
BUBEN: Automated Library Abstractions
Enabling Scalable Bug Detection for Large

Programs with I/O and Complex Environment

Pavel Paŕızek

Charles University, Faculty of Mathematics and Physics,
Department of Distributed and Dependable Systems

Abstract. An important goal of software engineering research is to cre-
ate methods for efficient verification and detecting bugs. In this context,
we focus on two challenges: (1) scalability to large and realistic soft-
ware systems and (2) tools unable to directly analyze programs that
perform I/O operations and interact with their environment. The com-
mon sources of problems with scalability include the huge number of
thread interleavings and usage of large libraries. Programs written in
managed languages, such as Java, cannot be directly analyzed by many
verification tools due to insufficient support for native library methods.
Both issues affect especially path-sensitive verification techniques.

We present the Buben system that automatically generates abstractions
of complex software systems written in Java. The whole process has three
phases: (1) dynamic analysis that records under-approximate informa-
tion about behavior of native methods and library methods that perform
I/O, (2) static analysis that computes over-approximate summaries of
side effects of library methods, and (3) program code transformation
that replaces calls of native methods and creates abstractions of library
methods. Software systems abstracted in this way can be analyzed, e.g.
for the presence of bugs, without the risk of a tool failure caused by
unsupported libraries and more efficiently too. We evaluated Buben on
several programs from popular benchmark suites, including DaCapo.

1 Introduction

An important goal of software engineering research is to develop techniques and
tools for verification and detecting bugs in software. Out of the many associated
challenges, we focus on these two: (1) scalability to realistic software systems
that typically include many large libraries and (2) tools unable to directly an-
alyze programs that perform I/O operations (including data storage, GUI and
networking) and whose behavior depends on interaction with their environment.

The problems with scalability of verification and bug finding have several
causes. For example, one cause is the huge number of thread interleavings that
have to be analyzed even for rather small multithreaded programs. Another
cause is the usage of large libraries, which greatly increases the total amount of

2 Pavel Paŕızek

code that a verification tool has to process and the time needed to analyze indi-
vidual execution paths. Typical realistic programs involve many calls of library
methods. However, in practice, developers are usually looking just for bugs in
application programs that are relatively small when compared to all the libraries.
Therefore, most library methods included with a program can be assumed cor-
rect, and many of them do not actually influence the program control flow and
visible behavior — for these reasons, execution of such library methods does
not have to be checked. In the case of managed languages such as Java, some
library methods even involve native code, which is usually not handled well by
the respective verification tools.

The presence of native library methods is, in fact, the main reason why many
state-of-the-art verification tools cannot be directly used to analyze programs
that access files, communicate over network, or involve GUI — where directly
means without prior substantial modifications of the program code. We say that
such programs manipulate and interact with external entities (e.g., with files and
human users). For example, Java Pathfinder (JPF) [16], a popular verification
framework, when run standalone it crashes on many realistic programs due to
insufficient support for libraries that perform I/O via native methods.

Both challenges, that means (1) limited scalability to programs using large
libraries and (2) inability to analyze programs that manipulate with external
entities through I/O operations, affect especially path-sensitive verification tech-
niques based on state space traversal, which aim to analyze every possible execu-
tion trace separately. Authors of verification tools usually focus on algorithmic
improvements, neglecting the hard and tedious work needed to handle real-world
programs that use many libraries and interact with external entities. For exam-
ple, manually creating models (stubs) of the respective methods and abstractions
of the environment is certainly not a practical option in general.

We present the Buben system that automatically creates abstractions of
libraries in order to enable analysis of realistic programs with tools like Java
Pathfinder. For an input large program, Buben computes abstractions of li-
brary methods called from within the application code and then generates an
abstract variant of the program by the means of several code transformations.
The abstract program does not contain any calls to library methods that are
either native, perform I/O, or interact with external entities — thus avoiding
calls of library methods that cause problems to verification tools. A particular
tool (e.g., Java Pathfinder) can be then successfully run on the abstracted pro-
gram without the risk of a failure due to missing support for library methods. In
addition, usage of library abstractions generated by Buben helps to improve the
performance and scalability of verification, because the total amount of code and
possible behaviors to be analyzed is much lower. Even though we described the
challenges that Buben addresses mostly on the specific case of Java Pathfinder,
it can be used also together with other program analysis and verification tools
quite easily. Only minor customizations of Buben are needed in order to support
a new tool — for example, the user has to define the name of the tool’s API
procedure that performs a non-deterministic choice.

BUBEN: Automated Library Abstractions 3

The key characteristic of the whole process involving Buben is nearly full
automation. A user only has to provide a configuration file, which specifies the
set of library methods and command line arguments.

In the rest of this paper, first we provide an overview of Buben, and then
we present specific details in the following sections.

Overview. When generating abstractions, Buben distinguishes between library
methods and the application classes. Only the library methods (and their calls)
are to be abstracted. The set of library methods is then split further into two
parts, where the first part contains native methods and library methods that
manipulate with external entities (I/O), and the second part contains all other
library methods. Each part is processed in a different way.

