
Pure methods for roDOT
Vlastimil Dort # �

Charles University, Czech Republic

Yufeng Li #

University of Cambridge, United Kingdom

Ondřej Lhoták # �

University of Waterloo, Canada

Pavel Parízek # �

Charles University, Czech Republic

Abstract
Object-oriented programming languages typically allow mutation of objects, but pure methods
are common too. There is great interest in recognizing which methods are pure, because it eases
analysis of program behavior and allows modifying the program without changing its behavior. The
roDOT calculus is a formal calculus extending DOT with reference mutability. In this paper, we
explore purity conditions in roDOT and pose a SEF guarantee, by which the type system guarantees
that methods of certain types are side-effect free. We use the idea from ReIm to detect pure
methods by argument types. Applying this idea to roDOT required just a few changes to the type
system, but necessitated re-working a significant part of the soundness proof. In addition, we state
a transformation guarantee, which states that in a roDOT program, calls to SEF methods can be
safely reordered without changing the outcome of the program. We proved type soundness of the
updated roDOT calculus, using multiple layers of typing judgments. We proved the SEF guarantee
by applying the Immutability guarantee, and the transformation guarantee by applying the SEF
guarantee within a framework for reasoning about safe transformations of roDOT programs. All
proofs are mechanized in Coq.

2012 ACM Subject Classification Software and its engineering → Formal language definitions;
Software and its engineering → Object oriented languages

Keywords and phrases type systems, DOT calculus, pure methods

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.18

Related Version Extended Version including Appendix: https://d3s.mff.cuni.cz/files/publications/
dort_pure_report_2024.pdf [13]

Funding This work was supported by the Czech Science Foundation project 23-06506S, and by the
Czech Ministry of Education, Youth and Sports project LL2325 of the ERC.CZ programme. This
research was also supported by the Natural Sciences and Engineering Research Council of Canada.

1 Introduction

A feature common to many object-oriented programming languages is that execution of a
method can have important side effects such as creating new objects on the heap or modifying
(mutating) existing objects. For example, a setter method modifies a field of the receiving
object. Such effects are also the reason why, in general, execution of a method cannot be
treated as evaluation of a function in a mathematical sense, because every call of a method
with possible side effects can produce different results.

That being said, many methods in object-oriented programs are actually designed as
side-effect-free and meant to work like pure mathematical functions, producing the same
result on each invocation. An example of such methods are getters, or generally, computations
based solely on the arguments passed into the method. Creating methods without side

© Vlastimil Dort and Yufeng Li and Ondřej Lhoták and Pavel Parízek;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 18; pp. 18:1–18:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dort@d3s.mff.cuni.cz
https://orcid.org/0000-0002-0213-7524
mailto:yufeng.li@cl.cam.ac.uk
mailto:olhotak@uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:parizek@d3s.mff.cuni.cz
https://orcid.org/0000-0003-0714-7446
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Pure methods for roDOT

effects is also often considered to be a good practice, because it reduces hidden dependencies,
and these methods can be used more freely without the fear of unwanted interaction of
their effects. For example, the program code fragment val x = computeX() ; val y =
computeY(), which involves two side-effect-free methods, can be transformed to val y =
computeY() ; val x = computeX() by swapping the order of method calls without any
observable change in the program behavior and semantics. Writing side-effect-free methods
also enables a greater degree of parallelization (concurrency) and, in general, makes it easier
to understand the program behavior. Therefore, the issue of purity is relevant to most
mainstream object-oriented programming languages, such as Java, C++, C# and Scala.

However, in common programming languages, pure functions and methods with effects
are typically unified under a single concept of a method, and there is no way to express,
check and make use of method purity at the language level. The idea that a method is
pure can be expressed using an annotation (see, e.g., Checker Framework [14, 10] and Code
Contracts [15]), but one must look into the documentation of such an annotation for the
exact meaning of purity, and there may be limited possibilities of checking automatically
whether the annotation is applied properly.

In the context of Java, ReIm [19] introduced annotations with a formal meaning, which
give rise to a type system that allows to recognize side-effect-free methods using the types
of their parameters – if all parameters of a method, including the receiver, have read-only
types, the method cannot get hold of a writeable reference to an existing object, so it is
necessarily side-effect free. The advantage of this general approach, based on the usage of
static type systems for reasoning about purity and side-effect freedom, is the possibility to
prove soundness and consistency of such annotations.

Scala favours a functional programming style, so Scala programs are likely to contain
more methods (than Java programs) that can be identified as side-effect-free. Our main
objective is to design a type system that guarantees side effect freedom for Scala methods
and supports advanced language features present in Scala.

Previous formalization efforts for Scala resulted in the Dependent Object Types (DOT)
calculus [2], which captures the essence of Scala’s type system. However, the original DOT
calculus does not model mutation of objects, so purity cannot be addressed there, but some
variants that do allow mutation have been developed. roDOT [12] is an existing core calculus
for Scala with reference mutability. It has mutable fields and a type system feature to
distinguish read-only and mutable references. An important rationale behind the design of
roDOT, when compared to other possible approaches, is to use existing features of Scala,
including its rich type system, as much as possible rather than introducing new forms of
types only for reference mutability, to ease adoption of such a type system into the Scala
language. In particular, roDOT expresses the mutability of a reference using a specially
designated type member in the type of that reference. The type system of roDOT also
provides an immutability guarantee: an object can only be mutated if there is a path of
mutable references to it from the code being executed.

In this paper, we extend the core roDOT calculus from [12] with the concept of side-
effect-free methods. Before going into details, we want to emphasize that it was not possible
to simply adapt ReIm [19] from Java, because of several challenges specific to Scala and
roDOT that we discuss below. However, we use the idea proposed by the authors of ReIm
that side-effect-free methods are recognized based on the types of their parameters.

The general concept of purity is, in addition to (1) side-effect-freedom, sometimes
understood to comprise more properties: (2) determinism – returning the same value for the
same arguments [14], and (3) termination. In this paper, we focus only on the side-effect-free

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:3

(SEF) property. We will just mention that in regards to determinism, mutable DOT calculi
including roDOT have semantics that is deterministic except for instantiation of objects.

Within the context of roDOT, we look at the SEF property from three different perspec-
tives – what a SEF method does, how it can be recognized using the type system, and how
it can be used in programs. We define SEF methods in roDOT as those that do not modify
any objects that existed on the heap before the method was called.

As the main result of this paper, we prove the side-effect-free guarantee (SEF guarantee),
which says that methods with read-only parameters do not modify existing objects.

One important related challenge is that in order to state and prove the SEF guarantee, we
needed a way to test whether a given type is read-only. As we will explain, this is not possible
in the existing (original) roDOT type system from [12]. Therefore, one of our contributions
is an extension of roDOT that makes it possible to recognize read-only types.

Another challenge was defining the SEF guarantee formally and proving it in a calculus
that supports a mutable heap (like roDOT). The roDOT operational semantics says that fresh
heap addresses are chosen during method execution. Therefore, after calling a SEF method,
these heap addresses can be different, yet the heap still has the same overall structure. We
formally define a concept of similarity of heaps in roDOT to describe this relation. We prove
the SEF guarantee by simulating the execution of a SEF method with a similar execution,
where writeable references are removed, and by applying roDOT’s immutability guarantee.

Finally, as a corollary of the SEF guarantee, we state and prove a guarantee of safety of
a particular code transformation. The transformation guarantee states that swapping two
calls to SEF methods anywhere in a program does not affect the result of its execution.

Formalizing safe program transformations has to deal with specific issues, such as mixing
of program code and values together on the program heap, or the heap similarity mentioned
above. In order to deal with these issues, we design a general framework for reasoning about
safe transformations in roDOT. The framework provides a general way to define program
transformations, defines what properties a safe program transformation must have, and
provides a general theorem about lifting the safety of transformation from execution of a
small piece of code to execution of the whole program. Within this framework, we define the
specific transformation of swapping two calls of SEF methods. We prove the transformation
guarantee using the SEF guarantee and the lifting theorem.

We mechanized all of our formal results, in particular the soundness proof of the extended
roDOT calculus and the SEF guarantee, in Coq to enable future formal reasoning to build
on them. Note that the soundness of the original roDOT calculus was proved by hand in [12].
We have made our formalization in Coq public as an artifact for this paper.

1.1 Contribution
In summary, the main contributions of this paper are the following:

a modification of the original roDOT calculus that makes it possible to test whether a
type is read-only, which is necessary to state and prove the SEF guarantee;
a formal definition of side-effect-free methods in the context of roDOT, statement and
proof of the SEF guarantee;
a general framework for defining transformations of roDOT programs and proving that
some of them are safe in that they do not change the result of program execution,
statement and proof of a transformation guarantee, which states that re-ordering calls to
SEF methods is safe in that sense;
the first mechanization of roDOT and its immutability guarantee, with addition of the
SEF and transformation guarantees, and all the proofs in Coq — provided as an artifact.

ECOOP 2024

18:4 Pure methods for roDOT

x ::= z, s, r Variable
| y | w location, reference
t ::= Term
| vx | x1.m x2 variable, method call
| let z = t1 in t2 let
| let z = ν(s : T)d in t let-literal
| x.a | x1.a := x2 read, write
d ::= d1 ∧ d2 Definition
| {a = x} | {A(r) = T} field, type
| {m(z, r) = t} method
ρ ::= · | ρ, w → y Environment

T ::= Type
| ⊤ | ⊥ | N top, bottom, read-only ⊥
| µ(s : T) | x1.B(x2) recursive, selection
| {a : T1..T2} | {B(r) : T1..T2} field, type decl.
| {m(z : T1, r : T3) : T2} method
| T1 ∧ T2 | T1 ∨ T2 intersection, union
B ::= Type member name
| A | M ordinary, mutability
σ ::= · | let z = □ in t :: σ Stack
Σ ::= · | Σ, y → d Heap
c ::= ⟨t; σ; ρ; Σ⟩ Configuration

Figure 1 roDOT syntax

1.2 Outline
The paper is organized as follows. Section 2 gives an overview of the roDOT calculus, which
has been mechanized in Coq and within which we define the SEF condition. Section 3
discusses the definition of pure and SEF methods, looking at several variants. It defines the
SEF guarantee and identifies necessary changes to the roDOT type system in order for the
guarantee to work. In Section 4 we describe the changes to the calculus in more detail, and
discuss a new proof of type soundness of the calculus. In Section 5, we describe how we
proved the SEF guarantee, and in Section 6 we define and prove the transformation guarantee
within a framework for safe transformations. An appendix containing full definitions and
more detailed discussion is available in the extended version of this paper [13].

2 Background – the roDOT calculus

In this section, we present the summary of the roDOT calculus [12], which we use as the
baseline for this work. The DOT calculus [2, 33, 30] is a formal calculus, designed to formalize
the essence of the types of the Scala programming language. In the basic versions of the
DOT calculus, objects have read-only fields (so the objects are immutable), but there are
also several versions that allow changing values of the fields of objects (mutation).

