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Abstract—One popular approach to detect errors in multi-
threaded programs is to systematically explore all possible
interleavings. A common algorithmic strategy is to construct the
program state space on-the-fly and perform thread scheduling
choices at any instruction that could have effects visible to other
threads. Existing tools do not look ahead in the code to be
executed, and thus their decisions are too conservative. They
create unnecessary thread scheduling choices at instructions that
do not actually influence other threads, which implies exploring
exponentially greater numbers of interleavings.

In this paper we describe how information about field accesses
that may occur in the future can be used to identify and eliminate
unnecessary thread choices. This reduces the number of states
that must be processed to explore all possible behaviors and
therefore improves the performance of exhaustive state space
traversal. We have applied this technique to Java PathFinder,
using the WALA library for static analysis. Experiments on
several Java programs show big performance gains. In particular,
it is now possible to check with Java PathFinder more complex
programs than before in reasonable time.

Index Terms—exhaustive state space traversal, field accesses,
state explosion, concurrency, Java PathFinder, WALA

I. INTRODUCTION

One group of techniques for detecting errors in multi-
threaded programs is based on exhaustive state space traversal.
All interleavings of program threads are checked for property
violations. Well-known tools that belong to this category are
Java PathFinder (JPF) [15] and CHESS [21]. Although such
tools implement many optimizations, checking all thread inter-
leavings is still time-consuming, so these tools can currently
be applied only to relatively small programs.

A popular strategy, used in JPF, is to construct the program
state space on-the-fly and create thread scheduling choices
only at instructions that either change or depend on the global
state that is visible to other threads. These instructions include
reads and writes of shared data and synchronization instruc-
tions. Instructions with only thread-local effects are considered
as independent, so no thread choices at these instructions are
explored [10]. This technique of ignoring the order of thread-
local operations is called partial order reduction.

One limitation of this strategy is that the state space traversal
algorithm does not see ahead on the execution path and does
not know what actions each thread may perform in future.
The decision whether an instruction may have global effects
visible to other threads is performed using only information in
the current state and execution history, and thread scheduling
choices must be made at all instructions that may potentially

have global effects. This strategy is too conservative and
leads to inefficient state space traversal for two reasons: many
unnecessary thread scheduling choices may be created in the
state space, and the set of explored thread interleavings may
also include ones that differ only in the ordering of actions
that actually do not influence behavior of other threads. An
important category of globally visible actions are accesses
to shared objects. Due to inability to see ahead, a common
solution is to consider an object shared if it is reachable via
pointers from multiple threads (even though the threads may
not actually ever follow those pointers to access the object).

Contribution. We introduce a static analysis that deter-
mines, for each field access in the program, whether the same
field may be accessed again in the code yet to be executed by
other threads. Using the static analysis results, it is possible to
soundly eliminate many unnecessary thread scheduling choices
that would otherwise be created, and thus reduce the number
of states and transitions that must be processed to cover all
possible behaviors of the given program. The static analysis
enables more aggressive partial order reduction.

Our approach is a hybrid between static analysis and ex-
haustive state space traversal: static analysis is used to reduce
the state space size and, at the same time, information available
in the dynamic program state provided by JPF is combined
with the static analysis results to improve precision.

We have implemented our static analysis using the WALA
library [30] and applied it to JPF. Experiments performed on
several non-trivial Java applications show large reductions in
the number of states that JPF must explore, and therefore in the
state space exploration time. It is now possible to check with
JPF in a reasonable time much larger programs than before.
Of the benchmark programs that we evaluated, two could not
be verified with the original JPF even in 8 hours, but our static
analysis made it possible to verify them in 12 and 55 minutes.

II. RUNNING EXAMPLE

We will illustrate the key concepts of our approach on
the simple Java program displayed in Figure 1. The program
involves the Employee class with several data fields, the
Company class that encapsulates a list of employees, and two
worker threads that operate on different instances of Employee
through methods of the Company class. The main method
creates two employees and then starts two concurrent threads.
In the example, each worker thread has distinct code (though
this is not a requirement for our approach).



1 class Employee {
2 String name;
3 Integer salary;
4 Employee(String name, Integer salary) {
5 this.name = name;
6 this.salary = salary;
7 }
8 }
9 class Company {

10 List employees = new ArrayList();
11 void addEmployee(String name, Integer salary) {
12 Employee emp = new Employee(name, salary);
13 employees.add(emp);
14 }
15 void addEmployee(Employee emp) {
16 employees.add(emp);
17 }
18 void printEmployeeNames() {
19 for (Employee e : employees) out.println(e.name);
20 }
21 void setEmployeeSalary(String eName, Integer nSalary) {
22 for (Employee e : employees) {
23 if (e.name.equals(eName)) e.salary = nSalary;
24 }
25 }
26 Integer getEmployeeSalary(String eName) {
27 for (Employee e : employees) {
28 if (e.name.equals(eName)) return e.salary;
29 }
30 }
31 }

32 class FirstWorker extends Thread {
33 private Company cmp;
34 FirstWorker(Company cmp) {
35 this.cmp = cmp;
36 }
37 public void run() {
38 cmp.printEmployeeNames();
39 Integer r = cmp.getEmployeeSalary(”john”);
40 cmp.setEmployeeSalary(”john”, 150);
41 cmp.printEmployeeNames();
42 }
43 }
44 class SecondWorker extends Thread {
45 private Company cmp;
46 SecondWorker(Company cmp) {
47 this.cmp = cmp;
48 }
49 public void run() {
50 Integer r = cmp.getEmployeeSalary(”paul”);
51 cmp.addEmployee(”mark”, 80);
52 cmp.printEmployeeNames();
53 }
54 }
55 public static void main(String[] args) {
56 Company cmp = new Company();
57 cmp.addEmployee(”john”, 100);
58 Employee emp = new Employee(”paul”, 120);
59 cmp.addEmployee(emp);
60 FirstWorker w1 = new FirstWorker(cmp);
61 SecondWorker w2 = new SecondWorker(cmp);
62 w1.start(); w2.start(); w1.join(); w2.join();
63 }

Fig. 1. Java program used as a running example

III. JAVA PATHFINDER

Java PathFinder (JPF) [15] is a framework for exhaustive
state space traversal of multi-threaded Java programs.

