
Partial Verification of Software Components:
Heuristics for Environment Construction

Pavel Parizek, Frantisek Plasil

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{parizek,plasil}@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz

Academy of Sciences of the Czech Republic
Institute of Computer Science

plasil@cs.cas.cz
 http://www.cs.cas.cz

Abstract

Code model checking of software components suffers
from the well-known problem of state explosion when
applied to highly parallel components, despite the fact that
a single component typically comprises a smaller state
space than the whole system. We present a technique that
mitigates the problem of state explosion in code checking of
primitive components with the Java PathFinder in case the
checked property is absence of concurrency errors. The key
idea is to reduce parallelism in the calling protocol on the
basis of the information provided by static analysis
searching for concurrency-related patterns in the
component code; by a heuristic, some of the pattern
instances are denoted as “suspicious”. Then, the
environment (needed to be available since Java PathFinder
checks only complete programs) is generated from a
reduced calling protocol so that it exercises in parallel only
those parts of the component’s code that likely contain
concurrency errors.

Keywords: software components, model checking,
concurrency errors, Java PathFinder, static analysis

1. Introduction
For object-oriented programs, several verification and

reasoning frameworks are built around code model checkers
to check whether a finite model of the code of a target
program violates a desired property (reported by providing
a counterexample). Such a property can be predefined in the
model checker (e.g. absence of deadlocks), expressed as an
external temporal logic formula, and specified as an
assertion directly in the code of a program. Well-known
examples of such frameworks are the SLAM model checker
[3] and Java PathFinder [22], the latter being both a highly

customizable code model checker and a verification
framework, which works as a special JVM upon byte code.

Model checking of complex software systems that involve
high degree of parallelism is prone to the well-known state
explosion problem. All viable approaches to address it are
based on abstraction [5] (e.g. partial order reduction and
predicate abstraction), compositional reasoning and
heuristics. In particular, heuristics are used to direct the state
space traversal (directed model checking [6]) and to identify
the parts of the state space that are likely irrelevant with
respect to given properties. The key goal of heuristics is to
help (i) discover errors in limited time and space and (ii)
report short and easy-to-read counterexamples. Even though
this way partial verification is done in general (since some
parts of the state space are omitted), heuristics perform well
for verification against specific types of errors [6].

For hierarchical component-based systems with formal
behavior specification, various properties specific to
components can be checked, such as correctness of
composition (assembly) [11], [18], and whether the code of
a primitive component obeys the behavior specification. In
[17], we presented a technique of code model checking of
primitive software components against their behavior
specification (defined via behavior protocols [18]) that is
based on cooperation of the Java PathFinder (JPF) [22] with
the behavior protocol checker (BPChecker) [10]. Although
the approach presented in [17] typically works well, for a
heavily parallel component state explosion can still occur.

1.1. Behavior Protocols
For modeling and specification of behavior of hierarchical

software components, in our group, we use the formalism of
behavior protocols [18] (a specific process algebra). As
behavior, the set of finite traces of atomic events

corresponding to accepted and emitted method calls on
component interfaces is considered. A behavior protocol
prot specifies a set of traces denoted as L(prot): in
particular, the behavior of a component on its external
interfaces is defined by its frame protocol.

A behavior protocol reminds a regular expression upon
an alphabet of atomic events, syntactically written as
<prefix><interface>.<method><suffix>. The
prefix ? means accepting, ! emitting, the suffix 8 means a
request (of a method call) and 9 a response (return from a
call). Several shortcuts are defined: ?i.m is a shortcut for
?i.m8 ; !i.m9 and !i.m stands for !i.m8 ; ?i.m9. In
addition to the standard regular operators (;,+,*), there is
also | (and-parallel), which generates all interleavings of
the event traces defined by its operands.

Concepts presented in this paper will be illustrated on a
part of the component application developed in CRE project
[1] for Fractal [4] (Fig. 1). Here we are interested especially
in the TransientIpDb and IpAddressManager primitive
components that form a part of the DhcpServer composite
component. The frame protocol of TransientIpDb
(featuring the interface IIpMacDb) might be:

?IIpMacDb.Add* | ?IIpMacDb.Remove* |
?IIpMacDb.GetMacAddress* |
?IIpMacDb.GetIpAddress* |
?IIpMacDb.GetExpirationTime* |
?IipMacDb.SetExpirationTime*

It states that each method can be executed repeatedly in
parallel with other methods on the interface.