The roDOT calculus [12] evolved from DOT with mutable fields. The goal was to extend
DOT with the ability to control mutation of objects using the type system, while using the
existing features of the DOT calculus, dependent types.

In roDOT, write access to a field is controlled by a reference mutability permission. It
is based on an idea of a reference capability represented by a special type member M. A
reference can only be used to mutate an object if the type of the reference includes this
capability, in the form of a type member declaration {M : ⊥..⊥}. Thanks to that, we can
refer to the mutability of a variable x using type selection x.M.

Without this capability, the field can only be read, but with it, the field can also be
written to. The permission applies transitively, in the sense that reading from a read-only
reference always produces read-only references.

2.1 Syntax and typing
The syntax of terms and types in roDOT is in Figure 1. It uses the A-normal form [36]
of terms from DOT. To avoid ambiguity, if a variable is used in the position of a term, it

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:5

Γ;ρ ⊢ x1 : {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ x2 : T1 Γ vis x2

Γ;ρ ⊢ x1 : [x2/z]T3 Γ vis x1

T3 indep z

Γ;ρ ⊢ x1.m x2 : [x1/r][x2/z]T2
(TT-Call)

Γ;ρ ⊢ x1 : T1 Γ vis x1
Γ;ρ ⊢ x : {a : T1..T2} Γ vis x

Γ;ρ ⊢ x : {M(r) : ⊥..⊥}
Γ;ρ ⊢ x.a := x1 : T2

(TT-Write)

Γ;ρ ⊢ x : {a : T1..T2} Γ vis x

Γ;ρ ⊢ T2 ro T3 Γ;ρ ⊢ T2 mu(r) T4

Γ;ρ ⊢ x.a : T3 ∧ {M(r) : ⊥..(T4 ∨ x.M(r))}
(TT-Read)

Γ;ρ ⊢ T1 <: T3
Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 ∨ T2 <: T3
(ST-Or)

Γ;ρ ⊢ T1 ∧ (T2 ∨ T3) <: (T1 ∧ T2) ∨ (T1 ∧ T3)(ST-Dist)

Γ;ρ ⊢ T3 <: T1 Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ, z : T3;ρ ⊢ T6 <: T5 T6 indep z ⇒ T5 indep z

Γ;ρ ⊢ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Figure 2 Selected rules for typing and reduction in roDOT

is marked as vx. Unlike other versions, the roDOT calculus does not have λ values, but
methods are a kind of object member (and cannot be reassigned), so there is a more explicit
relationship of a method, the containing object and the reference used to call the method.
Objects are represented by the ν(s : R)d constructor, appearing as literals in the programs
and as items on the heap (R is the type of the object and d is a list of member definitions).

When typing the program or a part of it, free variables are assigned a type in a typing
context Γ. There are several kinds of variables. Abstract variables are variables bound in
terms such as let-in terms and method definitions. When the program executes, objects are
created on the heap, and variables referring to concrete objects on the heap are substituted
in place of the abstract variables. Each object on the heap has a unique location y and one
or more references w. In an object on the heap, the values of fields are locations of other
objects. In terms, only references may appear. The kind of the variable has no effect on
execution or typing. In roDOT, references are a separate concept from locations in order to
allow references to the same object to have different types (specifically, different mutabilities).
While the run-time stack and focus of execution work with references that have their own
mutabilities, the heap only works with locations, and mutability is determined by field types.

The types form a lattice, with the top, bottom, union and intersection types. Objects
can contain multiple members – fields, methods and type members. Types of objects are
formed by intersection of individual declaration types for each member.

The type members {A : T..T} specify lower and upper bounds, and they introduce a new
dependent type x.A that has a subtyping relationship with those bounds. This is relevant
because roDOT uses a type member for mutability. The ability to create dependent types in
this manner is the defining feature of the DOT calculus.

The declarations of an object’s members are wrapped in a recursive type, so several
declarations in one object type can reference each other, using a member type selection
s.A involving the self-reference s. An example of a type of an object without mutability is
µ(s : {A : T..T} ∧ {a : s.A..s.A} ∧ {m(r : T, z : T) : T}). An object of this type has a type
member A with bounds T , a field a with a self-referential type s.A, and a method m.

In roDOT, dependent types are also used to express the mutability of a reference, by

ECOOP 2024

18:6 Pure methods for roDOT

selecting the special type member M. When accessing an object through a reference which
does not have this capability, for example {a : T..T}, the field can only be read. With it, for
example {a : T..T} ∧ {M : ⊥..⊥}, the field can also be written to.

In the declaration of the type member M, the lower bound is always ⊥, and the upper
bound determines the mutability. If the upper bound is also ⊥, it means the reference is
mutable. Otherwise, it is read-only. This way, mutable references are subtypes of read-only
references, so a mutable reference can be used anywhere a read-only reference is expected, but
not vice versa. We will use MT as a shorthand for the type member declaration {M : ⊥..T},
or just M when the bound is not important. The mutability of a reference applies to the
whole object – a mutable reference allows writing to all fields.

An example of a type of an object with a type member A, a field a, method m and a
mutability declaration is µ(s : {A : T..T} ∧ {a : T..T} ∧ {m(r : T, z : T) : T}) ∧ {M : ⊥..⊥}.

A declaration of a method allows specifying a type of the receiving reference r : T , which
can be more precise than the type of the recursive self parameter s in the defining object.
This allows the type of the method to require that the receiver be writeable, or allow it to be
read-only. It is similar to the ability to annotate the type of this parameter in Java, used by
the Checker Framework [18, 9]. For this reason, every method in roDOT has two parameters:
a normal parameter z and the receiver r, which is a reference to the object containing the
method, like this in Scala. In roDOT, the type of r can be dependent on z. The parameter
r is special in how it gets its type, but in terms of semantics, behaves the same as z.

Several rules in roDOT need a read-only version of a type. For that, there are two
type-level operations: T ro U means that U is a readonly version of T , T mu U means that
U is a mutability bound of type T (rules are shown in Figure 11 in the appendix). A special
type N is defined to be the read-only version of the least type in the subtyping lattice, ⊥.

The typing rules (selected in Figure 2, full set in Figures 8 to 12 in the appendix) describe
correctly formed programs. In addition to the typing context Γ, which assigns types to
variables, the left side of the typing judgment includes an environment ρ that connects
references in the terms to locations of objects on the heap.

The write term, typed by TT-Write, is guarded by a check of the mutability permission
on the receiving reference. The premise Γ;ρ ⊢ x : {M : ⊥..⊥} ensures that only mutable
references can be used for writing.

Reading a field, typed by TT-Read, is always possible, but the type of the result is
changed to read-only if the source reference is read-only. This type operation is called
viewpoint adaptation, and ensures that read-onlyness is transitive, which is required for
the immutability guarantee of roDOT and for our SEF guarantee. This is achieved by
taking a read-only version of the field’s type, and adding a mutability that is a union of the
mutabilities of the source reference and of the field type. For example, if a reference w has
type {a : T1..µ(s : . . .) ∧ MU }, then the term w.a has type µ(s : . . .) ∧ Mw.a∨U .

With the vis judgment (Figure 9 in the appendix), roDOT hides captured variables in
methods – to access a value from outside, it must be stored in a field of the containing object,
so viewpoint adaptation applies to it.

Variables appearing in terms and definitions have types given by the typing and subtyping
rules in Figures 9 and 10 in the appendix. Selected rules are shown in Figure 2: ST-Met is a
subtyping rule for method declarations. The part highlighted in grey is not part of roDOT,
but our modification, which we will describe in Section 4.2. Rules ST-Or and ST-Dist are
examples of subtyping rules for union types, which are relevant in Section 4.1.

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:7

2.2 Semantics

The operational semantics of roDOT is defined as a small step semantics, with machine
configurations (Figure 1) consisting of a term in the focus of execution t, a stack σ, a heap
Σ and an environment ρ. The environment ρ maps references to locations and the heap Σ
maps locations to objects. The stack σ is used to evaluate terms of the form let z = t1 in t2.
The stack is a list of frames of the form let z = □ in t2, where □ represents t1 while it is being
evaluated in the focus of execution. When t1 is evaluated to a value, that value is substituted
for the square in the top frame of the stack, and the t2 from that frame then becomes the
new focus of execution.

Execution starts with the program, an empty stack, empty heap and an empty environment,
and proceeds by steps defined in Figure 13 in the appendix, until it reaches an answer
configuration, which has an empty stack and the focus of execution is a single variable.
During execution, new items are added to the heap and the environment (there is no garbage
collection). Calling a method copies its body to the focus of execution, while the receiver
and argument are substituted.

The semantics is generally deterministic – there is no way to express a nondeterministic
choice. However, there is one source of non-determinism: locations of objects on the heap.
Allocating objects must be regarded as a non-deterministic operation because even if the new
objects are initially equal, they may take on different values due to subsequent mutation.

2.3 Properties

The roDOT calculus has the type soundness property (Theorem 1, Theorem 7 in [12]) – a
term that has a type in an empty context can be executed and either reduces to an answer,
or executes indefinitely. DOT and roDOT do not include explicit checks for error conditions,
but trying to access (read, write or call) a non-existing member of an object is an error. In
such a case, a reduction step is not defined and the execution “gets stuck”. The soundness
theorem guarantees this does not happen for typed programs.

▶ Theorem 1 (Type Soundness).
If ⊢ t0 : T , The initial term t0 is well typed,

then either ∃w, j, Σ, ρ: ⟨t0; ·; ·; ·⟩ 7−→j ⟨vw; ·; ρ; Σ⟩, then execution terminates in j
steps with answer w,

or ∀j: ∃tj , σj , Σj , ρj : ⟨t0; ·; ·; ·⟩ 7−→j ⟨tj ; σj ; ρj ; Σj⟩. or continues indefinitely.

Type soundness and other properties are based on the fact that during execution, the type
of the configuration is preserved. Rules for typing a machine configuration are in Figure 14 in
the appendix. As the program executes and new objects are added to the heap, new locations
and reference variables are used to refer to the objects. To give the configurations a type,
these variables are added to the typing context. Their type is the type of the object, and
has a fixed form – it is a recursive type containing declarations of all the object’s members,
intersected with a declaration of mutability. A typing context that only contains types of
this form is called an inert context. Under an inert context, stronger claims can be made
about types of variables [30], and it plays an important role in the proof of soundness.

The essential property of roDOT is the immutability guarantee (Theorem 2, Theorem 9
in [12]): in order for an object to be mutated, a writeable reference to it must exist, or it
must be possible to reach it by a path of writeable fields, starting from a writeable reference
– the object must be mutably reachable, defined formally in Figure 3.