For the given input program, Buben creates its abstracted variant that con-
sists of the original application code and generated abstractions of library meth-
ods. The whole process has the following three steps:

1. Dynamic analysis records information about side effects and outputs of li-
brary methods in the first group (native, I/O).

2. For every other library method, a summary of its possible side effects is
computed using a static analysis.

3. Several code transformations are performed in order to create an abstract
variant of the input original program.

We have to use dynamic analysis mainly because the side effects and outputs
of native methods, respectively library methods that perform I/O, cannot be
determined statically. In order to compute a summary of a given library method
(step 2), Buben actually performs symbolic interpretation that is based on a
linear traversal of method’s code. Note that the dynamic analysis must run
before the static analysis, since data collected by the dynamic analysis are used
by the procedure for computing method summaries. For example, when the static
analysis inspects the code of a method m, it needs to have information about
possible side effects for its callees (even if they are native) in order to create a
proper summary of m.

An important property of the computed summaries is that they approximate
the original behavior of library methods. More specifically, Buben uses dynamic
analysis to record under-approximate summaries for methods processed in the
first step (native, I/O), while for all other library methods it computes over-
approximate summaries of their externally visible behavior (side effects) with
the help of static analysis.

The intentionally unsound dynamic summaries do not limit the practical use-
fulness of Buben, because it does not need sound summaries of library methods.
It is even not possible to compute a sound general summary for a library method
that performs I/O. More details are given in Section 2 and Section 3.

Generated abstractions of library methods have the form of code that reflects
the results of static and dynamic analysis (approximate method summaries).
Program code transformations (step 3) replace the calls and original implemen-
tations of library methods with the respective abstractions. We designed our

4 Pavel Paŕızek

transformations in a way that preserves mutual exclusion of accesses to indi-
vidual object fields and array elements by different threads. This was necessary
to avoid introducing spurious concurrency errors into the abstracted program.
Again, we provide more details in Section 4.

The Buben system is not optimized towards any specific kind of properties
and bugs — nevertheless, we had in mind especially fast detection of concurrency
errors with tools like Java Pathfinder as our motivation. On the other hand,
any bug finding approach that involves Buben would not be sound (i.e., errors
could be missed) as a consequence of the under-approximate summaries of native
and I/O library methods produced in the step 1 of the whole process. This is,
however, not really a big issue with respect to our primary target use case —
scalable detection of bugs within the application code.
Contribution. The main research contribution of this paper includes:

– The whole Buben system that combines dynamic analysis, static analysis
(method summaries), and program code transformations in a specific way for
the purpose of generating abstractions of large real-world programs, which
can be subsequently analyzed using tools such as Java Pathfinder.

– Specific approach to dynamic recording of possible side effects and return
values of library methods that is based on runtime interpretation of program
code and inspection of program state (Section 2).

– Static analysis procedure for computing method summaries that is based on
symbolic interpretation (linear traversal) of method’s code (Section 3).

– Implementation of the Buben system for Java bytecode programs, and ex-
perimental evaluation on six programs selected from the DaCapo [3] and
pjbench1 suites. Results of our experiments show that while standalone Java
Pathfinder crashes on all six benchmarks, usage of Buben helps to avoid the
failures caused by insufficient support for libraries and enables JPF to find
bugs in 4 programs out of 6.

The rest of this paper contains a section for each step of the whole process,
followed by experimental evaluation, presentation of an example usage scenario,
and discussion of related work.

2 Dynamic Recording

We apply dynamic analysis on a run of the input program to record a dy-
namic summary of each library method that is either native, performs I/O,
or manipulates with external entities. A dynamic summary represents an under-
approximation of the method’s side effects that could be observed at runtime.
It is a structure with four items: (1) a set of possible return values, (2) a set of
updated object fields together with a set of possible new values for each field,
(3) a set of updated array elements, again together with a set of possible new
values for each element, and (4) a set of newly allocated objects.

1 https://bitbucket.org/psl-lab/pjbench

BUBEN: Automated Library Abstractions 5

Unlike most of the existing frameworks for dynamic analysis, including Road-
Runner [7] and DiSL [9], which are based on code instrumentation, our approach
involves runtime interception of program execution and inspection of dynamic
states. In the rest of this section, we explain generally relevant technical aspects
of the dynamic analysis and construction of the under-approximate dynamic
summary. Figure 1 shows the key components of the analysis.

The following steps are performed when a call of a library method m subject
to analysis (the sets nativeMths and libextMths in Figure 1) is reached.

1. Program execution is intercepted just at the entry to m.
2. Then, our analysis temporarily saves relevant parts of the program state

at the time of entry to m — in particular, the content of arrays given as
parameters of the method call.

3. Execution of the library method m is resumed.
4. Dynamic analysis intercepts the program execution again just at the exit

(return) from the method m.
5. Next, the analysis temporarily saves the content of relevant arrays at the

time of method exit.
6. All outcomes and side effects of the method’s execution are recorded into the

dynamic summary for m by handlers of respective events — this includes the
return value (line 13), updates of object fields (line 23) and array elements
(line 36), and newly allocated objects (line 27).