An advantage of frame protocols is the possibility to

check whether the components are behaviorally compliant
(i.e. they communicate without errors). For that purpose
behavior protocols introduce the consent operator L, a
special case of parallel composition; it supports
synchronization via merging accepting and emitting events of
a method call into internal events, and also identifies
communication errors (deadlock and no response to a call).
We have implemented the consent operator in the behavior
protocol checker (BPChecker) [10].

1.2. Model Checking of Software Components and
Behavior Protocols

At the first sight, code model checking of software
components mitigates the state explosion problem, since a
single component obviously comprises a smaller state space
than the whole system. Unfortunately, this is not directly
possible, since typical code model checkers, including the
Java PathFinder, check only a complete program (featuring
the main), which is not typical for a component - problem of
missing environment [16]. A solution to it is to construct a
software environment that, together with the component,
makes a complete program. For this purpose, we developed
the environment generator for the Java PathFinder [15]; as
input, it accepts behavior specification of an environment as
a behavior protocol (the component’s environment protocol)
and its output is a set of Java classes forming the
environment, which communicates with the component
interfaces according to the environment protocol.

An environment protocol of a primitive component can be
constructed in two ways: (i) by forming the inverted frame
protocol (derived from the frame protocol by replacing emit

Figure 1: Architecture of the DhcpServer component

events with accept events and vice versa) [16], and (ii) by
composition of frame protocols of other components in the
particular architecture via the consent operator [14]. For
illustration, the inverted frame protocol of TransientIpDb
(and also its environment protocol) is:

!IIpMacDb.Add* | !IIpMacDb.Remove* |
!IIpMacDb.GetMacAddress* |
!IIpMacDb.GetIpAddress* |
!IIpMacDb.GetExpirationTime* |
!IipMacDb.SetExpirationTime*

In general, an environment protocol specifies both
invocations of the component’s methods by the
environment (events of the form !m) and acceptances of
component’s calls to the environment (events of the form
?n). However, it is hard to generate environment which
accepts calls according to such a protocol, since in Java
there is no explicit construct for acceptance of a method call
depending upon history of other calls. Fortunately, for
checking the component we use JPF cooperating with
BPChecker, which verifies whether both incoming and
outcoming calls are done according to the frame protocol.
Therefore, it is enough to generate an environment which
accepts the calls in any order and just its outcoming calls
respect the environment protocol. Consequently, an
environment protocol can be restricted to method
invocations (calling protocol). For example, the
environment protocol (!a;?b) | !c;(?d+!e) |
(!b+?d;!e) is restricted to the calling protocol !a |
(!c;!e) | (!b+!e).

1.3. Goals and Structure of the Paper
The goal of this paper is to address the state explosion

problem for code model checking of primitive components
with JPF in case the checked property is absence of
concurrency errors (deadlocks, race conditions). For this
purpose, the paper proposes a technique to keep the state
space size in “reasonable” limits by heuristically reducing
the parallelism in the environment so that it exercises in
parallel only those parts of the primitive component’s code
which likely contain concurrency errors; these parts are
identified via a static code analysis (searching for
“suspicious” patterns in the component code).

An additional goal is to illustrate the feasibility of the
proposed technique and its benefits (support for discovery
of concurrency errors in limited time and space and
provision of short and easy-to-read counterexamples) on the
results of experiments performed on several primitive
components.

To reflect these goals, the remainder of the paper is
organized as follows. Sect. 2 presents details of the
proposed technique - heuristic reductions of parallelism in
the environment on the basis of information provided by a
static analysis of code. Further, Sect. 3 shows experimental

results of applying the proposed technique to several
primitive components and Sect. 4 provides an evaluation of
the technique. The rest of the paper contains related work and
a conclusion.