ECOOP 2024

18:8 Pure methods for roDOT

Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y1
y1 → . . .1 {a = y2} . . .2 ∈ Σ

Γ;ρ ⊢ y1 : {a : ⊥..{M(r) : ⊥..⊥}}
Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y2

(Rea-Fld)

t tfree w ∨ σ tfree w

w → y ∈ ρ

Γ;ρ ⊢ w : {M(r) : ⊥..⊥}
Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y

(Rea-Term)

Figure 3 roDOT mutable reachable references

▶ Theorem 2 (Immutability Guarantee).
If y → d ∈ Σ1 and Γ ⊢ ⟨t1; σ1; ρ1; Σ1⟩ : T , For an object at some point during well-

typed execution,

and ⟨t1; σ1; ρ1; Σ1⟩ 7−→k ⟨t2; σ2; ρ2; Σ2⟩, at any later point,

then either y → d ∈ Σ2, either the object does not change,

or Γ ⊢ ⟨t1; σ1; ρ1; Σ1⟩ mreach y. or it was reachable by mutable references.

3 Method Purity for roDOT

Here we informally define the meaning of side-effect freedom in roDOT, and informally state
the main results of this paper: the SEF guarantee and the transformation guarantee.

We structure our work around an observation that (in any programming language or
calculus), we can look at side-effect freedom from different perspectives:
1. (Static) Recognize which methods are SEF statically at compile time, using types.
2. (Runtime) Define what events can (or cannot) happen when a SEF method is executed.
3. (Usage) Differentiate SEF methods from general methods based on how they can be safely

used in programs.

For each of these perspectives, we will state a SEF condition, each giving a different
definition of SEF methods in roDOT. First we do it informally in this section, and then
formalize the definitions in the following sections. The guarantees then form connections
between different SEF conditions.

3.1 Runtime SEF condition
Saying that a method is side-effect-free is informally understood as saying that the execution
of the method will not perform any actions that are considered to be side effects. This view
corresponds to the second perspective on our list.

This perspective is most directly related to the semantics. In roDOT, this means looking
at the small step semantics, defining the beginning and end of execution of a method, and
defining the SEF condition in terms of the state of execution or the steps performed between
the beginning and the end. When looking at the effects caused by method execution, the
only relevant part of the machine configuration is the heap (the focus of execution is the part
being evaluated, the stack cannot be changed, and the mapping from references to locations
is only relevant for typing). The heap can only be modified by two kinds of execution steps:
instantiation of an object and writing a value to a field of an object on the heap.

The condition of side-effect-freedom can be stated in multiple versions of varying strength.
In the strictest sense, we could say that a SEF method cannot have any effect on the heap
at all, meaning no instantiations and no writes. That would, however, be overly restrictive,
as object instantiation is one of the basic operations in object-oriented programming. It is
therefore usually (such as in [34, 38, 19, 14]) allowed that a SEF method can instantiate new

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:9

objects, and also write to the fields of those newly instantiated objects. In turn, the only
forbidden action is writing to fields of previously existing objects.

Another choice in the definition is when the change to the heap is detected, which leads
to different answers to questions such as: (a) Is it allowed to write to a field of an existing
object, if the value written is the same as the current value so the object does not actually
change? (b) Is it allowed to write to a field of an existing object, if the field is restored to the
previous value before the end of the method execution? We choose to allow (a) but not (b),
so our definition observes the state of the heap at every moment during the execution of the
method. Allowing (b) would lead to a weaker condition, which would check the state of the
heap only at the end of the method call. Forbidding (a) would lead to a stronger condition,
defined in terms of allowed steps of execution rather than in terms of the state.

▶ Informal statement of Definition 15 (Run-time SEF condition, in Section 5.1). An execution
of a method is side-effect free, when at every step of execution until returning from the
method, the heap contains all the objects from the start of execution in an unchanged state.

3.2 Static SEF condition
The static perspective (the first in our list) is useful because it provides a way to check that
a method is SEF by looking at the code. We must, however, accept that statically, it will not
be possible to recognize all methods that are pure from the second (and third) perspective.

In ReIm [19], SEF methods are recognized by the mutability of the parameters. roDOT
uses the same notion of transitive read-only references, therefore it should be possible to use
an analogous condition in roDOT.

▶ Informal statement of Definition 11 (static SEF condition). A method has a SEF type, if
both its parameter and its receiver parameter have read-only types.

This condition will be formally defined in Section 4.1. Example 3 and Example 4 illustrate
its ability to recognize SEF methods.

▶ Example 3. A getter defined as {mget(r, z) = z.a} can be typed with {mget(r : ⊤, z : {a :
⊤..⊤}) : ⊤}. Both ⊤ and {a : ⊤..⊤} are read-only types, and therefore the getter is SEF.

▶ Example 4. The method msef defined by {msef (r, za) = (let x = ν(ro : Ro) . . . in za.max)}
calls a method of its argument, passing a newly allocated object to it. This method has
type {msef (r : ⊤, za : Tz) : ⊤}, where Tz = {ma(r : ⊤, z : µ(ro : Ro) ∧ {M : ⊥..⊥}) : ⊤}. By
Definition 11, msef is SEF, because it has read-only parameters, even though it calls ma,
which may mutate the heap.

Example 5 shows how viewpoint adaptation transitively ensures that read-only parameters
cannot be used to modify existing objects. Example 6 shows how a dependent type can
change whether the method is SEF or possibly not.

▶ Example 5. The method defined by {mva(r, z) = (let x = z.a in x.b := r)} mutates an
object stored in a field of the argument z, and therefore is not SEF. This method cannot be
typed with a read-only type for the parameter z, because even if the field a has a mutable
type, by viewpoint adaptation of fields in roDOT, the variable x would also have a read-only
type, so the subsequent write would not be allowed.

▶ Example 6. A method with a type {mdep(r : ⊤, za : {a : ⊤..⊤}∧x.A) : ⊤} has a parameter
with a type dependent on the variable x, which can decide the mutability. This method is
recognized as SEF only in contexts where N <: x.A. When x.A <: M⊥, then the method
can (indirectly) mutate the argument.

ECOOP 2024

18:10 Pure methods for roDOT

3.3 SEF guarantee
For the SEF guarantee (Theorem 16), we want to be able to claim that a method is SEF
based on the type of the method declaration. The SEF guarantee makes the connection from
the first to the second perspective.

▶ Informal statement of Theorem 16 (SEF guarantee, in Section 5.2). Let c1 be a well-typed
machine configuration just prior to executing a method call step w1.mw2. If, by typing of
the receiving reference w1, the method m has a SEF type, then the execution of the method
will be side-effect free.

3.4 Using pure methods in roDOT
Finally, the third perspective shows why SEF methods are useful. It is, however, a view from
outside of the method, and does not tell us how to construct a SEF method or check it.

The practical use of a type system with SEF methods comes when it allows us to look at
the code, and based on what we see (from the first perspective) gives us a guarantee about
its behavior (second perspective) and how it can be used (the third perspective). An example
of this is allowing safe transformations of the program, which can be applied at coding time
using IDE-provided code transformations, or at compile time as optimizations. For example,
calls to SEF methods can be safely reordered.

To keep the problem simple, we will look at one particular case of such reordering:
swapping two calls to SEF methods. With SEF methods, the code x1.m1(); x2.m2() is
equivalent x2.m2(); x1.m1().

▶ Informal definition (Call-swapping transformation of programs). A program t1 is transformed
into t2 by SEF call-swapping, when the programs are the same except in one place, where t1
calls two methods in succession, but t2 calls them in the opposite order. Furthermore, within
the contexts of typing these method calls, both methods have the same read-only types, and
allow both programs to be typed in the same manner.

▶ Example 7. A chain of calls let x1 = xo1.m1xa1 in let x2 = xo2.m2xa2 in t, can transformed
by call swapping into let x2 = xo2.m2xa2 in let x1 = xo1.m1xa1 in t.

The static condition from the first perspective is already a part of the definition of the
transformation. The transformation guarantee then states that this transformation is safe –
it does not change the behavior of the program. By that, the guarantee connects the static
condition (first perspective) with the call-swapping transformation (third perspective). We
use the run-time condition (second perspective) as a connecting step between them in the
proof of this guarantee.

▶ Informal statement of Theorem 27. The call-swapping transformation is safe, in the
sense that if for any programs t1 and t2 related by this transformation, provided that t1
terminates with an answer c1, then t2 also terminates with an answer c2, which is the same
as c1, except for certain unavoidable differences in variable names and in method bodies.

The formal definition of the transformation, formal statement of the transformation
guarantee and an outline of its proof are provided in Section 6.

4 Recognizing SEF methods by type in modified roDOT

In this section, we formalize the static SEF condition in roDOT given informally in Section 3.2.
Although the notion of read-only types, used by this condition, was already defined in roDOT,

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:11

we identify issues with that definition in regards to this new use.
We fix them by updating the calculus with small changes, which comprise adding one

new subtyping rule and one type splitting rule, and one restriction added to the method
subtyping rule. The updated calculus is neither a subset nor a superset of the original, so
it is necessary to update the proof of soundness and the immutability guarantee, which
were proven by hand for the original roDOT [12]. The soundness proof followed the scheme
from [30] and uses an auxiliary definition of invertible typing, which allows doing proofs by
induction on the typing of variables. This is possible thanks to eliminating possible cycles in
the derivation, by forcing the derivation to follow the syntactic structure of the target type.

One of the new subtyping rules, however, breaks this soundness proof, because it in-
troduces new possibilities to derive types in cycles, which cannot be repaired by simply
handling additional cases in the original proof. In the presence of cycles, we cannot use the
straightforward inductive hypothesis to prove properties necessary for type safety, because a
derivation for typing a variable can involve derivations of arbitrarily complex types.

We implemented a new proof based on a different auxiliary typing definition, which avoids
cycles by forcing the derivation to arrive at the target type by adding type constructors in a
fixed order (for example, all unions in the type are handled before intersections). Compared
to the original invertible typing, which was single typing judgment with many rules, the
new approach leads to a definition in several layers, where each layer has a small number of
typing rules. We call this set of judgments layered typing. In layered typing, we re-prove
important properties of invertible typing, so that the new definition fits into the rest of the
existing soundness proof, and also prove new properties required for the SEF guarantee.

The rest of this section is structured as follows: in Section 4.1, we formalize static SEF
condition, and discuss the meaning of read-only types in roDOT. In Section 4.2, we propose
small changes to the roDOT calculus to make definitions work for the SEF guarantee. We
give a short overview of the structure of the original soundness proof for roDOT, and show
how this proof breaks with the new changes. In Section 4.3, we describe the new layered
typing that replaces invertible typing in the updated proof and show its important properties.

4.1 Static SEF condition in roDOT
In the SEF guarantee (Theorem 16), we claim that a method is SEF based on the type of
the method declaration. Our SEF guarantee follows the approach of ReIm [19] and requires
the parameters to have read-only types.

4.1.1 Read-only types in roDOT
The check whether a type is read-only was also present in roDOT, but it had a limited
purpose – to ensure that recursive types are read-only in VT-RecI (Figure 9 in the appendix).
It was not based on subtyping, but rather on the relation ro, which makes a read-only version
of a type using a syntax-based type splitting.

This definition did not guarantee that all supertypes of a read-only type are also read-only.
As we will explain in Section 4.1.3, this would be a critical problem for the SEF guarantee.

We solve this problem by using a different notion of read-only types, based on subtyping
with the “read-only bottom” type N.