Our analysis does not record values of method call parameters in the dynamic
summary, because the parameter values are not needed to generate abstractions
(see details in Section 4). The content of arrays given as parameters is saved
temporarily just for the purpose of creating a list of array elements updated by
the method, which is then recorded in the summary.

Updated array elements are identified through the search for differences be-
tween two snapshots of a given array — its old content at the method entry
(variable oldArray at line 32) and new content at the method exit (variable
curArray at line 33). These snapshots of array content are saved in the respec-
tive handlers (lines 5-8 and 14-17), and then corresponding array elements are
compared pair-wise. For performance reasons, as the fast track path we use hash
values to find out whether the array was modified at all by the method. We are
aware that collisions of hash values may occur, but dynamic summaries capture
under-approximations of the sets of possible side effects anyway.

Possible new values of object fields and array elements are saved as symbolic
expressions — constant values, access paths, or arithmetic expressions. An access
path is a local variable name followed by a sequence of field names.

From the perspective of usage in Buben, a very important aspect of the
dynamic analysis is that it has to record only updates to object fields and ar-
rays either defined within application classes or visible from them. Accesses to
other variables can be safely ignored, such as those internal to libraries. This is
practically realized by tracking just updates to objects given as call arguments
to library methods or returned from them.

6 Pavel Paŕızek

1 INPUT : nativeMths, libextMths
2

3 procedure onMethodEntry (mth, args)
4 for arg ∈ args do
5 if arg .isArray then
6 saveArrayContentAtEntry (mth, arg)
7 computeArrayHashAtEntry (mth, arg)
8 markTrackedArray (mth, arg)
9 end if

10 end for
11

12 procedure onMethodExit(mth, res)
13 recordCallReturnValue(res)
14 if res.isArray then markTrackedArray (mth, res)
15 for arr ∈ trackedArrays(mth) do
16 saveArrayContentAtExit(mth, arr)
17 computeArrayHashAtExit(mth, arr)
18 end for
19 recordArrayDifferences(mth)
20

21 procedure onFieldWrite(loc,field ,newVal)
22 if isMethodArgType(loc.method,field .class) then
23 recordFieldUpdate(loc.method,field ,newVal)
24 end if
25

26 procedure onNewObject(loc, obj)
27 recordNewObjectAlloc(loc.method, obj)
28

29 procedure recordArrayDifferences(mth)
30 for arr ∈ trackedArrays(mth) do
31 if hashAtEntry (arr) == hashAtExit(arr) continue
32 oldArray = getArrayContentAtEntry (mth, arr)
33 curArray = getArrayContentAtExit(mth, arr)
34 for i ∈ 0 . . . length(curArray)−1 do
35 if oldArray (i) != curArray (i) then
36 recordArrayUpdate(mth, arr , i, curArray (i))
37 end if
38 end for
39 end for

Fig. 1. Dynamic analysis that records side-effects of library methods

Implementation. Here we describe selected technical details that affect the
performance and practical applicability of the dynamic analysis.

We have implemented the dynamic analysis on top of the JPDA framework2

that is a part of the Java platform. In particular, we have used two components
of JPDA — the JVM TI monitoring interface and the JDI front-end API.

2 https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html

BUBEN: Automated Library Abstractions 7

JDPA provides all the necessary information about runtime program behav-
ior and states through its API, including call arguments at method entry and
return values at method exit, and it supports tracking of calls to native methods.
Moreover, JPDA allows to inspect heap data structures, dynamic call stack, and
runtime values of program variables (object fields, array elements) — something
that is not easily achievable probably in all the dynamic analysis frameworks
based on code instrumentation (e.g., RoadRunner [7] or DiSL [9]).

Based on our preliminary experiments, we have also found that the per-
formance overhead of a dynamic analysis based on JVM TI (with respect to
normal program execution) is much smaller if we separated tracking of method
entry (invoke) events from method exit (return) events — namely, such that all
method entry events are tracked in one run of the dynamic analysis, while all
the method exit events are tracked in another distinct run. This optimization
helps to achieve at least practical running times in our scenario.

In order to keep also the size of dynamic summaries within practical limits,
so they can be applied during the program transformation step, we had to put
an upper bound on the number of recorded possible distinct return values from a
library method. This is motivated especially by certain system library methods,
such as System.getCurrentTimeMillis, that are invoked many times during the
run of a program and return a different value on each occasion. We set the value
of the upper bound to 256 for our experiments; however, it is configurable.

3 Static Computation of Method Summaries

We use static analysis to compute over-approximate summaries of possible side
effects for the remaining library methods, which do not perform I/O and do not
interact with any external entities. In this section, first we define the content of
method summaries, and then we present our algorithm for computing them.
Summaries. We designed summaries that capture just externally-visible side
effects of the library methods’ execution that may influence runtime behavior
of the application part of the whole program. This includes all the changes of
a runtime program state that may occur during execution of a given library
method, and that may be visible in the scope of application code.