The core of JPF is a special Java virtual machine that
supports backtracking, state matching, and non-determinism of
both data and scheduling decisions. JPF constructs the program
state space on-the-fly and at the end of each transition,
it checks all configured properties (which may be built-in
properties such as race conditions and deadlocks, or user-
specified application-specific properties). A transition is a
sequence of bytecode instructions executed by a single thread;
only the first instruction in the sequence represents the non-
deterministic choice. At every transition boundary, JPF saves
the current JVM state in a serialized form for the purpose
of backtracking and state matching. The complete JVM state
includes all heap objects, stacks of all threads and all static
data. The implementation of each bytecode instruction in the
JPF interpreter includes appropriate code for tracking changes
of the JVM state. Native methods are either completely re-
implemented in Java, or their execution is delegated to the
underlying JVM on which JPF is executing and state changes
are done using a JPF API. Currently, JPF supports only a
subset of the Java library classes that contain native methods.

Scheduling choices are created by JPF before execution of
each instruction with globally visible effects. This includes

instructions that change the global state (e.g., write a new value
to a field of a shared heap object), thus influencing behavior
of other threads, and instructions that depend on the global
state (e.g., read the current value of some field of a shared
heap object). The next thread to run from a JVM state that
corresponds to a scheduling choice point is selected from all
threads that are runnable in the state. Technically, a scheduling
choice at an instruction i has two outcomes with respect to
execution order on the current path:

1) the current thread t continues and executes the instruc-
tion i at the beginning of the next transition;

2) another thread is scheduled and executes its code; later
when the thread t is scheduled again, it executes the
instruction i from the state updated by other threads.

This allows JPF to systematically explore all thread interleav-
ings that correspond to different sequences of globally-visible
actions. If the only difference between two thread interleavings
is the order of purely thread-local instructions, only one of the
thread interleavings is explored. Note that JPF does not support
the current Java Memory Model - it models only sequential
consistency of memory accesses.

Due to the on-the-fly construction of the program state
space, JPF does not see ahead in program execution — it does
not know what actions each thread may perform in the rest of
the program’s lifetime — and therefore it must decide whether



an instruction has global effects using only the information
in the current state and execution history. JPF works in a
conservative way and creates a thread scheduling choice at
every instruction that could influence the behavior of any
other thread. Consequently, JPF may explicitly traverse two
interleavings that differ only in the ordering of instructions
that could have global effects, but actually do not.

An important category of globally visible actions are ac-
cesses to fields of shared objects. JPF conservatively considers
an object shared if it is reachable via a chain of references from
a static field, or from local variables of multiple threads. A
thread scheduling choice is created at a field access instruction
if all the following conditions hold: (1) the target object
is reachable from multiple threads, (2) multiple threads are
runnable, and (3) access to the field is not controlled by
the same lock in all threads. When executing an instruction
that reads or writes a field f of an object o, JPF does not
know whether any thread may access o.f in the future; thus
it conservatively assumes that another thread may access the
field if the object is reachable from another thread. An object
reachable from multiple threads is determined to be shared
even if its fields are accessed only by a single thread.

In the running example (Figure 1), JPF will create thread
scheduling choices at instructions accessing all fields of classes
defined in the program, because all objects are reachable from
each thread, and there is no synchronization. In theory, JPF
would create scheduling choices also at instructions accessing
internal fields of collection classes, but the default configura-
tion of JPF does not consider field accesses inside the Java core
library as transition boundaries. Besides scheduling choices
at field access instructions, JPF will also create choices at
the calls of the Thread.start and Thread.join methods (in the
example), since they change thread status.

IV. FIELD ACCESS ANALYSIS

The key idea of our approach is to use static analysis
to more precisely determine which fields of which objects
may be accessed in the future by executing threads, rather
than assuming that all fields of all reachable objects will be
accessed. We use this information to eliminate some of the
unnecessary scheduling choices that JPF creates during state
space traversal. The static analysis is performed before JPF
begins, and its results are used during JPF’s exploration of the
program state space.

The most general question that the static analysis must
answer is: given a (dynamic) program state and an object
o and field f , will any thread other than the one currently
executing read or write o.f in the future? The static analysis
can only give a conservative over-approximation of the answer
to this question. However, we have designed an analysis that
gives more precise answers than the original JPF, which always
answers “yes” if o is reachable from another thread.

We present several variations of the static analysis of
increasing complexity and precision. First, in Section IV-A,
we present the basic field access transfer functions within a

simple dataflow analysis, which is interprocedural but context-
insensitive and therefore very imprecise. Given a (static)
program point p, the analysis accumulates sets of all fields
read and written on all possible paths from that program point,
treating method calls and returns as simple branches. The
second analysis, described in Section IV-B, improves precision
using partial context sensitivity. When the control flow path
starting at point p contains a method call at a given call
site, the analysis takes advantage of the knowledge that the
corresponding return will transfer control back to the same
call site. The third analysis, described in Section IV-C, further
improves precision using dynamic context, taking advantage of
the fact that for each thread, JPF knows not only the currently
executing program point p, but the entire call stack. Given
a call stack containing the currently executing instruction in
each stack frame, the analysis considers only control flow
paths that start with that specific call stack. In particular, the
analysis is more precise than the second analysis for field
accesses occurring after return from the method containing
the designated program point p, since the call stack specifies
precisely where execution will continue after each return.
Whereas the first three analyses determine only the fields that
are accessed, the fourth analysis, described in Section IV-D,
uses points-to information to also determine the objects whose
fields are to be accessed. Finally, in Section IV-E, we describe
an additional analysis, detection of immutable fields, which we
have found to improve precision on several common idioms.
All variants of the static analysis operate on one thread at a
time, calculating the set of fields that may be accessed in only
that static thread.