The purpose of N in the original roDOT was to be the read-only version of the type ⊥ for
defining the ro relation. Because the bottom type ⊥ is a subtype of all types, it is inherently
mutable. For that reason, the type N was added and made a lower bound of read-only types.
That allows us to define read-only types as supertypes of N.

ECOOP 2024

18:12 Pure methods for roDOT

▶ Definition 8 (Read-only types). A type T is read-only, if Γ;ρ ⊢ N <: T .

With Definition 8 settled, we discovered a few problems related to read-only types, which
would not allow us to state the SEF guarantee in the original roDOT.

Our proof of the SEF guarantee, specifically Lemma 19 in Section 5.4, relies on the idea
that if a reference has some read-only type, then any other reference to the same object has
that type too. Note that because of subsumption, a variable of a mutable type also has the
corresponding read-only types. This essentially means that in any place where a reference
is used by virtue of its read-only type, it can be replaced with a read-only version of that
reference. With the new Definition 8 of read-only types, this can be stated as:

▶ Lemma 9 (Read-only types are shared by all references). If Γ ∼ ρ and Γ;ρ ⊢ y : T and
Γ;ρ ⊢ N <: T , then Γ;ρ ⊢ w : T for any w such that ρ(w) = y.

This key lemma, however, does not hold in the original roDOT, because of union types.
Union types were not a part of DOT, but were added to roDOT in order to be used to

define viewpoint adaptation (union types are already a part of Scala’s type system), along
with the subtyping rules ST-Or, ST-Or1, ST-Or2, ST-Dist, which are shown in Figure 10 in
the appendix. However, using unions, it is possible to construct a type that is a supertype of
both N and a mutability declaration:

▶ Example† 10 (In the original roDOT, counter-example to Lemma 9). Let Tam := {a :
Ta} ∨ M⊥ be a union of some field declaration with a declaration of mutability, and
Tbm := {b : Tb} ∧ M⊥ be a type of a writeable reference to some other field b.

The type Tam is not mutable, because it is not a subtype of M⊥. It is read-only, because
Γ ⊢ N <: Tam, by the rules of subtyping of union types and by rule ST-N-Fld (Figure 10 in
the appendix).

Let y1 be a location of type Tbm, and w2 be a reference to y1 with type Tb := {b : Tbm}.
By subtyping of unions and intersections, Γ ⊢ Tbm <: Tam, so by subsumption, y1 has type
Tam. By Lemma 9, w2 should have also type Tam, but in the original roDOT, it does not.

Example† 10 is marked with the † sign, which we use in this chapter to identify properties
of the original roDOT from prior work, in contrast to the modified roDOT in this paper.

We observe that the read-only type Tam in this counter-example is a union of disjoint
declarations, so it does not allow accessing the field aam, or any other member. Therefore,
Tam is no more useful for typing programs than ⊤. In order to make Lemma 9 work, we
decided to extend the type system with new subtyping rules to make types like this equivalent
to ⊤. These changes will be described in Section 4.2.

4.1.2 The SEF condition
A method is statically SEF if the types of its receiver and parameters are read-only according
to Definition 8 i.e., they are supertypes of N. Thanks to subsumption and subtyping of
method types, the type {m(z : N, r : N) : ⊤} is a type bound for methods named m and
requires that both the argument and receiver have read-only types.

▶ Definition 11 (Static SEF condition). A method is statically SEF if it has a type {m(z :
N, r : N) : ⊤}

In Section 5, we will show that this condition works because a method must access all
objects through the argument or the receiver (capturing values is modeled using fields of the
receiver), so the method will not be able to get a writeable reference to any existing object.

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:13

Γ;ρ ⊢ N <: T

Γ;ρ ⊢ T ro T
(TS-N) Γ;ρ ⊢ ⊤ <: N ∨ {M(r) : T1..T2}(ST-NM)

Figure 4 New rules for roDOT

4.1.3 Subtyping of method types

In order for the SEF guarantee (Theorem 16) to work with Definition 11, it is critical that all
subtypes of a SEF method type are also SEF. The reason is at the site of a method call, the
observed static type of the method is a supertype of the actual type of the method within its
containing object, so this is needed to make the connection from the SEF type at a call site
to the SEF type of the actual method.

That is why Definition 8 needs to be based on subtyping, so that all supertypes of
read-only types are read-only (method types are contravariant in their parameter types).

Still, the type system required one more change related to a possible dependency between
the types of method parameters. In roDOT, the type of the receiver r can be a dependent
type referring to the other parameter z of the method. If, however, the receiver type depended
on the mutability of z, then while typing the body of the method, it would be possible to
derive that z is mutable, even if its type is read-only in the sense of Definition 8. If r has
the type {A : z.M..⊥}, one can use the typing rules ST-SelL and ST-SelU (Figure 10 in the
appendix)) to derive z.M <: ⊥. The change to the rules TT-Call and ST-Met in Figure 2
prevents this issue by disallowing using method types where the receiver depends on the
mutability of the parameter.

4.2 The updated roDOT calculus

In the previous section, we defined the static SEF condition, but identified several reasons
why this definition would not work as intended in roDOT as-is. We fix these issues by changes
to the roDOT calculus, which amount to two new and one modified typing rule:

A new subtyping rule ST-NM (Figure 4) is added, which makes the union of a mutability
declaration and the read-only lower bound N a top-like type (the other direction of
subtyping was already a part of the type system).
A new rule TS-N (Figure 4) is added to type splitting, making it so that all types that
are read-only by Definition 8 are unaffected by the splitting operation.
The typing rule TT-Call and subtyping rule ST-Met have a new premise (shown highlighted
in Figure 2), which disallows introducing a dependency between the receiver type and
the parameter in method subtyping. This fixes the problem described in Section 4.1.3.

The new rule ST-NM fixes the counter-example to Lemma 9, because now we have Γ;
ρ ⊢ ⊤ <: Tam, derived from Γ;ρ ⊢ ⊤ <: N ∨ M⊤ and Γ;ρ ⊢ N <: {a : Ta}. By subsumption
and Γ;ρ ⊢ w2 : ⊤, that also means that Γ;ρ ⊢ w2 : Tam.

Additionally, we can now improve the type splitting relation ⊢ ro , by extending it
with a new rule TS-N, shown in Figure 4. With that, the condition in VT-RecI (Figure 9
in the appendix) that recursive types are read-only, Γ;ρ ⊢ T ro T , becomes equivalent to
Definition 8:

▶ Lemma 12 (Read-only types). Γ;ρ ⊢ N <: T ⇔ Γ;ρ ⊢ T ro T .

ECOOP 2024

18:14 Pure methods for roDOT

General typing
Γ;ρ ⊢ x : T

Tight typing
Γ;ρ ⊢# x : T

General subtyping
Γ;ρ ⊢ S <: T

Invertible typing
Γ;ρ ⊢## x : T

Tight subtyping
Γ;ρ ⊢# S <: T

Precise typing
Γ;ρ ⊢! x : T

Figure 5 Dependencies (→) and equivalences (⇔) between definitions of typing in roDOT

4.2.1 Updating the safety proof
The changes described above require updating the type safety proof of the calculus, to show
that the changes did not allow invalid programs to be typed. The new subtyping rule ST-NM
has a significant effect on the soundness proof, because it makes it possible to derive many
additional union types, such as the now top-like type M ∨ N.

The proof of soundness of roDOT before these changes followed the structure of the proof
of DOT [30]. The core part of this proof is to show that if a reference w has some declaration
type D (such as a field {a : T}), then the type associated with w in the typing context Γ is
an object type containing D or a more precise declaration of the same member. That means,
for Γ;ρ ⊢ w : D, where D is a declaration type, because the types in Γ correspond to the
object on the heap (Γ ∼ Σ), the actual object referred to by w must contain a corresponding
member definition in Σ, and therefore it is safe to access that member.

The proof was based on two alternative definitions of typing for variables – tight typing
and invertible typing. Figure 5 shows the relations between the different versions of typing.

Tight typing is used as an intermediate step in equivalence of general and invertible
typing. It is very similar to general typing – it has the same rules, except that subtyping rules
involving selection types (ST-SelL and ST-SelU in Figure 10 in the appendix) use precise
typing, a simpler version of variable typing, which does not have subsumption.

Updating tight typing for our modified rules is straightforward – we apply the same
changes as to general typing, and the proof of equivalence between general and tight typing
still works. However, we will show that updating invertible typing poses a challenge, as it
cannot be easily extended with the additional rules.

4.2.2 Invertible Typing†

The main utility of invertible typing was providing a simple path of derivation of a variable’s
type, starting from the type given to it by the typing context, and ending with a type that
was used to access a member at some particular point in the program. This direct path then
allowed induction-based proofs of properties of the typing relation.

This task would be especially hindered if the typing rules allowed cycles in the derivation,
which would allow the derivation to go through unnecessarily complicated types. For example,
with general typing, it is possible to derive Γ ⊢ x : T from Γ ⊢ x : T ∧ T and vice versa.
Therefore, a derivation of type T can start with Γ ⊢ x : T , go through arbitrarily complicated
types such as (T ∧ T) ∧ T , and come back to T . This inhibits arguments by induction on the
derivation of a general typing.

Invertible typing in DOT prevented this by ensuring that the derivation closely follows
the syntactic structure of the target type.

The original roDOT adopted the invertible typing from DOT [30], where it has two layers,
which we present using an example derivation of a type for a variable w in Figure 6.

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:15

µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) ∧ M⊥

µ(s : {a : T..T} ∧ {A : {a : T..⊤}}) M⊥

{a : T..T} ∧ {A : {a : T..⊤}}

{a : T..T} {A : {a : T..⊤}}

pr
ec

ise
{a : ⊥..T} w.A

w.A ∧ {a : ⊥..T}

µ(s : s.A ∧ {a : ⊥..T})

µ(s : s.A ∧ {a : ⊥..T}) ∨ S

{a : ⊥..T}

{a : ⊥..T} ∨ S {a : T..⊤} ∨ S

({a : T..⊤} ∧ {a : ⊥..T}) ∨ S

(w.A ∧ {a : ⊥..T}) ∨ S

µ(s : s.A ∧ {a : ⊥..T}) ∨ S

in
ve

rt
ib

le
†

atomic

union

logic

main

Figure 6 Example derivation of a type by invertible typing (left) and layered typing (right).
Assuming that a variable w has the type µ(s : {a : T..T } ∧ {A : {a : T..⊤}}) ∧ M⊥ in the typing
context, w has all the types shown here, ordered from types that are simple to derive at the top, to
more complex derivations, which make use of derivations above. S is an arbitrary type.

The first layer, precise typing, only derives types by deconstructing the type of the
variable given by the typing context. For each reference w, its type in the typing context is
an intersection of a mutability declaration with a recursive type containing an intersection of
declarations. Precise typing allows opening this recursive type and extracting the declarations
from the intersection, but does not support subtyping. The top of Figure 6 shows individual
steps of this process.