Therefore, here we define a static method summary as a data structure that
contains the following items:

– A list of all object fields possibly updated in the method.
– A list of all possibly updated static fields.
– A list of all array elements updated in the method.
– For each updated field and array element, a list of possible new values.
– A boolean flag saying whether the method may return a value corresponding

to its arguments, and indexes of the respective arguments.
– A set of all objects newly allocated in the method, including arrays.
– A boolean flag saying whether the method may return a new object.
– A set of all possible return values.

8 Pavel Paŕızek

– A list of fields and array elements updated outside of any code region that is
protected by a lock or through another mechanism of thread synchronization.

Data are stored as symbolic access paths, respectively symbolic expressions (con-
stants, variable names, new objects, arithmetic). A symbolic access path begins
with a local variable name and then contains any valid mixture of field names
and indexed accesses to array elements (such as o.f.a[i].g). Only those symbolic
expressions that involve local variables other than method arguments cannot be
recorded in summaries, because they are not visible in the application code.

The static summary of a library method m captures also the results and side
effects for all methods called within the scope of m.
Algorithm for computing summaries. Our static analysis-based approach
combines (1) a fixpoint worklist algorithm over the list of all reachable methods
with (2) linear symbolic interpretation of the code of every method.

However, as a prerequisite of the main algorithm, it is necessary to compute
the set of may-aliased access paths for each local variable that may appear on the
left-hand-side of some assignment. We use the aliasing information to properly
handle code such as void myproc(Obj o) { v = o; v.f.g = 2; } where the field
update is effectively performed also upon the parameter o. The procedure for
computing the sets of possibly aliased expressions repeatedly processes the list
of assignment statements, until it reaches a fixed point.

Our approach for computing static method summaries was inspired by Naeem
and Lhotak [11]. At the start of a run of the main algorithm, the worklist is
filled with all library methods reachable in the call graph. In each iteration,
the algorithm removes a method m from the head of the worklist and performs
intra-procedural analysis of m (see below), which collects the necessary informa-
tion about side effects of m and updates its summary. When the summary of m
changes, all the callers of m that belong to the set of library methods are added
into the worklist, because their summaries depend on m and have to be recom-
puted. The algorithm terminates when the worklist is empty, at which occasion
the summary of each method captures all its results and side effects.

Summaries of individual methods are generated by symbolic interpretation
that is based on linear code traversal. We do not have to use a full-fledged
static analysis that involves fixpoint computation over the method’s control-
flow graph and SSA IR. Our symbolic interpretation of the code of a library
method is an intra-procedural control-flow-sensitive analysis that recognizes all
side effects of the method, together with other information that make up its
summary. By the term control-flow-sensitive, we mean that our analysis distin-
guishes among control-flow branches within the method’s code, but does not
process each control-flow path separately. In this respect, our notion of control-
flow-sensitivity is a weaker form of path-sensitivity. The analysis traverses the
sequence of instructions just once in a linear fashion, i.e. it performs only a single
linear pass through the code of a given method.

Figure 2 illustrates the key aspects of our symbolic analysis — specifically,
how it processes control-flow branches and selected instructions. During its run,
our symbolic interpretation algorithm maintains a stack of expressions that is

BUBEN: Automated Library Abstractions 9

1 for insn ∈ mth.instructions do
2 setActiveControlFlowBranch ()
3 if insn.type == condBranch then
4 if insn.jumpTarget > insn.index then
5 startNewControlFlowBranch(insn.jumpTarget)
6 end if
7 end if
8 if insn.type == goto then
9 if insn.jumpTarget > insn.index then

10 startNewControlFlowBranch(insn.jumpTarget)
11 suspendCurrentBranch ()
12 end if
13 end if
14 if insn.type == getfield then
15 obj = removeExprFromStack ()
16 addExprToStack(obj + ”.” + insn.fieldName)
17 end if
18 if insn.type == arraystore then
19 newValue = removeExprFromStack ()
20 indexExpr = removeExprFromStack ()
21 arrayObj = removeExprFromStack ()
22 recordArrayUpdate(arrayObj , indexExpr ,newValue)
23 end if
24 ...
25 end for

Fig. 2. Key aspects of symbolic interpretation with control-flow sensitivity

used to store instruction operands and results. Handlers for individual instruc-
tions manipulate with the stack. For illustration, in Figure 2 we show handlers
for the getfield and arraystore instructions (lines 14-17 and 18-23, respectively).

When the analysis processes a method m, it propagates available summaries
of other methods called from within m (transitively) into the summary of m to
reflect their side effects and outcomes. At each call site, data about formal pa-
rameters of the callee (including this) are associated with the actual arguments.
Existing dynamic summaries are used for the calls of native methods inside m.
In the case of library methods that manipulate with external entities, our al-
gorithm uses the results of dynamic analysis to initialize their summaries and
refines them later during the run of static analysis. The set of possible return
values from m is computed through a backward traversal of def-use chains and
nested method calls that starts at the explicit return statements. If a possible
new value of an updated field, respectively updated array element, is a symbolic
expression that refers to the return value of another method m′ called inside m,
then it is expanded with actual return values captured in the summary of m′.