JPF uses the analysis results during state space exploration
as follows. When the Java program is in a given state and
the next instruction i to be executed is a read (write) field
access on o.f , JPF queries the analysis results separately for
each thread instance (dynamic thread) that is executing in the
given dynamic state of the Java program and combines the
results to determine whether any dynamic thread may write
(read) o.f in future. If yes, JPF creates a thread scheduling
choice before the current field access, in order to consider
the interleaving in which that “future” access occurs before
the current access at i. If no, then the effect of the current
access at i is not observable by any other thread, and no thread
scheduling choice is needed. We distinguish reads and writes
because only write-read and read-write dependencies require a
thread scheduling choice. The order of accesses does not affect
program execution in other cases. A write-write dependency
must be considered only if its result is read later, but in that
case there will be a write-read dependence too.

Note that JPF combined with the static field access analysis
still explores all execution paths that correspond to different
interleavings of globally visible actions and therefore finds
the same set of errors as the original JPF. For each field
access instruction, a thread scheduling choice is created at
the instruction if another thread may access the same field in
future — this way it is ensured that both orderings of the field
accesses in different threads are explored by JPF.



A. Context-insensitive Field Access Analysis

The field access analysis is an inter-procedural back-
ward flow-sensitive analysis which operates upon the inter-
procedural control-flow graph (ICFG) of a given Java program.
The analysis computes, for each point p in the code of a thread
t, the set of fields that may be accessed by the thread t in
the fragment of its execution path from p until the end of
its lifetime. The analysis distinguishes between read and write
field access instructions, i.e. it computes separate sets of fields
that may be read and that may be written.

The basic versions of the field access analysis consider only
fields and do not distinguish different objects. For each field
f , the analysis determines whether f may be accessed (for
read, write, or both) on any object. To be precise, “a field f”
refers to a syntactic declaration of a field, which is uniquely
identified by the field’s name and its declaring class.

Instruction Transfer function
after0[`] =

⋃
`′∈succ(`) before0[`′]

`: v = p.f before0[`] = after0[`] ∪ {r f}
`: p.f = v before0[`] = after0[`] ∪ {w f}
`: return before0[`] =

⋃
r∈succ(`) before0[r]

`: call M before0[`] = before0[M.entry]
`: other instr. before0[`] = after0[`]

Fig. 2. Transfer functions for the context-insensitive analysis

The transfer functions for the context-insensitive field access
analysis are shown in Figure 2. These transfer functions are
applied in a Kildall-style fixpoint dataflow analysis on the
ICFG. The analysis is a backward analysis similar to upward-
exposed uses analysis [20, Section 8.3], which computes at
each program point the future uses that may read the current
value of each variable. The merge operator is set union. All
the sets are initially empty. The dataflow value at the end of
the program is also the empty set, since after the program
completes, no further fields will be read or written. Whenever
the analysis encounters a read or write instruction, the transfer
function adds the field accessed to the set of reads or writes.
The transfer functions for method calls and returns are the
identity. In this version of the analysis, calls and returns are
treated context-insensitively like any other branch instruction.

B. Callee-context-sensitive Field Access Analysis

The simple analysis presented thus far is very imprecise due
to two kinds of context insensitivity, which we illustrate using
the example in Figure 3. The figure represents the evolution
of the (dynamic) call stack over the lifetime of a thread. Each
method call is shown as a step upward (the call stack grows),
and each return is shown as a step downward. In the example,
method a calls method b, which in turn calls method c.

Suppose that JPF queries the analysis at the point 1. The
field access sets at this point would include all fields that may
be accessed after the point 2 in method c. If method c is called
from multiple call sites, the result at 2 (and therefore also at 1)
must include all field accesses occurring after all of these call
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Fig. 3. Example evolution of call stack

sites. Yet since we are querying the analysis at 1, we know that
in this case, method c will return to method b, and therefore
these field accesses at other call sites of c are superfluous. We
call this kind of imprecision callee-context-insensitivity, since
the analysis of method b obtains imprecise information about
its callee method c.

After the point labelled 5, we know that control returns to
method a. However, if we tell the static analysis only that we
want results at the static program point 1 in method b, it must
conservatively consider all of the call sites that control could
return to at the end of method b. Therefore, the field access
sets at point 5 (and therefore also at point 1) will contain
superfluous fields that will not be accessed in this execution.
We call this kind of imprecision caller-context-insensitivity,
since the analysis of method b does not know that its caller in
this execution is precisely the method a.

In the rest of this section, we modify the field access
analysis to be callee-context-sensitive. In the next section, we
will show how to use dynamic information to achieve caller-
context sensitivity.

The callee-context-sensitive field access analysis comprises
two phases. The first phase considers the execution path from
a program point p only until the return from the method
containing p, rather than all the way to the end of the current
thread. The transfer functions for the first phase are shown
in Figure 4. They are similar to the context-insensitive ones
from Figure 2, except for the return and call instructions. The
transfer function for a return instruction returns the empty
set, so that the analysis for each program point accumulates
only those fields accessed before the current procedure returns.
The transfer function for a call instruction combines the fields
accessed during the execution of the callee method and the
fields accessed in the caller after the call. Therefore, in the
example, the analysis at program point 1 would include the
fields accessed inside method c and those accessed between
points 4 and 5. However, it would not include fields accessed
after other call sites of c, since the result for point 2 only
includes field accesses up to the return from c; thus the analysis
is callee-context-sensitive.