The second layer, invertible typing†, combines both variable typing and subtyping into
a single layer. In DOT and the original roDOT, it has fewer rules than general typing and
subtyping, because it only has rules that construct the target type syntactically “bottom-up”,
such as closing recursive types (akin to VT-RecI), or deriving intersection and union types.
Thus the derivations of invertible typing are unambiguously guided by the syntax of the
target type. The left side of Figure 6 shows individual steps of this process in building up
the type µ(s : s.A ∧ {a : ⊥..T}) ∨ S for w.

As per Figure 5, invertible typing was equivalent to tight typing. That required invertible
typing to be closed under tight subtyping (Lemma† 13).

▶ Lemma† 13 (In original roDOT, invertible typing is closed under subtyping).
If Γ;ρ ⊢## x : T1, and Γ;ρ ⊢# T1 <: T2, where Γ ∼ ρ, then Γ;ρ ⊢## x : T2.

The addition of ST-NM, together with the rules ST-Or and ST-Dist (Figure 2), breaks
this. In Lemma† 13, the case for ST-Or relies on case analysis of deriving union types
(Lemma† 14).

▶ Lemma† 14 (In original roDOT, typing with union types can be inverted).
If Γ;ρ ⊢## x : T3 ∨ T4, then either Γ;ρ ⊢## x : T3 or Γ;ρ ⊢## x : T4.

However, the rule ST-NM adds new ways of deriving union types such as N ∨ M⊥, and
the distributivity rule ST-Dist actually allows deriving arbitrarily large types of the form
TN ∨ TM, where the two parts can consist of arbitrary intersections and unions of various
types that contain N and M somewhere within them.

For example, with the variables from Example† 10, we have Γ;ρ ⊢ w2 : {a : Ta} ∨ M⊥,
but Γ;ρ ̸⊢ w2 : {a : Ta} and Γ;ρ ̸⊢ w2 : M⊥. Such a type cannot be derived in a syntactically

ECOOP 2024

18:16 Pure methods for roDOT

bottom-up manner that invertible typing is based on. Rather than trying to fix invertible
typing by adding complicated rules, we replace it by a new auxiliary typing judgment, which
derives types in different way.

4.3 Layered Typing
In layered typing, we avoid the need for Lemma† 14 by organizing the derivation of a type
not bottom-up, but by handling different type constructors in separate layers of typing
judgments. All union type constructors are derived before intersection types, recursive types
and type selections. Additionally, we derive union types on two layers:

First, the basic layer derives the newly top-like types possible by the rule ST-NM. Because
intersections, recursive types and selections are out of the picture at this layer, these types
have a simple form of possibly nested union types, where one of the sides contains N and the
other M, where M is a declaration {M : ⊥..T} for some bound T . We will write that as
⊢ N ◁ TN and ⊢ M ◁ TM. Second, the union layer derives types possible by the rules ST-Or1
and ST-Or2, allowing nesting a known type of w in a union with any other type. This way,
the layers retain the information about how a union type has been derived and those cases
can be handled separately when inverting the derivation.

Intersection types can be handled in analogy to how any logical formula can be derived
by starting from conjunctive normal form (CNF) and pushing conjunctions down. Any type
constructed from a mixture of union and intersection types can be derived by starting from
an intersection of union types and pushing the intersections down.

The logic layer sitting above the union layer can derive any mixture of unions and
intersections using the LTL-And rule shown in Figure 7. It takes derivations of two types
that may have some parts in common but differ in one place. The common part C∨ is a
syntactical context which combines the argument into a union with other types. For example,
we can write the two types {a1 : T1} ∨ {a2 : T2} and {a1 : T1} ∨ M⊥ as C∨[{a2 : T2}] and
C∨[M⊥]. If we view these two types as an intersection, then the rule pushes the intersection
down to the place where the two types differ. In the example derivation on the right of
Figure 6, we derived two union types on the union layer. (The type {a : T..⊤} was derived
on the previous layer and S is an arbitrary type.) On the logic layer, we combined them into
one type, pushing the intersection down to the left.

The rest of the type constructors are handled either below the basic layer or above the
logic layer. Subtyping between declarations is handled in an atomic layer positioned before
the basic layer. This layer only deals with types that are single declarations.

Recursive types of the form µ(s : T) and selection types can “wrap around” or replace
any part of the derived type (in general typing by VT-RecI and ST-SelL, Figures 9 and 10
in the appendix), which may both appear under unions and intersections, and also contain
them within. Therefore, they are handled above the logic layer in a final, main layer. In
the rule LTM-Sel in Figure 7, the syntactic context C∧∨ can consist of a mixture of unions
and intersections. The rules have premises that correspond to conditions in the relevant
rules of tight typing. For example, in Figure 6, the left side of the union is wrapped under a
recursive type in the last step.

The layers are summarized in Table 1, showing the relevant type constructors and the
connection to rules of general typing. Selected rules are shown in Figure 7; full definitions
are in Figures 15–19 in the appendix.

Typing on the atomic layer (Γ;ρ ⊢a x : T) only gives variables single declaration types –
the declarations derived by precise typing, and their supertypes (subtyping rules between

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:17

Typing layer Relevant type constructors Relevant rules
Atomic layer {a : T..U}, {A : T..U}, {m(S, T) : U} ST-Met, ST-Fld, ST-Typ
Basic layer N ∨ M ST-NM
Union layer ⊤, T ∨ U ST-Or1, ST-Or2, ST-Top
Logic layer T ∧ U ST-Dist, ST-And, VT-AndI
Main layer µ(s : T), x.A VT-RecI, ST-SelL, ST-N-Rec
Table 1 The layers of layered typing

Γ;ρ ⊢l x : C∨[T1]
Γ;ρ ⊢l x : C∨[T2]

Γ;ρ ⊢l x : C∨[T1 ∧ T2]
(LTL-And)

Γ;ρ ⊢m x : C∧∨[[v3/r]T1]
Γ ⊢! v2 : {B(r) : T1..T2}
Γ;ρ ⊢m x : C∧∨[v2.B(v3)]

(LTM-Sel)

Figure 7 Selected rules of layered typing

declarations are handled here).
The basic layer (Γ;ρ ⊢b x : T) additionally gives all variables top-like types of the form
TN ∨ TM and TM ∨ TN, where ⊢ N ◁ TN and ⊢ M ◁ TM.
The union layer (Γ;ρ ⊢u x : T) handles ⊤ and unions of known and arbitrary types.
The logic layer (Γ;ρ ⊢l x : T) handles intersections and distributivity. The rule LTL-And
takes two types, preserves their common part, and combines the differing parts using an
intersection type – pushing the intersection down from the top to its target place.
The main layer (Γ;ρ ⊢m x : T) closes recursive types and handles type selections.

For layered typing, we also proved the following properties:

If a location has a declaration type by layered typing, then it also has a declaration type
by precise typing, with the same or tighter bounds. This property has three variants, for
field, type and method declarations.
Layered typing is equivalent to general typing. As in the original proof, we use tight typing
as a step between general and layered typing, and separately prove both directions of
equivalence between tight and layered typing (Lemma 31 and Lemma 37 in the appendix).
We also use layered typing to prove Lemma 9 – if a location has some read-only type in
layered typing, then all references to that location have that type too.

With these properties, the safety proof from roDOT, with invertible typing replaced by
the new layered typing definition, works as a safety proof of the updated calculus. Formal
statements of these and other selected properties are given in Section A.3 in the appendix.

5 The SEF Guarantee

In Section 3.3, we informally stated the SEF guarantee, which provides the connection
between a static typing condition (Definition 11) and run-time behavior of the method.

In this section, we present the formal definitions of the run-time SEF condition (Defini-
tion 15 in Section 5.1) and the SEF guarantee (Section 5.2). We then outline the proof of
the guarantee (Section 5.3) and discuss some details of the proof (Section 5.4).

ECOOP 2024

18:18 Pure methods for roDOT

5.1 The run-time SEF condition
We informally stated the run-time SEF condition in Section 3.1, where we mentioned that
several possible versions of such a condition could be defined. In our approach, we allow a
pure method to create new objects and to modify just these new objects, which are under
full control of the method.

The main SEF condition is that the method must not modify any existing objects that
are already on the heap when the method starts executing. We can state such a condition in
three variants, depending on the way in which it is checked that an object was not modified.
Here we will use the variant that guarantees that existing objects on the heap do not change.
In such a case, we say that a given execution of a method, starting from a method call start
and reaching method call end in k steps, has the Sef-I property (Definition 15). The other
possible variants are stated as Definition 42 and Definition 43 in the appendix.

▶ Definition 15 (Sef-I). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ 7−→k ⟨vw3; σ; ρ2; Σ2⟩ is
Sef-I when for every j ≤ k and ⟨w1.m w2; σ; ρ1; Σ1⟩ 7−→j ⟨t3; σ3; ρ3; Σ3⟩, Σ1 is a prefix of Σ3.

5.1.1 Method call limits
Because we are defining a condition on what can happen while a method is executing, we
need to understand what it means in roDOT that a method starts and ends its execution.

In roDOT, a method is called by a term w1.m w2. A method call start is a configuration
of the form ⟨w1.m w2; σ; ρ1; Σ1⟩, where w1 is the receiver, m is the called method, w2 is the
argument, σ is the continuation stack, and Σ1 is the existing heap (the environment ρ1 does
not have a special significance here).

The execution proceeds by replacing the call term w1.m w2 with the body of the method.
Then, the body is executed. Unless there is an infinite loop, the body of the method will
eventually evaluate to a single value. The machine will reach a configuration ⟨vw3; σ; ρ2; Σ2⟩,
where w3 is the result of the call and σ is the same stack as at the method call start.

The first such configuration after a method call start is the corresponding method call
end. Another such configuration could possibly occur later in a completely unrelated way,
but only the first such configuration is the method call end.

When a method call end is reached, the execution will either terminate, or proceed by
popping a frame from the stack.

5.2 The SEF guarantee
The SEF guarantee, informally stated in Section 3.3, says that a SEF method does not modify
existing objects in the heap during its execution. Theorem 16 is based on Definition 15, and
speaks about the state of the heap at every point during the call. It is not the strongest
possible purity guarantee, because this allows writing the value that already is in the field.
On the other hand, it does not allow the value of fields to be changed and then changed back.

▶ Theorem 16. Let the configuration c1 := ⟨w1.m w2; σ1; ρ1; Σ1⟩ be well-typed in a context
Γ. Further assume that Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}. Then for any k steps of execution:
1. Either the method call has finished executing. There is j < k for which c1 7→j

⟨vw3; σ1; −; −⟩.
2. Or, the method call has not finished executing and in this period existing objects in the

heap are unchanged. For each c1 7→k c2, all heap locations in c1 also exist in c2 and
moreover they are unchanged in c2.

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:19

5.3 Overview of the proof
The SEF guarantee talks about objects not being modified during the execution of methods,
based on the mutability of method parameters. We base our proof of the SEF guarantee on
the immutability guarantee (IG, Theorem 2), which states that individual objects can only
be modified through mutable references. This guarantee was proven for roDOT [12] and is
included in our mechanization in Coq.