Now we describe the approach for processing of control-flow branches. At
every moment during the run of our symbolic interpretation, one control-flow
branch is marked as active. The active control flow branch is changed if needed

10 Pavel Paŕızek

just before processing of an instruction (line 2) — e.g., when the current in-
struction is the target of a forward jump. Upon reaching of a conditional branch
(jump) instruction, the interpreter creates a new branch and schedules the
branch to be active at the jump’s target location (line 5). Execution of the
current active branch then continues at the next instruction. Goto instructions
are processed in a slightly different way. The interpreter creates a new control-
flow branch and makes it active at the target location of a jump also in this
case. However, the currently active branch is then suspended until the instruc-
tion corresponding to the jump target is reached (line 11). Another branch will
then become active, i.e. its execution will resume, at the next instruction in a
sequence, which must be a target location of another jump from elsewhere in the
method. Our approach ensures that, for every instruction that may be a jump
target, the symbolic interpreter distinguishes between all the possible symbolic
stack contents at the instruction. Note also that our interpreter can safely ignore
backward jumps, because they do not start new control-flow branches.

Like in the case of the dynamic analysis (Section 2), our algorithm for com-
puting static summaries records just updates to object fields and arrays defined
either in the application classes or visible from them. This is again realized by
tracking only updates to method call arguments. Information about variables in-
ternal to library methods are not used for constructing abstractions (Section 4).

Implementation. We implemented the algorithm for computing static method
summaries on top of the WALA library3. A very important aspect of our imple-
mentation is the usage of fast but imprecise approach to call graph construction
(0-CFA), which finishes quickly even for large software systems. Buben does not
need a precise call graph when generating summaries of library methods. In or-
der to compensate for the imprecision of alias analysis, our symbolic interpreter
considers as possible new values of updated fields and array elements only the
symbolic expressions whose prefix is the source value of some assignment state-
ment within the method. We apply this optimization also on the set of possible
return values. This greatly improves the precision of method summaries.

4 Program Code Transformations

We already said that Buben creates an abstraction of the given program by the
means of code transformations. An input for this procedure consists of (1) the
original program code and (2) method summaries computed either by the dy-
namic analysis or static analysis. Method summaries contain all the information
needed to generate abstractions of the respective library methods.

Buben performs especially two kinds of program code transformations:

– Replacing the calls of native methods and library methods that perform I/O
or manipulate with external entities.

– Creating new abstract implementations (bodies) of all other library methods.

3 T.J. Watson Libraries for Analysis (http://wala.sourceforge.net/)

BUBEN: Automated Library Abstractions 11

We want to emphasize that the only parts of application code affected by these
transformations are the calls of library methods.

An abstraction of a library method is generated by a procedure that fol-
lows the template in Figure 3. It specifies how the data captured by a method
summary are translated into actual code, i.e. how the abstraction looks like.

1 summ = retrieveMethodSummary (mth)
2

3 generateBeginAtomic ()
4

5 for (o.f , vals) ∈ summ.updatedObjectFields do
6 if o.f ∈ summ.unsynchFieldAccesses continue
7 v = generateNondetChoiceOverSet(vals)
8 generateFieldUpdate(o, f, v)
9 end for

10

11 for (a[i], vals) ∈ summ.updatedArrayElements do
12 if a[i] ∈ summ.unsynchArrayAccesses continue
13 v = generateNondetChoiceOverSet(vals)
14 generateArrayUpdate(a, i, v)
15 end for
16

17 generateEndAtomic ()
18

19 for o.f ∈ summ.unsynchFieldAccess do . . .
20 for a[i] ∈ summ.unsynchArrayAccesses do . . .
21

22 c = generateNondetIntChoice(0, summ.returnValues.size)
23 generateLoadExpression(summ.returnValues[c])

Fig. 3. Template for method abstraction

The same template is used by the module for program code transformation
both (1) to replace calls of library methods and (2) to create their new imple-
mentations. Only low-level adjustments have to be made in each case to ensure
the abstraction seamlessly fits into the existing code around the target location.
For example, when replacing a call of some library method, it is also necessary
to generate code that removes original method call arguments from the stack.

When generating the abstract variant of the body of a library method, the
first step is to remove the whole original control-flow structure. New statements
defined by the template can then be inserted in any order, because there are
no dependencies between them. Our transformation procedure does not strive
to preserve the order of statements that corresponds to the original method
body, for two reasons: (1) method summaries do not capture the order of state-
ments anyway; (2) in the main use case for Buben, verification tools will receive
only the transformed program as input (with the new order of statements in
abstracted methods), without any reference to the original program.