2. Heuristics for Environment Construction
As indicated in Sect. 1.3, the basic idea of the technique

is to reduce the parallelism in the environment of a primitive
component on the basis of static code analysis that identifies
those parts of the component code that likely contain
concurrency errors. In general, this is done in the following
4-step process which involves several heuristics:

(1) Acquiring a calling protocol of the component subject
to checking;

(2) by static code analysis, identifying those methods of
the component whose parallel executions would likely cause
concurrency errors;

(3) reducing the level of parallelism in the calling protocol
so that parallel composition is preserved only between
method calls identified in (2) - creating a reduced calling
protocol;

(4) constructing an environment corresponding to the
reduced calling protocol and applying JPF to the complete
program composed of the component and environment codes.

Here we focus only on (2) and (3), since the other steps
are described in [14] and [16].

2.1. Identification of Methods Likely Causing
Concurrency Errors

The purpose of the step (2) above is only to identify those
methods of a component subject to checking, whose parallel
executions likely cause concurrency errors. The algorithm for
methods’ identification has to fulfill the following
requirements; it has to

(i) have low time complexity,
(ii) support detection of deadlocks and race conditions,
(iii) accept isolated primitive components as input,
(iv) provide a Java API so that it can be integrated with the

existing environment generator [15].
Even though there exist solutions for detection of potential

concurrency errors in Java (e.g. Jlint [9] and FindBugs [8]),
none of them we are aware of fulfills all these requirements.
In particular, the existing solutions either accept only
complete programs [20], detect only a single type of
concurrency errors (typically race conditions) [20], or do not
provide a Java API [9]. The proposed solution is based on
searching for four concurrency-related patterns (in our
experience frequently occurring in Java applications) in the
byte code of pairs of methods and assigning weights
(likeliness of an error) to pattern instances. The patterns are
illustrated below (synch means synchronized).

The patterns (P1) and (P2) are deadlock-related.
Specifically, (P1) captures nesting of synchronized blocks in
reverse order, while (P2) identifies the calls to the

Object.wait and Object.notify methods that are
nested inside two synchronized blocks (i.e. call of
LB.notify is never reached after LB.wait was executed).

 m1 m2
 (P1) synch (L1) { synch (L2) {
 synch (L2) { synch (L1) {

 } }
 } }

(P2) synch (LA) { synch (LA) {
 synch (LB) { synch (LB) {
 LB.wait(); LB.notify();
 } }
 } }

 The patterns (P3) and (P4) are race conditions-related. In
particular, (P3) captures the situation when reading and
writing to the same attribute is possible simultaneously due
to synchronized blocks guarded by locks of different
objects, and (P4) identifies unsynchronized accesses to a
shared attribute, for instance via unsynchronized calls to
methods of Java collection classes (e.g. HashMap,
LinkedList, or TreeSet).

 m1 m2
 (P3) X x; Y y;
 synch (x) { synch (y) {
 this.attr = = this.attr;
 } }

(P4) List ll = .. List ll = ..
 ll.add(“abc”); ll.remove(1);
 The weight of each pattern instance reflects the

likeliness of the corresponding concurrency error
occurrence (e.g, if in P1 the types t1 of L1 and t2 of L2
differ, then an error is more likely than when they are the
same, since different types imply different objects - a
consequence of this is the nesting of synchronized blocks in
reverse order). The total weight of a pair of methods <m1,
m2> is determined as the sum of weights of all the pattern
instances identified in the method pair. The actual values of
the weights are determined by a weight function upon
classes of instances of P1-P4 providing values from the
range <0,1> (the lower the value the smaller likeliness of an
error; zero means no likeliness). The function is to be
provided by the user. Based on a series of experiments, we
have “tuned up” the function specified in Table 1, where the
classes are determined by the relation of types t1 and t2.

The algorithm, which locates a specific pattern (one of
P1-P4) in the code and assigns weights to its instances, is
further denoted as a heuristic detector. Implementation of
a detector is based on the ASM library [2].

2.2. Creating a Reduced Calling Protocol
The basic idea of the step (3) (beginning of Sect. 2) is to

reduce the number of occurrences of parallel compositions in
the calling protocol by replacing a parallel operator with an
explicit specification of method calls interleaving via
simplified sequencing. However, the reduced calling protocol
has to preserve the parallel compositions involving methods
identified in the step (2) as likely containing concurrency-
related errors (Sect. 2.1). More precisely, the proposed
technique reduces a calling protocol of the form
 InitP ; (p1 | p2 | ... | pN) ; FinishP (I)
where InitP, FinishP and all pi are calling protocols.