However, the immutability guarantee cannot be applied at the start of the method,
because there may be many mutable references to objects on the heap. Also, IG guarantees
immutability until the end of execution of the whole program, but the SEF guarantee only
until the end of the method.

These differences can be bridged by taking the machine configuration at the method start,
and constructing a different configuration that will execute the same way until the end of
the method, but removing the parts that prevent the IG from applying.

First, note that the stack is not relevant to how the method executes and stays the same
from the method start until its end. We therefore remove this stack entirely, and get an
execution isolated from the rest of the program. This execution proceeds through the same
steps, but stops at the method end. By removing the stack, we rid the configuration of any
references to objects that might be used after the method call returns. If we apply the IG
to this configuration, it will guarantee that objects are not modified until the end of the
method, exactly what is needed for the SEF guarantee.

Removing the stack is not enough for the IG to apply though, because a SEF method can
be called with arguments that are mutable references. We do not want to prevent that from
happening, because even when a method is SEF, it can be useful to pass mutable references
to the method and have it return one of these references with its mutability intact.

What is special about a SEF method is that (because of its declared parameter types)
it cannot use the mutability during its execution. Therefore, when called with mutable
arguments, it should execute in exactly the same way as if called with read-only arguments.

So the second modification to the configuration after removing the stack is to change the
mutability of the arguments to read-only. That way, the alternative configuration contains
no writeable references, and IG guarantees that no objects that were on the heap at the start
will be modified. Still, this alternative configuration executes the same steps as the original,
meaning the original method execution also does not modify any existing object on the heap.

5.4 Proof of the SEF Guarantee
The strategy of the proof of Theorem 16 is to focus on the second case of the SEF guarantee
by using the immutability guarantee to show the theorem for a configuration c2 obtained by
temporarily truncating the stack of c1 from Theorem 16.

▶ Lemma 17 (SEF guarantee without stack). For c1 satisfying the conditions of Theorem 16,
let c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩. If c′
1 7→n c′

2 for some n and c′
2, then the heap of c′

2 contains all
objects of c′

1 without modification.

It is easy to prove the full SEF theorem with this result for c′
1. The premise of the immutability

guarantee is that c′
1 is well-typed in some context Γ2 and there are no mutably reachable

objects in c′
1 with respect to the typing of Γ2. Clearly c′

1 is well typed in the original context
Γ. But for the part about mutably reachable objects, we cannot just take Γ as Γ2 because
for this, Γ2 must assign read-only types to wi. Even though we have (r : N) in the typing
Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}, this does not necessarily mean Γ(w1) is a read-only type. For

ECOOP 2024

18:20 Pure methods for roDOT

example, w1 might be mutable in Γ but m might not make use of its mutability. Therefore,
instead of using Γ as Γ2, we construct Γ2 and show that c′

1 is well-typed in Γ2 like so:
1. Reference elimination. Remove bindings for wi from Γ and replace all occurrences of wi

with the corresponding location yi in both Γ and c′
1.

2. Read-only weakening. Add back bindings for wi, where the new type bound to wi is the
type bound to yi except with the mutable part set to read-only.

We do this instead of changing the types of wi, because we only know that wi are used
in a read-only way in the focus, while on the heap, wi might be used as a part of dependent
types referring to their mutability. Changing their types would break the typing of the heap.

The second step is essential, because only references can be read-only, while locations
always have mutable types. The references wi are added in the same order as in the original
context, to ensure that types in the typing context only refer to preceding variables in case
the types are dependent. The two steps above correspond to the following two lemmas.

▶ Lemma 18 (Reference elimination). Let c1 and Γ satisfy the conditions of Theorem 16, and
ρ1[wi] = yi. Define Γ′ as the context obtained from Γ by first removing bindings for wi and
then replacing wi with yi. Define ρ′ as the environment obtained from ρ1 by removing bindings
for wi. Then the term y1.m y2 is well-typed under Γ′;ρ′ and we have heap correspondence
Γ′;ρ′ ∼ [yi/wi]iΣ1.

Proof. Because wi is a reference to yi, types assigned to yi and wi by Γ differ only by
mutability, and yi has a mutable type. So Γ(yi) is a subtype of Γ(wi), and the result follows
by substitutivity. ◀

▶ Lemma 19 (Read-only weakening). Let c1 and Γ satisfy the conditions of Theorem 16,
and y1, y2 be such that ρ1[wi] = yi. Then there is a context Γ2 binding wi to read-only types
such that the configuration c′′

1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩, is well-typed in Γ2 (formally
Γ2 ⊢ c′′

1 : ⊤).

By Lemma 19 along with the immutability guarantee, we have SEF established for
c′′

1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩. However, we need SEF in particular for the configuration
c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩ in Lemma 17, where there is no substitution [yi/wi]i in the heap.
Nevertheless, this substitution can be ignored in the sense that execution can only change
fields of objects, but in roDOT, fields always store locations while wi are references. (When
a reference is assigned to a field, the corresponding location is stored, in order to make the
field type determine the mutability of the stored value.) Because c′

1 and c′′
1 are the same

everywhere except for [yi/wi]i on the heap, the SEF property of c′′
1 can be carried over to c′

1.
The first part of carrying the SEF property over to c′

1 is to relate each k-th step of execution
starting from c′′

1 and the k-th step of execution starting from c′
1. We need to show that

the two executions are almost the same, except some specific variables that appear in the
machine configuration can differ. In particular, the references wi can be replaced by the
locations yi. Additionally, the locations and references of newly created objects can differ,
because variable names are not assigned deterministically.

For that reason, we define the similarity relation, which formalizes structural equivalence
of syntactic elements such as terms, objects or whole configurations that differ only in names
of variables. It relates two such elements using a renaming relation over variables. A formal
definition of similarity and its basic properties is given in Section A.5 in the appendix.

Similarity has two important properties with respect to program execution: (1) it is
preserved by reduction, and (2) if a machine configuration can reduce, then all similar
configurations can reduce too (and the results are similar). That means that if we start with

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:21

two similar configurations, where the execution of one reaches an answer state, then the
execution of the other will reach a similar answer state. With this definition of similarity,
Lemma 20 formalises the idea that c′′

1 is similar to c′
1 up to renaming wi to yi:

▶ Lemma 20 (Similarity for eliminated references). Let c′
1 satisfy the conditions of Lemma 17

and c′′
1 the conditions of Lemma 19. Then c′

1
(w1,y1),(w2,y2)

≈ c′′
1 .

The final part of carrying over the SEF property to c′
1 is to recognize that reduction only

changes values of fields (while the structure of the object, methods and type members are
immutable).

▶ Definition 21 (Objects identical except fields). For objects o1 and o2, we write o1
fld
≈ o2 to

mean they are identical except for possibly the values of fields.

▶ Lemma 22 (Reduction only changes fields). If ⟨−; −; −; Σ⟩ 7→n ⟨−; −; −; Σ′⟩ and y is a
location in Σ, then Σ(y) fld

≈ Σ′(y).

And with this, we can finish the proof of Theorem 16.

Proof. By classical reasoning, assume the condition 1 is false so that the goal is to prove the
condition 2. That is, assume that there is no j < k such that the top-most frame of c1 is
popped after execution by j steps: c1 7→j ⟨vw3; −; −; Σ2⟩. Then, the sequence of reductions
c1 7→ ... 7→ c2 corresponds to a sequence of reductions c′

1 7→ ... 7→ c′
2 because even though c′

1
has no awaiting frames, there are no frame pops in this execution sequence by the current
assumption. By Lemma 17, the condition 2 follows. ◀

6 Transformations

In Section 3.4, we informally stated the transformation guarantee, which connects the static
SEF condition with a practical application – that calls to SEF methods can be safely swapped.

Defining the call-swapping and the guarantee in a formal way requires dealing with several
technicalities particular to the roDOT calculus (or DOT calculi in general). In order to
separate the common problems from the specific case of swapping calls, we build a general
framework in which various transformations of roDOT programs can be defined and proven
safe. We instantiate it here only with the call swapping transformation, but it could represent
the general part of a proof of safety for other transformations, such as reordering field reads
or removing dead code.

In Section 6.1, we present the framework for defining and reasoning about safe program
transformations in roDOT and similar calculi, including a general Theorem 25 about safety
of transformations. In Section 6.2, we define the transformation that swaps two calls to
methods that are statically determined to be side-effect free (Definition 26) and state the
transformation guarantee.

6.1 Transformation framework
The framework defines a general form for roDOT program transformations, defines the precise
meaning of a safe transformation that “does not affect the behavior of the program”, and
provides a way of proving this property, while helping to deal with common technical issues
of DOT formalizations.

ECOOP 2024

18:22 Pure methods for roDOT

Our general approach is to define a transformation that applies to an initial program,
and prove it safe by showing that if the original and transformed program are executed
side-by-side, they will either eventually reach the “same” answer, or both not terminate.

In the initial program, a transformation, such as swapping calls, can be located anywhere,
including inside a body of a method of an object literal, such as let x = ν(r : R){m(r, z) =
tm} in t2. We must consider that in roDOT, terms are in A-normal form, and that a term can
have multiple different types. Also code (terms) and values (objects) are mixed with each
other during execution of a program – the program contains object literals, and methods on
the heap contain program code.

During execution, objects are created on the heap, including copies of the code of their
methods, which can be affected by the transformation. It would be too restrictive to require
that a transformed program produce the exact same output value as the original program
since the output value may be an object that may contain the transformed code. To facilitate
this, we define each transformation using a local relation which relates two terms that differ
only locally, and the framework provides lifting operators, which allow this transformation
to occur anywhere in a program or in a machine configuration.

The general safety Theorem 25 is based on executing the two programs and observing that
the intermediate states are also related by the transformation (lifted to whole configurations
and allowed to occur at multiple places), except the moments when the directly affected part
of the program is executing. When the two answers are reached, they will be similar except
that bodies of methods on the heap may differ as the transformation permits.

A more detailed description of the framework design and its definitions are given in
Section A.7 in the appendix. The following text describes the most important parts.

6.1.1 Transformations of roDOT programs in general
A transformation of a program is defined as a binary relation on terms – the original program
and the transformed one. For example, the call-swapping transformation is defined as a
relation that relates a program containing two method calls with a program that only differs
in the order of those calls.

Because the safety of the transformation depends on typing information, we define the
transformation as a binary relation between triples: the term, its type and a typing context.
This generalizes to other syntactic elements – stacks, heaps and machine configurations,
though for each kind of element, the exact meaning of “typing context” and “type” may
differ. For terms, the typing context is actually paired with a runtime environment Γ; ρ.

▶ Definition 23 (Transformation). A transformation τ is a relation between triples consisting
of typing contexts Γ1,2, types T1,2 and typeable elements X1,2. We write ⟨Γ1 ⊢ X1 : T1⟩ →τ

⟨Γ2 ⊢ X2 : T2⟩ and say that X1 is transformed into X2.

Like any binary relation, transformations can be symmetric, reflexive or transitive, and
we can construct transformations using iteration, composition, union and inversion.