12 Pavel Paŕızek

Our template supports both (i) updates to fields, respectively array elements,
that are protected by some kind of thread synchronization in the original pro-
gram, and (ii) updates to the other fields and array elements (lines 19-20). Pro-
tected updates are enclosed within a single atomic block (lines 3 and 17). Besides
that, no special processing of multithreading-related code is needed. Calls of li-
brary methods that control threads and synchronization (such as Thread.start
and Object.wait) are not affected by code transformations in any way. In general,
transformations preserve concurrency-related behavior, including concurrent ac-
cesses to shared variables, and therefore also possible concurrency bugs.
Implementation. We used the ASM bytecode manipulation framework for
Java4 to implement all the program code transformations. Generated abstrac-
tions call the API for non-deterministic choice provided by a target verification
tool (e.g., Java Pathfinder).

5 Evaluation

We evaluated the implementation of Buben on multiple large Java programs
taken from popular benchmark suites, including DaCapo [3] and pjbench that
is available at the url https://bitbucket.org/psl-lab/pjbench.

The list of programs from DaCapo contains batik, lusearch, pmd, and sun-
flow. We used the smallest available configuration for each of them, and in some
cases (e.g., sunflow) we set the number of threads to 2 — all that with the goal of
reducing the running time of dynamic analysis, because it needs to observe just
few executions of each library method in order to create an under-approximation
that is useful as input for program code transformations. In addition, we picked
the jspider benchmark from the pjbench suite and the SPECjbb2005 benchmark.

We decided to choose these specific programs because of their size, high
degree of concurrency, and usage of many libraries. Program size was the relevant
criterion especially in the case of DaCapo, because tools like Java Pathfinder do
not yet scale to really large programs that are included within the DaCapo suite
(e.g., Tomcat and Eclipse). On the other hand, most other programs in the
pjbench suite (besides jspider) are quite small.

Source code of the Buben system, together with small examples, scripts,
and configuration files needed to run all experiments, is available at https:

//github.com/d3sformal/buben.
We organized our evaluation around the goal of answering the following re-

search questions related to practical usefulness of Buben:

Q1) Does the process of generating abstractions preserves interesting behaviors
of the original input program and bugs present in its source code?

Q2) Whether the generated abstract program can be successfully analyzed by
verification tools such as Java Pathfinder?

Q3) How much time it takes Java Pathfinder to analyze the abstracted program
and to find real bugs in the application code?

4 http://asm.ow2.io/

BUBEN: Automated Library Abstractions 13

Init (CG) Dynamic Computing Program
analysis summaries transform

batik 15 s 1285 s 3 s 17 s

lusearch 9 s 13665 s 4 s 10 s

pmd 9 s 2396 s 1 s 9 s

sunflow 12 s 11695 s 1 s 9 s

jspider 9 s 94 s 1 s 13 s

specjbb 6 s 40680 s 1 s 5 s
Table 1. Running time of Buben

Our answer to the first question is positive based on the way Buben creates
abstract programs. Since just library methods and their calls are replaced with
corresponding abstractions, other parts of the application code are not affected
by the respective transformations, and therefore interesting behaviors of the
program at the application level (including bugs) are preserved by construction.
The remaining questions 2 and 3 have to be answered empirically.

Table 1 shows the running times of the main components of Buben. For
each program, we measure the running times of initialization (which includes call
graph construction), dynamic analysis, static computation of method summaries
(that includes alias analysis), and program code transformations.

Data presented in Table 1 indicate that our approach is practically feasible.
However, individual steps of the whole process still have to be optimized — espe-
cially the dynamic analysis, which run over 11 hours in the case of SPECjbb2005.

We also run Java Pathfinder (JPF) [16] on each generated abstract program
to see whether JPF can analyze it successfully and find some bugs. For that, we
had to extend the implementation and configuration of Buben to accommodate
three special features of JPF: (1) use of a custom Java virtual machine, JPF
VM, (2) hand-written models (stubs) for selected classes from the Java standard
library, and (3) hand-written plain Java models for selected native methods.
Some of the models for native methods used by JPF implement key aspects of
the JPF VM functionality, and therefore we tweaked Buben to preserve calls of
the respective native methods — including, for example, most of native methods
defined in the class java.lang.Thread. The variant of Buben tailored for JPF
also automatically generates simple models for those native methods, which are
invoked from within standard Java library classes but for which the hand-written
models do not yet exist in the JPF distribution, in order to avoid crashes of JPF.
It is necessary because modifications of classes from the standard Java library
cannot be saved persistently, meaning in particular that replacing the calls of
native methods by code transformations described in Section 4 is not applicable
in the case of such classes. Finally, we manually configured Buben to generate
abstractions also for some application methods that perform lot of I/O-related
actions or load classes explicitly via reflection.

The results of applying JPF both on the original programs and transformed
programs (abstractions created by Buben) are presented in Table 2. We provide
the descriptions of reported crashes and bugs, together with execution times.