For correctness at point 1, the analysis must also consider
the field accesses after point 5, and this is handled by the
second phase. The transfer functions for the second phase
are shown in Figure 5. The transfer function for a return
instruction merges the fields accessed in all successors of the
return instruction (i.e. the successors of all call sites calling



Instruction Transfer function
after1[`] =

⋃
`′∈succ(`) before1[`′]

`: v = p.f before1[`] = after1[`] ∪ {r f}
`: p.f = v before1[`] = after1[`] ∪ {w f}
`: return before1[`] = { }
`: call M before1[`] = before1[M.entry] ∪ after1[`]
`: other instr. before1[`] = after1[`]

Fig. 4. Transfer functions for the first phase

the method that contains the return). Thus, the analysis is
caller-context-insensitive. The transfer function for the call
instruction is the key to achieving callee-context sensitivity.
It merges the result for the callee from the first phase with the
fields accessed after the call (from the second phase). Since the
first phase only records fields accessed before the return from
the callee method, the resulting set does not include spurious
fields from other return sites to which the callee could return.
In the example, the transfer function at point 1 would combine
the first phase results for point 2, which cover the interval from
point 2 to point 3, with the second phase results for point 4,
which cover the rest of the execution, including the part of the
execution after the return to method a at point 5.

Instruction Transfer function
after2[`] =

⋃
`′∈succ(`) before2[`′]

`: v = p.f before2[`] = after2[`] ∪ {r f}
`: p.f = v before2[`] = after2[`] ∪ {w f}
`: return before2[`] =

⋃
r∈succ(`) before2[r]

`: call M before2[`] = before1[M.entry] ∪ after2[`]
`: other instr. before2[`] = after2[`]

Fig. 5. Transfer functions for the second phase

Considering the addEmployee(String, Integer) method from
the running example (lines 11-14), the result of the first
phase for the entry node includes all fields accessed in the
addEmployee method and in the constructor of the Employee
class. The result of the second phase for the method’s exit node
already contains field accesses that may occur after the various
sites that call of addEmployee(String, Integer), including both
read and write access to Employee.name and write access to
Employee.salary in the constructor call at line 58, and these
are propagated through the method.

C. Context-sensitive Field Access Analysis

Caller-context insensitivity is still a source of imprecision.
For example, inside the printEmployeeNames method, the
analysis presented so far does not distinguish whether it was
called from the first or second call site in FirstWorker.run.

The precision of the analysis can be improved by taking
advantage of the fact that the dynamic state in JPF includes
not only the instruction to be executed, but also the entire call
stack, which specifies the program points to which control will
return at the end of each currently active method.

For this approach, only phase one of the static analysis
described in the previous section is performed. Recall that

it computes all fields that may be accessed from the current
program point p until the method m containing p returns,
including fields accessed in methods (transitively) called from
m. This information is independent of the calling context.
When a method on the call stack returns, the next frame on
the call stack specifies the program point at which execution
continues; thus the static analysis can be queried again for
that point. Thus, given a dynamic call stack containing return
program points (p1, p2, . . . , pn), which is a part of the dynamic
program state available to JPF, and the current program point
p0, the set of fields that may be accessed from the current
state until the end of the thread is computed by JPF simply
as the union of the phase one results at all of the points pi:⋃n

i=0 before1[pi] — the result is the complete set of future
field accesses for the current calling context of the given
thread. This result is caller context sensitive in that it considers
only the return control flow edges that will actually be taken
as the stack unwinds. In the example execution in Figure 3,
when execution is at point 1, the call stack contains the point
6, so the analysis returns the union of the result at point 1
(which covers the execution from point 1 to point 5) and the
result at point 6 (which covers the rest of the execution).

In the running example from Figure 1, this analysis dis-
tinguishes the two calls of printEmployeeNames from First-
Worker.run. The result at any point p inside printEmploy-
eeNames depends on the call site in FirstWorker.run from
which it was called. When called from the first site (line 38),
the result at p contains rw Employee.salary since the calls
to getEmployeeSalary and setEmployeeSalary follow on any
execution path. When called from the second site (line 41), the
result at p does not contain any access to Employee.salary.

A remaining imprecision in this version of the field ac-
cess analysis is that it does not distinguish different object
instances. In the running example, it does not distinguish
between the different instances of Employee with respect to
the salary field; it determines that the salary field of every em-
ployee may be written even if the salary of only one employee
is changed. JPF then always creates a thread choice at the
write access to the Employee.salary field in the constructor of
the Employee class, if the program counter in the FirstWorker
thread precedes the call to the getEmployeeSalary method,
which contains a read access of the salary field.

D. Using Pointer Analysis

The precision of the field access analysis can be improved
by using points-to information to distinguish object instances.
A thread scheduling choice is needed at a read (write) of
a field of an object only in the presence of a future write
(read) of the same field of the same object in another thread.
If the analysis can show that the future access occurs on a
definitely different object, the thread choice can be eliminated.
We have experimented with four variants of points-to anal-
ysis: an exhaustive context-insensitive analysis [4], [18], an
exhaustive context-sensitive analysis that uses receiver objects
as context [19], and context-insensitive and context-sensitive



versions of a demand-driven analysis [29], [28]. The pointer
analysis is always performed on the program before JPF starts.