Additionally, a transformation is type-safe, if the syntactic elements on both sides are
correctly typed under the respective contexts. Another useful property of a transformation
is being type-identical, where both the types and typing contexts are the same on both sides.

To facilitate the possibility of the transformation being located anywhere in a term, it
is useful to define the transformation in two steps: (1) A local transformation, which only
allows swapping calls at the root of the term. (2) A lifting operator lift τ which takes a local
transformation τ and allows it to be located at one place anywhere in a term.

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:23

Such a local transformation of a term can be further lifted by cfg τ to a whole run-time
configuration, where τ applies at exactly one place in the focus of execution, in the stack or
on the heap. To allow multiple occurrences, we can apply the iteration operator to the lifted
transformation. Having a definition that only allows one occurrence is useful in the proof
of Theorem 25 in Section A.7.4 in the appendix, where we want to look at each occurrence
individually. More details about lifting are in Section A.7.3; the definitions of the lifting
operators are shown in Figure 23 and Figure 24.

6.1.2 Safe transformations

The definition of a safe transformation must allow the answers of the two programs to contain
different variable names and allow for the fact that the transformation can occur in the
heap of the program answer, possibly at multiple places. Therefore a local transformation
is safe if execution of the transformed program reaches answers related by an iteration of
this transformation. To deal with non-deterministic location names, the transformation is in
union with a similarity transformation ≈, which allows one-to-one variable renaming.

▶ Definition 24 (Safe transformation). A transformation τ is safe if ⟨Γ1 ⊢ c1 : T ⟩ →τ ⟨Γ2 ⊢
c2 : T ⟩ and c1 −→k c3, where c3 is an answer typed as Γ3 ⊢ c3 : T , implies that there exist
c4, Γ4 and j such that c2 −→j c4, Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(τ∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩ .

Thanks to being able to define a transformation by applying a general lifting to a local
transformation, the safety proof of such a transformation can be also divided into a theorem
that will apply to any local transformation with certain local properties, and then proving
those local properties for the particular local transformation.

This approach makes it possible to state the call-swapping guarantee presented here
(Theorem 27), or analogous guarantees for other local transformations.

Theorem 25 states that if a local term transformation does not change typing of the term,
is compatible with properties such as weakening, narrowing and substitution, does not change
whether the term is an answer or not, and if execution of just the transformed term will
eventually reach similar configurations, then transforming a program by this transformation
anywhere will not change its result. Full definitions of the premises are in Section A.7 in the
appendix as Definitions 49, 50, 52, 56 and 54.

▶ Theorem 25 (General safety for local transformations). If τ is a transformation that is
type-identical, type-safe, compatible with weakening, narrowing and substitution, preserves
answers, and eventually reduces to similarity, then (cfg τ∪ ≈)∗ is safe.

6.2 The call-swapping transformation

The specific transformation guarantee that we want to achieve should state that swapping
two calls will not change the outcome of the program, in the sense of Definition 24.

Call-swapping is defined as a local transformation that transforms one program con-
taining two successive calls into another program in which the calls are swapped. Due to
the A-normal form of terms, two successive calls in the program have the form let xc1 =
xo1.m1xa1 in let xc2 = xo2.m2xa2 in t. In the transformation, the two calls xo1.m1xa1 and
xo2.m2xa2 appear in the opposite order, but the continuation t is the same.

The transformation is only safe if both the methods are SEF, so it has several typing
premises, analogous to the ones of Theorem 16 in Section 5.2.

ECOOP 2024

18:24 Pure methods for roDOT

▶ Definition 26 (Local call swapping). The local call-swapping transformation csw is a
transformation of terms that relates ⟨Γ ⊢ let xc1 = xo1.m1xa1 in let xc2 = xo2.m2xa2 in t :
T ⟩ →csw ⟨Γ ⊢ let xc2 = xo2.m2xa2 in let xc1 = xo1.m1xa1 in t : T ⟩ when

xc1,2 are distinct from xa1,2 and xo1,2,
Γ ⊢ xo1.m1xa1 : Tc1, Γ ⊢ xo2.m2xa2 : Tc2, and Γ, xc1 : Tc1, xc2 : Tc2 ⊢ t : T ,
Γ ⊢ xo1 : {m1(r1 : N, z1 : Ta1) : ⊤}, and Γ ⊢ xo2 : {m2(r2 : N, z2 : Ta2) : ⊤},
Γ ⊢ xa1 : Ta1 , and Γ ⊢ xa2 : Ta2 ,
Γ ⊢ N <: Ta1 , and Γ ⊢ N <: Ta2 .

As the the final form of the transformation guarantee, we apply Definition 24 to Defini-
tion 26, and specialize the theorem to initial programs. The proof is given in Section A.8 in
the appendix.

▶ Theorem 27 (Transformation guarantee). If ⟨⊢ t1 : T ⟩ →lift csw ⟨⊢ t2 : T ⟩ and ⟨t1; ·; ·; ·⟩ −→k

c3, where c3 is an answer typed as Γ3 ⊢ c3 : T , then there exists c4, Γ4 and j such that
⟨t2; ·; ·; ·⟩ −→j c4, c4 is an answer typed as Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(cfg csw∪≈)∗ ⟨Γ4 ⊢
c4 : T ⟩ .

7 Related work

Since the topic of this work includes both the DOT calculus and method purity, here we
discuss previous work related to these concepts. Prior to this work, many variants of the
DOT calculus were published, some including mechanized proofs. Also the issue of purity in
object-oriented languages is of great research interest, and it is approached from different
angles of automation and precision. We give details about the existing work in the following
subsections. As far as we know, our work is the first one to consider the issue of purity
within a DOT calculus.

7.1 Mechanizations of DOT calculi

The first appearance of a DOT calculus [3] did not include a proof of soundness, but was
followed by several versions with proofs in Coq [33, 30] and Iris [17]. In particular, WadlerFest
DOT [2], thanks to its simplicity and its proof of soundness based on invertible typing [30],
was used as a baseline for numerous extensions [32, 22, 31, 23], including roDOT. While
objects are immutable in WadlerFest DOT, it was extended to support mutation using
mutable slots in Mutable WadlerFest DOT [32], and more directly by allowing changing
values of fields in kDOT [22]. A simplified version [21] with mutable fields, but without the
specific kDOT feature of constructors, was used as a base for the mechanization of roDOT.

The differences between the mechanization of roDOT and those of previous DOT calculi
mainly stem from the differences in how roDOT handles variables – namely, typing of
variables and terms being separated from each other, using different definitions of typing
contexts to support variable hiding, using the runtime environment to map references to
locations, and using typing information in its definition of operational semantics.

The mechanization of roDOT includes a feature to ease further extensions to the calculus.
The definitions and theorems are parameterized by a “typing mode”, which allows selecting
type system features that are supported. Using this feature, our proofs work for roDOT
both with and without the changes described in this paper.

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:25

7.2 Purity in other languages
Purity in programming is such an important concept that in many languages, functions are
pure by default. This approach is typically associated with functional programming, but an
object-oriented system can also be pure [1] when the objects are immutable. That is also the
case in the basic DOT calculus.

In pure functional languages, effects must typically be explicitly declared in the program
using monadic types. This style of programming has been shown to be as powerful as other
styles and is used in practical programming languages such as Haskell.

Regarding purity in object oriented languages with mutable fields, many publications [37,
34, 38, 40, 6, 16, 29] focus on Java and languages with similar type systems, such as C#.
For Scala, a type system for purity was developed, but not based on the DOT calculus [35].

When approached from a practical standpoint, the definition of purity in these languages
has to include considerations other than modification of object fields, such as accessing global
variables or synchronization. This leads to different definitions of purity. The term “pure” is
sometimes used to mean the same as “side-effect-free”, without requiring determinism.

Observational purity [25, 5] is a weaker property that allows side effects as long as they
are not observable from certain parts of the code. This definition is based on classes and
access control, features which are not modeled in DOT calculi.

Purity is of great use to program verification and specification frameworks, where it
enables inserting run-time checks without changing behavior, and allows more precise analysis.
Code Contracts [15], JML [20] and Checker Framework [14] allow annotating a method as
pure. Code Contracts do not check that this annotation is correctly applied, and JML and
Checker Framework use simpler checks, where pure methods are not allowed to call impure
methods. Checker Framework uses the fact that side-effect free methods do not invalidate
flow-sensitive types of local variables.

To avoid imposing an annotation burden on the programmer, purity can be inferred
by automatic program analysis [26, 34], and side-effect analysis can be used for program
optimization [11].

ReIm [19] provides both a type system for reference mutability and a way to automatically
infer mutability types. It can therefore automatically find pure methods, which have all
parameters read-only. We adopted this way of recognizing pure methods by parameter types
for roDOT in this work. While in ReIm, mutability is attached to parameter types as a
qualifier in the style of the Checker Framework, roDOT uses the special member type M to
include the mutability in the parameter type using intersection types. In ReIm, mutability
qualifiers are subjected to qualifier polymorphism and viewpoint adaptation. roDOT can
express the equivalent of polymorphic qualifiers using dependent types and implements
viewpoint adaptation using union and intersection types [12].

7.3 Capability and Effect Systems
There are other ways to express the permitted side-effects of functions using types, which
have been developed in recent work on formal type systems.

The principle of capabilities [28, 27] is to require every operation that can have a side
effect to take an extra value, called a capability, as a parameter. Then, if some function
or method does not have the capability value corresponding to a particular effect, we can
conclude that it does not perform that effect. Capabilities are well suited for coarse-grained
effects, such as performing input/output in general or accessing some specific file, where a
single capability value can guard a set of related operations. To apply such an approach to

ECOOP 2024

18:26 Pure methods for roDOT

reasoning about a fine-grained effect such as writing to a field of a specific object, we would
need large numbers of such capability values, one new capability value for each existing object.
For each reference passed to a parameter or stored in a field, a corresponding capability
would need to be passed or stored, thus multiplying the number of parameters and fields.

Wyvern’s effect system [24] expresses possible effects by type members of objects. That
is syntactically similar to how roDOT represents mutability, but the meaning of the type
members is different. In roDOT, the type member of an object reference defines the bounds
on the mutability of the reference, the knowledge about whether a reference may be used for
mutation, in the type of that reference. In contrast, in Wyvern, the effect member represents
a permission to perform an effect, such as file.Write, where the effect can be independent
of the object that contains the effect member. Thus, Wyvern effect members are more similar
to the capability-based approach.

Another successful direction is to use types to express sets of possible variables captured
or aliased by values in the program. Capture Types [7] follow from a capability based
approach, and enable reasoning about where capability values may be stored in the heap
or captured in closures, in order to more precisely reason about where effects may occur.
Reachability Types [4] annotate the type of an expression with a set of variables, which
are values that are possibly reachable from the result of that expression. This can be used in
conjunction with effect qualifiers as in Graph IR [8], where a function type declares a set of
variables that can be read or written, describing the possible effects in a fine-grained way.
The types can also be extended to support qualifier polymorphism [39]. This work is defined
in the context of a higher order functional formalism, whereas roDOT is an object-oriented
calculus. Also, both Wyvern and Reachability Types express effects using new constructs
added to the type system, while roDOT aims to encode mutability using the existing DOT
constructs of dependent types, unions and intersections.