14 Pavel Paŕızek

Original input program Transformed abstract program (Buben)
result description time result description time

batik crashed: exception 1 s found bug: unhandled null 1 s
inside libraries pointer exception

lusearch crashed: exception 1 s found bug: unhandled null 1 s
in file I/O pointer exception + deadlock

pmd crashed: incomplete 1 s found bug: uncaught file- 1 s
stubs for libraries -not-found exception

sunflow crashed: exception 1 s did not report any error: (764 s)
inside libraries run out of memory (12 GB)

jspider crashed: incomplete 1 s found bug: unhandled null 1 s
stubs for libraries pointer exception

specjbb crashed: incomplete 1 s did not report any error: (3073 s)
stubs for libraries run out of memory (12 GB)

Table 2. Experiments with JPF

The left part of Table 2 shows that JPF crashed for all the original programs,
and thus failed (i) to verify their application code and (ii) to find at least some
bugs in them. For three programs, JPF crashed due to incomplete stubs of library
methods and classes. In the other cases, JPF reported an uncaught exception
thrown deep within libraries responsible, e.g., for GUI or file I/O.

The right part of Table 2 shows that, with abstractions generated using
Buben, JPF could successfully analyze all six programs and even find bugs in
four of them (batik, lusearch, pmd, jspider) very quickly. Unhandled null pointer
exceptions in the case of batik, lusearch, and jspider were caused by missing
checks for null references in the application code, while the uncaught file-not-
found exception reported for pmd is related to a file actually present within the
software package. By manual inspection of the source code, we checked that these
particular bugs (detected in abstractions) exist also in the original programs.

Overall, results for the programs that we used in our experimental evaluation,
presented in both tables, indicate that Buben is useful. It can generate abstrac-
tions of realistic large programs, which are amenable to verification and search
for bugs by tools like JPF. Scalability of verification could be further improved
by marking additional classes and methods as libraries in the user configuration.

6 Example Use Case

We illustrate the usage of Buben in more detail on the jspider program that
we used also in our evaluation. JPF crashes when run on the original version of
jspider, which is the main reason why one might consider to use Buben.

First, the user must define the configuration of Buben, similar to our ex-
ample in Figure 4. It specifies the main class (entry point) of the program,
command-line arguments, Java packages that represent libraries, and Java pack-
ages containing methods that manipulate with external entities (files, network).

As the second step, the user executes Buben to generate abstraction of each
library method in the call graph. Figure 5 shows both the original code (at

BUBEN: Automated Library Abstractions 15

mainclass = net.javacoding.jspider.JSpiderTool
runtimeargs = download,www.google.com, index.html
libmethods = org.apache.commons.logging, junit, org.apache.log4j, \

org.apache.commons.collections, org.apache.log, org.apache.velocity
appclasses = org.javacoding.jspider
externmethods = java.io, java.net, java.nio, javax.mail, javax.jms, jdk.net

Fig. 4. Example configuration of Buben for jspider

the top) and transformed code (bottom) of the method warn from the class
org.apache.log4j.Category. We picked this method because its code is quite short
and therefore suitable for illustration purposes. Deeply nested within the call
of forcedLog at line 5 (original variant) is a synchronized access to the field
LogRecord. seqCount that is captured by a static summary of the method warn.
Abstracted variant contains the field access inside an atomic block. The Verify
class is a part of the JPF API.

The last step is to run JPF on the abstracted program in order to find bugs.

1 // o r i g i n a l
2 pub l i c vo id warn (Object message) {
3 i f (r e p o s i t o r y . i s D i s a b l e d (L e v e l .WARN INT)) re tu rn ;
4 i f (L e v e l .WARN. i sG r e a t e rO rEqua l (g e t E f f e c t i v e L e v e l ())) {
5 f o r c edLog (FQCN, L e v e l .WARN, message) ;
6 }
7 }
8

9 // t r an s f o rmed
10 pub l i c vo id warn (Object message) {
11 Ve r i f y . beg inAtomic () ;
12 i n t c = V e r i f y . g e t I n t (0 , 0) ;
13 i f (c == 0) LogRecord . seqCount += 1 ;
14 Ve r i f y . endAtomic () ;
15 }

Fig. 5. Library method Category.warn: original (top) and transformed code (bottom)

7 Related Work

Lot of existing work is related to Buben and its components. In particular, we
know about (1) few approaches with similar goals as the whole Buben system
and (2) several techniques closely related to static and dynamic analysis per-
formed by Buben during its run. We characterize the related approaches and
techniques briefly in this section, and compare them with our solution.

Tkachuk and Dwyer [14] proposed an approach based on an idea similar to
ours. It creates a model of environment for each component of a given system

16 Pavel Paŕızek

in order to enable its modular verification. Environment models correspond to
sets of method summaries, which are computed by an intra-procedural flow-
sensitive and context-sensitive side effect analysis. The main difference between
this approach [14] and Buben is that the former captures just updates of the
target component’s state in order to create a minimal valid abstract environ-
ment, while the analyses performed by Buben collect all visible side effects of
library methods. Other differences include (1) usage of dynamic analysis within
Buben, which enables creating summaries for library methods that perform I/O,
(2) better support for concurrency, such as tracking fields accessed by multiple
threads, and (3) experimental evaluation on large programs.