1) Context-insensitive Points-to Analysis: The analysis
computes, for each reference variable p in the program, a
points-to set of allocation sites. If p may refer to a given object,
then the site at which the object was allocated appears in the
points-to set of p. The field access analysis is extended to make
use of points-to information as follows. It keeps track of pairs
a.f , where a is an allocation site and f is a field. When the
extended analysis encounters an instruction accessing p.f , it
queries the points-to set of p, and adds a pair a.f to the set of
field accesses for each allocation site a appearing in the points-
to set. The result of the field access analysis contains a.f if
a given thread may access in future the field f of an object o
allocated at the site a. When JPF executes an instruction that
reads (writes) q.f , it checks the analysis results to determine
whether another thread may, in the future, write (read) the
field f of an object allocated at one of the sites in points-to
set of q. If not, then no thread scheduling choice is required.

2) Object-sensitive Points-to Analysis: Object sensitivity
improves the precision of points-to analysis by identifying
objects with their allocation site and an abstraction of the
current receiver object (i.e. this) at the time of the allocation.

The field access analysis can be modified to make use
of object-sensitive points-to analysis in the same way as for
context-insensitive analysis, except that allocation sites are
replaced with pairs of allocation site and receiver context.

Given the running example, pointer analysis distinguishes
instances of the Employee class, because the program contains
two allocation sites for the Employee objects at lines 12 and
58. However, no additional thread scheduling choices will be
eliminated by JPF when the field access analysis combined
with pointer analysis is used, because all local variables of
the type Employee in all methods except addEmployee may
point to instances allocated at both sites.

3) Demand-Driven Points-to Analysis: Exhaustive points-
to analysis is expensive because it computes points-to sets
for all variables, even though only the points-to sets of a
small subset of variables may actually be needed by JPF.
A demand-driven points-to analysis evaluates explicit queries
for individual points-to sets at a modest cost per query, and
therefore is more efficient when the points-to sets of only a
small proportion of all variables are needed.

To take advantage of demand-driven points-to analysis, the
field access analysis is adapted as follows. When the analysis
encounters a field read or write on p.f , it records both the
field f and the variable p that it is accessed through. For
illustration, in the running example the local variables Com-
pany.addEmployee.emp and Company.printEmployeeNames.e
(and many others) refer to instances of the Employee class.
When JPF encounters a read (write) to q.f , it queries the
points-to set of q, as well as the points-to sets of all variables
p such that the field f may be written (read) through p in the
future by another thread. A thread scheduling choice is needed
if the points-to set of q has a non-empty intersection with any
of these other points-to sets.

E. Immutable Fields

It is possible to further reduce the number of thread schedul-
ing choices made by JPF by detecting the common idiom
of immutable fields: after the object containing the field has
been initialized, the field is never changed. More precisely,
we define a field as immutable if it is accessed only by its
creating thread before its constructor completes, and it is never
written after its constructor has completed. At an access of
a field known to be immutable, no thread scheduling choice
is required. If the access occurs before the constructor has
finished, the field is not accessible to other threads. If the
access occurs after the constructor has finished, the access
must be a read, and no subsequent access can be a write.

We have implemented a static analysis that detects a subset
of immutable fields. Before deeming a field f declared in class
C immutable, the analysis checks the following conditions:

1) All writes to f must occur in a constructor of C, and
must be through the this reference.

2) The this reference must not escape any constructor of
C by being written to the heap (to a field or an array
element), or by being passed as an argument (including
the implicit receiver argument) to a called method.

Note that the analysis has limited precision: it cannot detect
immutable fields that are written in methods that are called
only from the constructor.

On the running example, the immutable field analysis cor-
rectly determines that the Employee.name field is written only
in the constructor of Employee and therefore JPF does not have
to create scheduling choices at accesses to this field.

In one of our benchmarks (Simple JBB), object initialization
is performed not only in the constructor, but also in other
methods that are called immediately after the constructor.
Therefore, on this benchmark, we manually identified fields
that were immutable in the sense that their objects did not
escape during their initialization phase (which includes the
constructor and the additional initialization method), and the
fields were not written after this initialization phase had
completed. Detection of such fields could be automated using
a static analysis similar to the one described in [31].

V. EXPERIMENTS

We implemented all variants of the field access analysis
described in Section IV using the WALA library for static
analysis [30] and integrated them with JPF. We used JPF in a
standard configuration with all optimizations that are enabled
by default — this includes partial order reduction. When using
demand-driven pointer analysis, we used WALA’s default anal-
ysis budget for each query. Our implementation, experimental
setup, and a redistributable subset of the benchmarks is pub-
licly available at http://plg.uwaterloo.ca/∼pparizek/jpf/ase11/.

We evaluated our approach on seven applications: Co-
CoME [6], CRE Demo [1], Daisy file system [26], Raytracer
benchmark from the Java Grande Forum suite [14], Elevator
benchmark from the PJBench suite [25], plain Java version
of the jPapaBench benchmark [17], and Simple JBB. All



these applications are multi-threaded and the individual threads
interact significantly.

The CoCoME application (3500 lines of code) is a prototype
of a trading system for supermarkets. Its architecture has
two parts: an inventory management system responsible for
a product database and a cash desk line formed by a set of
cash desks. A part of the application is a simulator (test driver)
that runs two threads representing clients.

The CRE Demo application (1700 loc) is a high-level
prototype of a software system for providing WiFi internet
access at airports. A part of the application is a simulator that
runs two threads representing distinct clients.

Daisy is a simple file system developed as a challenge
problem for verification tools (1100 loc). We used it with a
manually created test driver that runs two concurrent threads
that perform various operations on files. We also fixed several
errors, which were created on purpose by the authors.

The Raytracer benchmark (1100 loc) involves two concur-
rent threads that render a given scene. Each thread computes a
part of the image. We used a configuration with fewer objects
in the scene and smaller size of the rendered image.

The Elevator benchmark (400 loc) is a simulator of elevators
running in a building. Each elevator is modeled by one
thread, and one additional thread represents people requesting
elevators. We used a configuration with two elevators and four
operations performed by each elevator.

