A Model-based Approach for the Specification of a Virtual Power Plant Operating in Open Context

Vasileios Koutsoumpas

Fakultät für Informatik, Technische Universität München, Munich, Germany

May 17, 2015

Introduction

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Table of contents

Introduction

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & Future Work

The End

Introduction

oundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Introduction

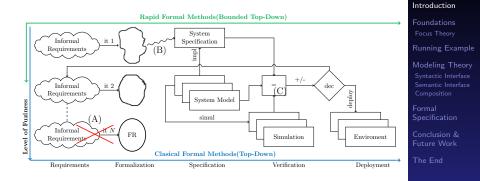
- Open Context Systems (OCS)
 - Dynamic system boundary
 - Dynamic context awareness
- Smart Cars, Smart Grids, Smart Homes, etc...
- Virtual Power Plant (VPP)¹
 - Challenges
 - Limitations
- OCS involve Uncertainty
- Uncertainty is an umbrella over terms (Accuracy, Precision, Ambiguity, Vagueness, Predictability...)
- Where is uncertainty located in a component?
- Uncertain input, output, behavior

$$\xrightarrow{UI} UB: \vec{i} \rightarrow \vec{O} \xrightarrow{UO}$$

¹Applying formal software engineering techniques to smart grids, SE4SG-2012

Introduction

Foundations Focus Theory


Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & Future Work

Research Problem

- PS1: Formalism for fuzzy specifications to model explicitly uncertainty in component interactions
- Equivalence model for quantitative reasoning
- PS2: Formalism for qualitative specifications for approximating component behaviors
- Dynamic adaption to systems context

Focus Theory

- A formal theory for interactive systems
- System structure: static hierarchy of components
- Syntactic Interface: *I* ⊳ *O*
- Component interactions through message exchange
- Streams: finite (M^*) or infinite (M^{∞})
- Semantic Interface : $B: \vec{l} \to \wp(\vec{O})$
- Composition of subsystems: $B_1 \otimes B_2$

$$\xrightarrow{i_1: T_1} B: \overrightarrow{I} \to \overrightarrow{O} \xrightarrow{o: T_3}$$

Figure: Focus Component

Introduction

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & Future Work

Virtual Power Plant

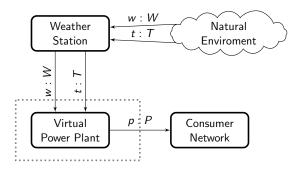
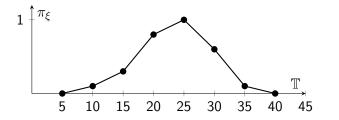


Figure: Virtual Power Plant and its Context

- Context-dependency
- Time-Dependency

Introduction Foundations Focus Theory Running Example Modeling Theory Syntactic Interface Semantic Interface Composition

Specification


Conclusion & Future Work

Fuzzy Property

Definition (Fuzzy Property)

A fuzzy property $\tilde{\rho}$ is a three-tuple $\langle X, \xi, \pi_{\xi} \rangle$, where X is the universe of discourse which can be referenced by $\tilde{\rho}$, ξ is a linguistic term which characterizes the property and $\pi_{\xi} : X \to [0,1] \cup \{\bot\}$ is the membership function.

	p_1	p ₂	p 3	p 4	p 5	p 6	<i>p</i> 7	p 8	p 9
x	0	5	10	15	20	25	30	35	40
$\mu_{Troom}(x)$	0	0	0.1	0.3	0.8	1	0.6	0.1	0

Introductior

oundations Focus Theory

lunning Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Fuzzy Port - Bindings

Definition (Fuzzy Port)

A fuzzy port Θ_T over a type T is a set of fuzzy properties $\Theta_T = \{ \widetilde{p} \in \mathcal{P} \}$, which satisfies the following two conditions:

- Each property type is a subset of T, formally:

$$\forall \widetilde{p} \in \Theta_T \to \widetilde{p}. X \subseteq T \tag{c1}$$

Each property is uniquely characterized by its linguistic term, formally:

$$\forall \widetilde{p}_1, \widetilde{p}_2 \in \Theta_{\mathcal{T}} : \ \widetilde{p}_1 \neq \widetilde{p}_2 \rightarrow \widetilde{p}_1.\xi \neq \widetilde{p}_2.\xi \qquad (c2)$$