State-of-the-art program verification frameworks handle libraries and I/O in
different ways. For example, KLEE [4] uses a symbolic file system where effects of
read and write operations are captured by constraints. Java Pathfinder contains
manually created stubs for I/O library methods (but only the most often used
are supported). Ceccarello and Tkachuk [5] improved the situation by developing
a tool for automated construction of abstract property-specific models of library
methods, which can be used only together with Java Pathfinder. The tool is based
on two key ideas: (1) use of program code slicing that removes accesses to every
field not relevant with respect to a given property, and (2) abstraction of read
accesses to irrelevant fields by random values or default values of the respective
data types. On the contrary, Buben automatically generates abstractions of
library methods based on dynamic and static summaries that are computed by
the corresponding analyses.

Many static analysis-based techniques for computing method summaries were
proposed recently [6, 15, 11, 10, 13, 1, 12]. Each technique in this group computes
some information about possible behavior and side effects of library methods,
but none of them is directly applicable in our case — especially because none
generates summaries that contain all the information that Buben needs, includ-
ing new values of updated object fields and array elements.

For example, the analysis proposed by Cherem and Rugina [6] computes just
the following information: a set of object fields updated by each method (up to
a given bound on the length of field access chains), which fields of objects given
as method call arguments may become aliased, and whether a returned value
may be aliased with some argument or with a field of some argument.

The technique of Matosevic and Abdelrahman [10] computes method sum-
maries that involve symbolic access paths (especially to object fields). It also
uses pointer analysis to determine aliasing between method call arguments. The
main difference from Buben is that, in our approach, we do not need to track
heap locations and their possible aliasing.

In general, there is a large space of static analyses that compute summaries
of some kind, where each technique is tailored for a particular use case.

One can also use slicing [2, 8] to create a simplified version of an input pro-
gram for the purpose of efficient and scalable verification. Nevertheless, program
slicing is done with respect to some property, and takes into account dependen-

BUBEN: Automated Library Abstractions 17

cies between statements and threads. Buben completely replaces the original
code of library methods in a general property-independent manner.

Acknowledgments. We would like to thank Ondřej Lhoták for all his sug-
gestions regarding the paper content and presentation. This work was partially
supported by the Czech Science Foundation project 18-17403S.

References

1. S. Artzi, A. Kiezun, D. Glasser, and M. Ernst. Combined Static and Dynamic
Mutability Analysis. In Proceedings of ASE 2007, ACM.

2. D. Binkley and K.B Gallagher. Program Slicing. Advances in Computers, 43, 1996.
3. S.M. Blackburn, R. Garner, C. Hoffman, A.M. Khan, K.S. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking Devel-
opment and Analysis. In Proceedings of OOPSLA 2006, ACM.

4. C. Cadar, D. Dunbar, and D.R. Engler. KLEE: Unassisted and Automatic Gen-
eration of High-Coverage Tests for Complex Systems Programs. In Proceedings of
OSDI 2008, USENIX.

5. M. Ceccarello and O. Tkachuk. Automated Generation of Model Classes for Java
PathFinder. In Proceedings of Java Pathfinder workshop 2013, ACM SIGSOFT
Software Engineering Notes, 39(1), 2014.

6. S. Cherem and R. Rugina. A Practical Escape and Effect Analysis for Building
Lightweight Method Summaries. In Proceedings of CC 2007, LNCS, vol. 4420.

7. C. Flanagan and S.N. Freund. The RoadRunner Dynamic Analysis Framework for
Concurrent Programs. In Proc. of PASTE 2010, ACM.

8. D. Giffhorn and C. Hammer. Precise Slicing of Concurrent Programs. Automated
Software Engineering, 16(2), 2009.

9. L. Marek, A. Villazon, Y. Zheng, D. Ansaloni, W. Binder, and Z.Qi. DiSL: A
Domain-Specific Language for Bytecode Instrumentation. In Proceedings of AOSD
2012, ACM.

10. I. Matosevic and T.S. Abdelrahman. Efficient Bottom-up Heap Analysis for Sym-
bolic Path-based Data Access Summaries. In Proceedings of CGO 2012, ACM.

11. N.A. Naeem and O. Lhotak. Faster Alias Set Analysis Using Summaries. In Pro-
ceedings of CC 2011, LNCS, vol. 6601.

12. A. Rountev, M. Sharp, and G. Xu. IDE Dataflow Analysis in the Presence of Large
Object-Oriented Libraries. In Proceedings of CC 2008, LNCS, vol. 4959.

13. A. Salcianu and M. Rinard. Purity and Side Effect Analysis for Java Programs. In
Proceedings of VMCAI 2005, LNCS, vol. 3385.

14. O. Tkachuk and M. Dwyer. Adapting Side Effect Analysis for Modular Program
Model Checking. In Proceedings of ESEC/FSE 2003, ACM.

15. G. Yorsh, E. Yahav, and S. Chandra. Generating Precise and Concise Procedure
Summaries. In Proceedings of POPL 2008, ACM.

16. Java Pathfinder verification framework (JPF), https://github.com/

javapathfinder/jpf-core/wiki