The jPapaBench benchmark (4600 loc) is a Java model of
on-board control software for a UAV (unmanned aerial vehi-
cle). It contains several concurrent threads that highly interact
via shared objects. Some threads represent the environment
and external interrupts, and the remaining threads perform
tasks related to airplane control and navigation.

Simple JBB (3000 loc) is a simplified version of the SPEC
JBB 2005 benchmark [27], which is a model of an enter-
prise information system that allows concurrent processing
of requests from clients. It models several databases (e.g.,
orders and stock) and transactions that operate upon these
databases. Clients are represented by concurrently running
threads. Checking the original SPEC JBB benchmark with
JPF is not possible because SPEC JBB uses parts of the Java
library that are not supported by JPF (e.g., complex file I/O
and time measurement). Moreover, the original SPEC JBB
uses large data structures with many elements and each thread
executes many transactions (from the point of view of state
space size). We derived Simple JBB from the original SPEC
JBB to eliminate these issues. Specifically, we removed the
use of library calls not supported by JPF, and we reduced the
size of some data structures and the number of transactions
performed by each thread. We used a configuration with two
threads. Despite these simplifications, Simple JBB has the
same concurrency behavior as the original SPEC JBB, so
verifying Simple JBB with JPF gives some assurance of the
correctness of the original SPEC JBB.

A general problem for static analyses is handling of native
methods. We addressed this issue by manually creating a list
of fields accessed inside models of native methods in JPF

and designed the field access analysis such that it considers
these fields as always accessed after any program point. This
is a coarse over-approximation, but a sound approach — no
possible field accesses are omitted by the analysis.

We performed experiments with all variants of the field
access analysis described in Section IV. They correspond to
specific combinations of possible values of these configuration
variables: context-sensitivity of field access analysis, usage of
pointer analysis, and detection of immutable fields (Table I).

None of the benchmark applications contain any errors so
that JPF traverses the whole state space of the application in
each case. The purpose of the experiments is to show how
much our approach reduces the state space and exploration
time, while preserving the full coverage of program behaviors.

TABLE I
POSSIBLE CONFIGURATIONS OF FIELD ACCESS ANALYSIS

Variables Options
insensitive

field access analysis callee
sensitive
context-insensitive exhaustive (ci ex)

pointer context-sensitive exhaustive (cs ex)
analysis context-insensitive demand-driven (ci dd)

context-sensitive demand-driven (cs dd)
immutable fields disabled
analysis enabled

The results of the experiments are provided in Tables II-IV.
There are separate tables for the number of states explored
by JPF, total running time of JPF combined with the static
analysis, and memory consumption (in GB). The second row
of each table contains results for the original JPF without any
field access analysis. Each of the other rows represents JPF
with one configuration of the field access analysis.

We performed experiments with the analysis variant that
assumes knowledge of manually-identified immutable fields
only for Simple JBB. We found many immutable fields in the
source code of Simple JBB by hand.

We put a limit of eight hours on the running time of
experiments with jPapaBench and Simple JBB. These limits
are sufficient to observe the performance improvements gained
by using our approach. The recorded numbers of states vary
significantly for those experiments with jPapaBench and Sim-
ple JBB that did not finish, because the overhead related to
usage of the analysis results in JPF differs over the analysis
variants and therefore JPF runs out of the time limit after
processing a different number of states in each case.

VI. DISCUSSION

The experimental results show that usage of the static field
access analysis significantly reduces (1) the number of states
that JPF needs to explore for checking all possible behaviors
and (2) the time required to explore the whole state space, and
therefore makes it feasible to verify more complex programs
than with the original JPF. In particular, the jPapaBench and
Simple JBB benchmarks, which could not be verified even
after 8 hours with the original JPF, can be verified in 12 and



TABLE II
EXPERIMENTAL RESULTS: NUMBER OF STATES EXPLORED BY JPF

field access pointer immutable CoCoME CRE Demo Daisy Raytracer Elevator jPapaBench Simple JBB
original JPF 532161 1623101 7060292 3209390 38358616 > 176227405 > 33808665

insensitive none disabled 367539 1613571 7060292 3209362 38358616 > 103804005 > 25962010
callee none disabled 165300 1614335 4882566 3043647 38391582 > 118469868 > 24727654
sensitive none disabled 124874 65762 4753239 3043599 10373397 1294 > 24156805
sensitive none enabled 124874 65762 4753239 3043599 10373397 1294 1499543
sensitive ci ex disabled 122957 65762 4753215 3043599 10373397 1294 > 19474203
sensitive ci dd disabled 124874 65762 4753239 3043599 10373397 1294 > 16826484
sensitive ci ex enabled 122957 65762 4753215 3043599 10373397 1294 1499543
sensitive cs ex enabled 122957 n/a 4753215 3043599 10373397 1294 n/a
sensitive ci dd enabled 124874 65762 4753239 3043599 10373397 1294 1499543
sensitive cs dd enabled 124874 64370 4753239 3043599 10373397 1294 1499543