8 Conclusion

To conclude, our paper confirms that the reference mutability system provided by roDOT can
be mechanically proven sound, and with a few changes can be used to guarantee side-effect
freedom of methods, and to justify safe transformations of programs.

References
1 Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.

Springer, 1996. doi:10.1007/978-1-4419-8598-9.
2 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence

of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

3 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In
Andrew P. Black and Todd D. Millstein, editors, Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, OOPSLA ’14, pages
233–249. ACM, 2014. doi:10.1145/2660193.2660216.

4 Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf.
Reachability types: Tracking aliasing and separation in higher-order functional programs.
Proc. ACM Program. Lang., 5(OOPSLA), oct 2021. doi:10.1145/3485516.

https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/3485516

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:27

5 Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure: Useful
abstractions in specifications. In ECOOP workshop on formal techniques for Java-like programs
(FTfJP), 2004.

6 William C. Benton and Charles N. Fischer. Mostly-functional behavior in Java programs. In
Neil D. Jones and Markus Müller-Olm, editors, Verification, Model Checking, and Abstract
Interpretation, 10th International Conference, VMCAI 2009, Savannah, GA, USA, January
18-20, 2009. Proceedings, volume 5403 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2009. doi:10.1007/978-3-540-93900-9_7.

7 Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej Lhoták, and Jonathan
Brachthäuser. Capturing types. ACM Trans. Program. Lang. Syst., 45(4), nov 2023. doi:
10.1145/3618003.

8 Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and
Tiark Rompf. Graph IRs for impure higher-order languages: Making aggressive optimizations
affordable with precise effect dependencies. Proc. ACM Program. Lang., 7(OOPSLA2), oct
2023. doi:10.1145/3622813.

9 The Checker Framework Manual: Custom pluggable types for Java. https://checkerframework.
org/manual/#initialization-checker, 2022.

10 The Checker Framework Manual: Custom pluggable types for Java. https://checkerframework.
org/manual/#purity-checker, 2022.

11 Lars Ræder Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency:
Practice and Experience, 9(11):1031–1045, 1997. doi:10.1002/(SICI)1096-9128(199711)9:
11<1031::AID-CPE354>3.0.CO;2-O.

12 Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT. In Robert Hirschfeld and
Tobias Pape, editors, 34th European Conference on Object-Oriented Programming, ECOOP
2020, November 15-17, 2020, Berlin, Germany (Virtual Conference), volume 166 of LIPIcs,
pages 18:1–18:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ECOOP.2020.18.

13 Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek. Pure methods for roDOT (an
extended version). Technical Report D3S-TR-2024-01, Dep. of Distributed and Dependable
Systems, Charles University, 2024. URL: https://d3s.mff.cuni.cz/files/publications/dort_
pure_report_2024.pdf.

14 Michael D. Ernst. Annotation type Pure. https://checkerframework.org/api/org/
checkerframework/dataflow/qual/Pure.html, 2022.

15 Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages.
In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-
Cheng Hung, editors, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC),
Sierre, Switzerland, March 22-26, 2010, pages 2103–2110. ACM, 2010. doi:10.1145/1774088.
1774531.

16 Matthew Finifter, Adrian Mettler, Naveen Sastry, and David A. Wagner. Verifiable functional
purity in Java. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, Proceedings of the 2008
ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008, pages 161–174. ACM, 2008. doi:10.1145/1455770.1455793.

17 Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers.
Scala step-by-step: soundness for DOT with step-indexed logical relations in Iris. Proc. ACM
Program. Lang., 4(ICFP):114:1–114:29, 2020. doi:10.1145/3408996.

18 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java® language
specification, Java SE 8 edition. https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.
html#jls-8.4.1, 2022.

19 Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: checking
and inference of reference immutability and method purity. In Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

ECOOP 2024

https://doi.org/10.1007/978-3-540-93900-9_7
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3622813
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#purity-checker
https://checkerframework.org/manual/#purity-checker
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1031::AID-CPE354>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1031::AID-CPE354>3.0.CO;2-O
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/3408996
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1

18:28 Pure methods for roDOT

and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-
25, 2012, OOPSLA ’12, pages 879–896. Association for Computing Machinery, 2012. doi:
10.1145/2384616.2384680.

20 JML reference manual: Class and interface member declarations. https://www.cs.ucf.edu/
~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60, 2022.

21 Ifaz Kabir. themaplelab / dot-public: A simpler syntactic soundness proof for dependent
object types. https://github.com/themaplelab/dot-public/tree/master/dot-simpler.

22 Ifaz Kabir and Ondřej Lhoták. κDOT: scaling DOT with mutation and constructors. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018,
St. Louis, MO, USA, September 28, 2018, pages 40–50, 2018. doi:10.1145/3241653.3241659.

23 Ifaz Kabir, Yufeng Li, and Ondrej Lhoták. ιDOT: a DOT calculus with object initialization.
Proc. ACM Program. Lang., 4(OOPSLA):208:1–208:28, 2020. doi:10.1145/3428276.

24 Darya Melicher, Anlun Xu, Valerie Zhao, Alex Potanin, and Jonathan Aldrich. Bounded
abstract effects. ACM Trans. Program. Lang. Syst., 44(1), jan 2022. doi:10.1145/3492427.

25 David A. Naumann. Observational purity and encapsulation. In Maura Cerioli, editor,
Fundamental Approaches to Software Engineering, 8th International Conference, FASE 2005,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3442 of Lecture Notes in Computer
Science, pages 190–204. Springer, 2005. doi:10.1007/978-3-540-31984-9_15.

26 Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and Coen De Roover. Purity analysis
for JavaScript through abstract interpretation. Journal of Software: Evolution and Process,
29(12), 2017. doi:10.1002/smr.1889.

27 Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee,
and Ondřej Lhoták. Safer exceptions for Scala. In Proceedings of the 12th ACM SIGPLAN
International Symposium on Scala, SCALA 2021, page 1–11, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3486610.3486893.

28 Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan Brachthäuser, and
Ondřej Lhoták. Scoped capabilities for polymorphic effects, 2022. arXiv:2207.03402.

29 David J. Pearce. JPure: A modular purity system for Java. In Jens Knoop, editor, Compiler
Construction - 20th International Conference, CC 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, volume 6601 of Lecture Notes in Computer Science, pages
104–123. Springer, 2011. doi:10.1007/978-3-642-19861-8_7.

30 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple soundness proof
for dependent object types. Proc. ACM Program. Lang., 1(OOPSLA):46:1–46:27, 2017.
doi:10.1145/3133870.

31 Marianna Rapoport and Ondrej Lhoták. A path to DOT: formalizing fully path-dependent
types. Proc. ACM Program. Lang., 3(OOPSLA):145:1–145:29, 2019. doi:10.1145/3360571.

32 Marianna Rapoport and Ondřej Lhoták. Mutable WadlerFest DOT. In Proceedings of the
19th Workshop on Formal Techniques for Java-like Programs, Barcelona , Spain, June 20,
2017, pages 7:1–7:6. ACM Press, 2017. doi:10.1145/3103111.3104036.

33 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Eelco
Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016,
OOPSLA ’16, pages 624–641. ACM, 2016. doi:10.1145/2983990.2984008.

34 Atanas Rountev. Precise identification of side-effect-free methods in Java. In 20th International
Conference on Software Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA,
pages 82–91. IEEE Computer Society, 2004. doi:10.1109/ICSM.2004.1357793.

35 Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect system for
purity. In Werner Dietl, editor, Proceedings of the 15th Workshop on Formal Techniques for

https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/2384616.2384680
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://github.com/themaplelab/dot-public/tree/master/dot-simpler
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3428276
https://doi.org/10.1145/3492427
https://doi.org/10.1007/978-3-540-31984-9_15
https://doi.org/10.1002/smr.1889
https://doi.org/10.1145/3486610.3486893
https://arxiv.org/abs/2207.03402
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1109/ICSM.2004.1357793

V. Dort and Y. Li and O. Lhoták and P. Parízek 18:29

Java-like Programs, FTfJP 2013, Montpellier, France, July 1, 2013, FTfJP ’13, pages 4:1–4:7.
ACM, 2013. doi:10.1145/2489804.2489808.

36 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. In Proceedings of the 1992 ACM Conference on LISP and Functional Programming,
LFP ’92, page 288–298, New York, NY, USA, 1992. Association for Computing Machinery.
doi:10.1145/141471.141563.

37 Alexandru Salcianu and Martin Rinard. A combined pointer and purity analysis for Java
programs. Technical report, Massachusetts Institute of Technology Computer Science and
Artificial Intelligence Laboratory, 2004. URL: https://dspace.mit.edu/handle/1721.1/30470.

38 Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis for Java programs.
In Radhia Cousot, editor, Verification, Model Checking, and Abstract Interpretation, 6th
International Conference, VMCAI 2005, Paris, France, January 17-19, 2005, Proceedings,
volume 3385 of Lecture Notes in Computer Science, pages 199–215. Springer, 2005. doi:
10.1007/978-3-540-30579-8_14.

39 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. Polymorphic
reachability types: Tracking freshness, aliasing, and separation in higher-order generic programs.
Proc. ACM Program. Lang., 8(POPL), jan 2024. doi:10.1145/3632856.

40 Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic purity analysis for
Java programs. In Manuvir Das and Dan Grossman, editors, Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE’07, San Diego, California, USA, June 13-14, 2007, pages 75–82. ACM, 2007. doi:
10.1145/1251535.1251548.

ECOOP 2024

https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/141471.141563
https://dspace.mit.edu/handle/1721.1/30470
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1145/3632856
https://doi.org/10.1145/1251535.1251548
https://doi.org/10.1145/1251535.1251548

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Background – the roDOT calculus
	2.1 Syntax and typing
	2.2 Semantics
	2.3 Properties

	3 Method Purity for roDOT
	3.1 Runtime SEF condition
	3.2 Static SEF condition
	3.3 SEF guarantee
	3.4 Using pure methods in roDOT

	4 Recognizing SEF methods by type in modified roDOT
	4.1 Static SEF condition in roDOT
	4.1.1 Read-only types in roDOT
	4.1.2 The SEF condition
	4.1.3 Subtyping of method types

	4.2 The updated roDOT calculus
	4.2.1 Updating the safety proof
	4.2.2 Invertible Typing

	4.3 Layered Typing

	5 The SEF Guarantee
	5.1 The run-time SEF condition
	5.1.1 Method call limits

	5.2 The SEF guarantee
	5.3 Overview of the proof
	5.4 Proof of the SEF Guarantee

	6 Transformations
	6.1 Transformation framework
	6.1.1 Transformations of roDOT programs in general
	6.1.2 Safe transformations

	6.2 The call-swapping transformation

	7 Related work
	7.1 Mechanizations of DOT calculi
	7.2 Purity in other languages
	7.3 Capability and Effect Systems

	8 Conclusion

