the following case:

CO2Monitor_App

what: opens window1

when: the status of CO2_Sensor is “high”

secureWindow_App

what: closes window1

when: the status of the residents are “Away” or “Asleep”

17

Evaluation (2)
Some situations are as follows:

1. CO2Monitor_App controlling window1 → residents go “Away”

2. CO2Monitor_App controlling window1 → residents go “Asleep”

Created LTLs for above two situations

→ model checking with SPIN [9]
→ conflicts found within 0.01 seconds.

From ‘trail’ of model-checker :

“When residents become Away while CO2Monitor_App is opening
window1, there will be a conflict between that and
secureWindow_App. Which app do you want to prefer?”

18

Conclusion

19

• We proposed the use of model checking in order to detect
more conflicts

• By using situations our system allows a more flexible
resolution of conflicts

Future Work:

• Support of indirect effects in conflict detection and
resolution

• Evaluation with a larger test case

(We are doing this now!)

additional slides

[2] P. a. Vicaire, E. Hoque, Z. Xie, and J. a. Stankovic, “Bundle: A group-based programming
abstraction for cyber-physical systems,” IEEE Transactions on Industrial Informatics, vol. 8,
no. 2, pp. 379–392, 2012

[3] P. Vicaire and Z. Xie, “Physicalnet: A generic framework for managing and programming
across pervasive computing networks,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE, 2010, pp. 269–278.

[4] C. Dixon, R. Mahajan, S. Agarwal, A. J. B. Bongshin, L. Stefan, and S. Paramvir, “An Operating
System for the Home,” NSDI, vol. 7, 2012.

[5] A.D.Wood,J.a.Stankovic,G.Virone,L.Selavo,Z.He,Q.Cao,T.Doan,  
Y. Wu, L. Fang, and R. Stoleru, “Context-aware wireless sensor networks for assisted living
and residential monitoring,” IEEE Network, vol. 22, no. 4, pp. 26–33, 2008.

[6] R. Dickerson, E. Gorlin, and J. Stankovic, “Empath: a continuous remote emotional health
monitoring system for depressive illness,” in Wireless Health 2011, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2077552

[7] M. L. Mazurek, J. P. Arsenault, J. Bresee, N. Gupta, I. Ion, C. Johns, D. Lee, Y. Liang, J. Olsen,
B. Salmon, R. Shay, K. Vaniea, L. Bauer, L. F. Cranor, G. R. Ganger, M. K. Reiter, and Z. Eth,
“Access Control for Home Data Sharing : Attitudes , Needs and Practices,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, 2010, pp. 645–654.

[8] Munir et al., “DepSys: Dependency Aware Integration of Cyber-Physical Systems for Smart
Homes” ICCPS’14

References

Problem (3)

22

Many existing works on self adaptive systems are a
generalisation of the actuator conflict problem.
However, to our best knowledge, there has been no
previous work on assisting users’ resolution of
conflicts by providing useful information.

Existing Approach (1)
Bundle [2] and Physicalnet [3]:
• actuator conflicts are resolved with the “Resolver”
• The “Resolver” is a Java method, and can be freely

modified
→ A resolver written as a Java method can be used
by programmers but not by general users
→ Our approach allows general users to resolve
actuator conflicts

23

Existing Approach (2)
HomeOS [4], AlarmNet [5], Empath [6]:
• architectures for Smart Homes
• actuator conflicts are not resolved at install-time
 → why not install time?

24

HomeOS claims: “Studies show that users prefer this
flexibility (permit or deny access interactively) rather than
having to specify all possible legal accesses a priori
[7].” [4]
→ However, users may not always be at home to resolve
the conflict at run-time, so in some cases install-time
conflict resolution is necessary.

Trigger

25

A trigger is what causes an app to run

trigger ::= <time> | <event>

A time object supports synchronous apps

An event object supports asynchronous apps

 eg.) AND ({ sensorId = CO2_Sensor, sensorData = 0.1ppm,
 comparator = HigherThan },
 { actuatorId = Window1,
 actuatorEffect = { effect = { window = closed },
 location = livingRoom } })