TABLE III
EXPERIMENTAL RESULTS: TOTAL RUNNING TIME OF JPF AND FIELD ACCESS ANALYSIS

field access pointer immutable CoCoME CRE Demo Daisy Raytracer Elevator jPapaBench Simple JBB
original JPF 265 s 800 s 1256 s 703 s 4737 s > 8 hours > 8 hours

insensitive none disabled 245 s 984 s 1505 s 1211 s 7874 s > 8 hours > 8 hours
callee none disabled 117 s 937 s 1047 s 958 s 6380 s > 8 hours > 8 hours
sensitive none disabled 86 s 84 s 1036 s 915 s 1675 s 732 s > 8 hours
sensitive none enabled 87 s 84 s 1103 s 905 s 1411 s 782 s 3283 s
sensitive ci ex disabled 98 s 106 s 1287 s 1188 s 2324 s 807 s > 8 hours
sensitive ci dd disabled 105 s 124 s 1125 s 1212 s 2039 s 775 s > 8 hours
sensitive ci ex enabled 102 s 102 s 1104 s 1296 s 2354 s 798 s 4898 s
sensitive cs ex enabled 179 s > 3 hours 1263 s 1496 s 3699 s 802 s > 8 hours
sensitive ci dd enabled 111 s 124 s 1112 s 1241 s 1857 s 768 s 20532 s
sensitive cs dd enabled 110 s 164 s 1151 s 1229 s 22692 s 764 s 12839 s

TABLE IV
EXPERIMENTAL RESULTS: MEMORY CONSUMPTION OF JPF TOGETHER WITH FIELD ACCESS ANALYSIS

field access pointer immutable CoCoME CRE Demo Daisy Raytracer Elevator jPapaBench Simple JBB
original JPF 0.9 GB 1.3 GB 2.0 GB 2.3 GB 0.8 GB > 8.4 GB > 0.9 GB

insensitive none disabled 1.6 GB 2.8 GB 2.9 GB 3.0 GB 3.8 GB > 7.9 GB > 5.4 GB
callee none disabled 2.1 GB 3.3 GB 2.9 GB 3.0 GB 3.8 GB > 6.4 GB > 5.0 GB
sensitive none disabled 1.8 GB 1.9 GB 2.0 GB 2.9 GB 2.9 GB 2.8 GB > 3.4 GB
sensitive none enabled 2.0 GB 1.7 GB 2.8 GB 2.9 GB 2.9 GB 2.8 GB 3.1 GB
sensitive ci ex disabled 2.5 GB 1.8 GB 3.6 GB 3.7 GB 2.5 GB 3.5 GB > 4.9 GB
sensitive ci dd disabled 3.5 GB 3.7 GB 3.5 GB 3.7 GB 3.6 GB 3.5 GB > 4.3 GB
sensitive ci ex enabled 2.7 GB 2.1 GB 3.6 GB 3.7 GB 3.2 GB 3.5 GB 4.8 GB
sensitive cs ex enabled 3.3 GB > 10 GB 2.8 GB 3.6 GB 4.1 GB 3.5 GB > 9.1 GB
sensitive ci dd enabled 3.6 GB 3.7 GB 3.5 GB 3.7 GB 3.6 GB 3.5 GB 4.1 GB
sensitive cs dd enabled 2.2 GB 2.3 GB 2.2 GB 2.3 GB 2.3 GB 2.2 GB 2.8 GB

55 minutes, respectively, using JPF with the static field access
analysis. Static analysis also speeds up verification of the other
benchmarks, by up to 9.5 times (on CRE Demo).

To achieve these improvements, the static analysis must
be sufficiently precise. However, in addition to precision, it
is important to also consider the time spent on the static
analysis and on making use of the static information in JPF.
In some cases, the speedup of JPF due to more precise
static information is smaller than the increase in the cost of
computing and using that static information.

Our first observation is that context sensitivity is very
important to the effectiveness of field access analysis, and
that its benefit outweighs the modest increase in analysis cost.
On all but one benchmark, CoCoME, the context-insensitive
analysis has no significant effect on the number of states to be
explored. Even on CoCoME, adding context sensitivity further
reduces the number of states by nearly two thirds. The benefit

of callee context sensitivity is mixed. On two benchmarks,
Daisy and Raytracer, it achieves almost the same reduction as
full context sensitivity; on two other benchmarks, CRE Demo
and Elevator, it has almost no effect; finally, on CoCoME, it
has some effect, but less than full context sensitivity. The best
variation is the fully context sensitive analysis that uses the
dynamic call stack from JPF. Only with this level of precision
is it feasible to verify jPapaBench. Full context sensitivity also
reduces the number of states in CRE Demo by a factor of 25
compared to callee context sensitivity, and enables significant
reductions in all but two of the benchmarks. The cost of
the fully context sensitive analysis is small compared to its
benefits; on every benchmark, the total time required by JPF
and the static analysis is lower for the fully context sensitive
analysis than for the other two variations.

The immutable fields analysis makes it feasible to verify the
most complex benchmark, Simple JBB. Due to its simplicity,



the analysis wastes little time on the other programs for which
it is ineffective.

Overall, we found the points-to analyses that we evaluated
to have only a small effect on precision that does not justify
the cost of the analysis. On the CoCoME benchmark, the
exhaustive points-to analysis reduced the number of states
to be explored by 1.5%. On the CRE Demo benchmark, the
context-sensitive demand-driven points-to analysis reduced the
number of states to be explored by 2.1%. We found no cases
where the precision of field access analysis improved due
to the context-insensitive demand-driven points-to analysis or
the object-sensitive exhaustive analysis. The relative costs of
exhaustive and demand-driven points-to analyses were mixed.
On some benchmarks, the demand-driven analysis was faster
than exhaustive analysis because it did not have to analyze
irrelevant parts of the program. On other benchmarks, use of
the demand-driven analysis turned out to be more expensive,
because JPF issued very large numbers of queries and the
demand-driven analysis must do some small amount of work
for each query.

The static analysis time is generally negligible compared
to the time used by the state space traversal. It is less than
a minute for Simple JBB and less than 15 seconds for all
other benchmarks. The only exception is the exhaustive object-
sensitive pointer analysis for CRE Demo and Simple JBB, in
which case the static analysis time is 3 hours and 8 hours,
respectively.

The memory consumption results show that although the
static analyses do require some memory, the increases in
memory consumption are modest compared to the original JPF.
The only exception is the object-sensitive points-to analysis,
which runs out of memory on the CRE Demo benchmark.