Definition (Binding)

A binding *B* between a typed channel c : C and a fuzzy port Θ_T is a 2-tuple $B = \langle c, \Theta_T \rangle$ which satisfies following connectivity property:

- $C \subseteq T$

Introduction

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Syntactic Interface

Syntactic Interface $(I_S \triangleright O_S) = I/O$ channels + fuzzy IP/OP ports + I/O bindings

Example (Syntactic Interface of the VPP)

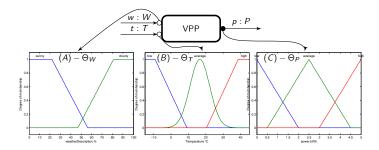


Figure: Syntactic Interface Specification for the VPP

ntroduction

oundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Rule Base Specification

Given: $I_S \triangleright O_S$ and $\mu = \langle i_1 @t, ..., i_n @t \rangle \in I_1 \times ... \times I_n$, the semantics are determined by a rule base of the form:

$$R_r^o$$
: if $i_1@t$ is $\xi_{1,r}^{(1)}$.. and ... $i_n@t$ is $\xi_{n,r}^{(n)}$
then $o@(t+1)$ is ξ_r , $r = 1, ..., k$

In case of multiple output channels: $R_S = \{R^{O_1}, ..., R^{O_m}\}$

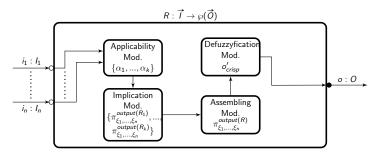


Figure: Behavior interpretation of a rule based specification

ntroduction

Foundations Focus Theory Running Example Modeling Theory Syntactic Interface

Semantic Interface Composition

Formal Specification

Conclusion & Future Work

Mapping Strategies

Definition (Mapping Strategy)

A mapping strategy for a given property $\tilde{p} = \langle X, \xi, \pi_{\xi} \rangle$ (total or partial) is a high order function over a stream to a membership function for that property, formally:

 $mapstr_{\xi} : Stream X, \mathbb{N} \cup \{\infty\} \rightarrow (\pi_{\xi} : X \rightarrow [0, 1])$

ntroduction

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Composition

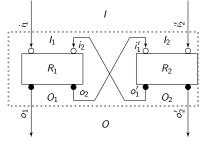


Figure: Parallel Composition with Feedback

Given two subsystems S_1 and S_2 with $I_1 \cap I_2 = \emptyset$ and behavior functions $R_1 : I_1 \to \wp(\overrightarrow{O_1})$ and $R_2 : I_2 \to \wp(\overrightarrow{O_2})$, the parallel composition is given by:

$$R_1 \otimes R_2 : \vec{l} \to \wp(\vec{O})$$

where, $I = I_1 \cup I_2$, $IP_S = IP_{S_1} \cup IP_{S_2}$, $O = O_1 \cup O_2$, and $OP_S = OP_{S_1} \cup OP_{S_2}$.

Introduction Foundations Focus Theory Running Example Modeling Theory Syntactic Interface Semantic Interface Composition Formal Specification

Conclusion & Future Work

VPP Specification

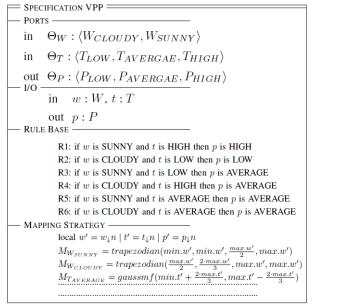


Figure: Virtual Power Plant Specification

Introductior

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work

Conclusion & Future Work

- Formalism for qualitative specifications within Focus
- Framework for Uncertainty based on fuzzy logic
- Limitations
- Tooling
- Case studies to evaluate the expressiveness and effectiveness of the overall approach

Introductior

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & Future Work

The End

Thank you for your attention!

Introductior

Foundations Focus Theory

Running Example

Modeling Theory Syntactic Interface Semantic Interface Composition

Formal Specification

Conclusion & ⁼uture Work