Of all the static analysis variations that we evaluated, the
most effective overall is the fully context sensitive field access
analysis with detection of immutable fields but without points-
to analysis.

VII. RELATED WORK

Several approaches exist that combine Java PathFinder with
static analysis for the purpose of more efficient verification of
multi-threaded Java programs or search for errors.

The key idea proposed by Chen and MacDonald [7] is to
address state explosion by exploring just one thread inter-
leaving for each sequence of globally-visible actions. Static
analyses are used to determine sequences of actions that
are performed by different threads and have global effects,
like accesses to fields on shared objects. For each sequence
of actions, JPF is used to check the corresponding thread
interleaving for concurrency errors. However, more than one
thread interleaving may be actually explored for some action
sequences due to imprecision of the static analysis. Other
limitations include missing support for dynamically created
threads and data non-determinism in the given Java program
— our approach does not have these limitations. Experimental
results published in [7] show a significant gain in performance,

but it remains to be seen how much this approach would help
on more complex Java programs, such as Simple JBB.

A method described by Brat and Visser [5] combines JPF
and static alias analysis in an iterative fashion. The key
concept is that of unsafe statements, which have a global
effect or depend on the global state. The process starts with
all statements optimistically identified as safe and with empty
aliasing information. In each step, static analysis computes a
more precise set of unsafe statements based on more precise
aliasing information acquired from JPF. Then JPF explores all
thread interleavings involving newly identified unsafe state-
ments and updates aliasing information on-the-fly. Iteration
converges to the point where the aliasing information is precise
and complete, and all unsafe statements are recognized by
static analysis — it is then guaranteed that JPF has explored
all interleavings of unsafe statements executed by different
threads. The published experimental results show that this
approach was evaluated on one program of approximately 20
lines of code, for which the state space size was reduced to a
half. No results for large programs are available, and the total
running time of JPF combined with static analysis is also not
provided — it is not clear how efficient this approach would
be for more complex Java programs, for which static analysis
takes more time and significantly more memory.

There exist many other techniques for detecting concurrency
errors that target different languages and platforms than Java
or do not involve Java PathFinder [2][9][11][16][22][23][24].
The technique for efficient detection of data races proposed
by Choi et al. [9] uses static analysis to identify statements
that may participate in a data race and dynamic analysis to
check these statements. The technique proposed by Agarwal
et al. [2] uses type discovery to identify potentially unsafe
statements that the subsequent dynamic analysis focuses on
during checking. The static analysis proposed by Naik and
Aiken [22] computes a must not alias relation for reference
variables. It could be used in our approach to distinguish
objects of the same class instead of the may alias analysis
based on points-to analyses that we experimented with.

A completely dynamic approach to partial order reduction
was proposed by Flanagan and Godefroid [12]. The key
idea is to dynamically collect information about actual thread
interaction during exploration of execution paths and use
results of this analysis to identify states where new thread
scheduling choices must be created to enable exploration of
alternative execution paths. The process is repeated until all
known execution paths have been explored and no new thread
choices have to be added based on the dynamic analysis. This
approach is in theory more precise than ours, but it uses
a stateless search and therefore works only for terminating
programs with an acyclic state space, while our technique
targets stateful search. We are not aware of any combination
of dynamic POR with stateful search. Moreover, this approach
was evaluated on two 20-line programs in [12] — it remains
to be seen how well it works for larger programs, such as
SimpleJBB or jPapaBench, in which each thread executes a
very long sequence of instructions.



Unkel and Lam [31] define stationary fields, a notion similar
to immutable fields, and present a static analysis that detects
a conservative subset of stationary fields. A stationary field
is defined in [31] as one that is never written after it is first
read, while our definition of immutable fields is independent
of reads. Although the definitions are similar, it is theoretically
possible for a field to be stationary but not immutable accord-
ing to our definition, or vice versa. The stationary field analysis
is conservative — a field of an object is always identified as
non-stationary if the field is written after the object becomes
reachable from the heap, even if there is actually no read of
the field before the aforementioned write access.

Guyer et al. [13] and Cherem and Rugina [8] suggested
using static analysis to free objects early in order to reduce
the load on a dynamic garbage collector. Like our approach,
these techniques statically detect objects that will never be
accessed in the future, yet are still reachable via a dynamic
heap traversal. It may be possible to adapt these static analyses
for speeding up JPF, or, conversely, apply some of our static
analyses to freeing objects early.

VIII. CONCLUSION

We have proposed an optimization of exhaustive state space
traversal of Java programs with JPF, which addresses the inher-
ent limitations of JPF that are a consequence of the on-the-fly
state space construction. The main idea is the elimination of
some unnecessary thread scheduling choices in the program’s
state space using the results of a static analysis that identifies
field accesses that may occur on any execution path between a
specific point in the code of a thread and exit from the thread.
Experimental results show that the combination of JPF with
the static field access analysis allows to check more complex
multi-threaded Java programs in reasonable time.

More specifically, we found (1) that it is essential to
use the context-sensitive field access analysis to achieve the
biggest performance improvement and (2) that usage of points-
to analyses has only a very small effect. The jPapaBench
application could be verified only with the context-sensitive
analysis. The Simple JBB benchmark could be verified only
with the immutability analysis enabled.

More thread choices could be eliminated by applying similar
static analyses to synchronized blocks — JPF would create a
thread choice at a monitor enter/exit instruction executed by
one thread only if some other thread may acquire or release the
same monitor in future. A similar approach to [3] may be used.
Another possible improvement is to exploit more information
available in the dynamic program state during exhaustive state
space traversal. We also plan to design and implement an
analysis that detects immutable fields written (initialized) in
methods other than constructors.
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