Three types of reduction are proposed: sensitive
composition, recursive reduction of parallelism, and parallel
prefixes. All these reductions accept as input a calling
protocol, e.g.
 !init;(!a | (!c;!e) | (!b+!e));!finish (i)
The output of each reduction of a calling protocol CP is a
reduced calling protocol CPred, which may be syntactically
very different. However, each trace in L(CPred) has to be a
prefix of a trace from L(CP) (i.e. œtred 0 L(CPred) ›t 0 L(CP)
›tsuf : t = tred tsuf) so that behavior not allowed by CP is not
present in CPred. For sensitive composition and recursive
reduction of parallelism, the prefixes correspond to complete
traces (i.e. tsuf is the empty string so that L(CPred) f L(CP)),
while for parallel prefixes, tsuf is not empty and L(CPred)
contains proper prefixes.

The key idea of the sensitive composition is as follows: (p1
| p2 | ... | pN) in (I) is replaced by

(...;pk-1;pk;pk+1;...; (pi | pj)) + (...;pk-1;pk;pk+1;...; (pi | pj)) + ...
+ (p1;...;pN) (II)
where an alternative with the parallel operator is introduced
for any protocol tuple <pi, pj> such that its cumulative weight
(explained below) is non-zero; basically, pi and pj contain
methods involving instances of patterns P1-P4. The sequence
...;pk-1;pk;pk+1;... contains all of the protocols p1, ..., pN except
for pi and pj. The last alternative, purely “sequential”, is
introduced only if there is a tuple with zero cumulative
weight. Notice that replacement of parallel composition by
sequencing is very simplified: each alternative specifies a set
of traces with a common prefix followed by interleavings of
events described by (pi | pj). This reflects the fact that the only
“sensitive” (likely producing concurrency errors) protocols in
the alternative are pi and pj. The sequence ...;pk-1;pk;pk+1;... is
intentionally chosen as a prefix (not a postfix) of (pi | pj) to
exclude this sequence from JPF backtracking triggered by
execution of all interleavings of (pi | pj). Sensitive

pattern P1
(t1 = t2)

 P1
(t1 != t2)

 P2 P3
(t1 = t2)

 P3
(t1 != t2)

 P4
(t1 = t2)

 P4
(t1 != t2)

weight 0.3 1 0.5 0.25 0.8 0.25 0.9

Table 1: Weights of concurrency-related patterns

composition is illustrated on the following example. Given
the protocol (i), all the tuples are:

<!a, (!c;!e)> (ii) cum. weight 1.3
 <!a, (!b+!e)> (iii) cum. weight 0.25
<(!c;!e), (!b+!e)> (iv) cum. weight 0

For each protocol tuple, all pairs of methods, whose calls
are specified in the tuple, are identified; for the tuple (ii)
those are <!a, !c> and <!a, !e>. By applying the heuristic
detectors to the code of these pairs, the weight of each pair
is acquired (0.5 for <!a, !c> and 0.8 for <!a, !e>). The
cumulative weight of a protocol tuple is determined as the
sum of weights of all its method pairs, i.e. the weight of (ii)
is 1.3. The alternatives from (II) are determined by the
cumulative weights of the tuples as follows:
 (!b+!e) ; (!a | (!c;!e)) (ii’)

(!c;!e) ; (!a | (!b+!e)) (iii’)
!a ; ((!c;!e) ; (!b+!e)) (iv’)

Thus, the reduced calling protocol takes the form
 !init;((!b+!e);(!a|(!c;!e)) + (v)
 (!c;!e);(!a|(!b+!e)) +
 !a;((!c;!e); (!b+!e));!finish

The basic idea of the recursive reduction of parallelism
is that (p1 | p2 | ... | pN) in (I) is replaced by

 pk+1;...;pN;(p1 | ... | pk) (III)
where each pm from pk+1;...;pN is removed from the parallel
composition in one step of the reduction; i.e. after the first
step of reduction (where m = N), the protocol takes the
form pN;(p1 | ... | pN-1). Reduction is performed as long as the
proportional weight of pm is lower than a user-defined
threshold; this assumes that ordering of p1 | ... | pN is
determined by their proportional weights (p1 having the
highest and pN the lowest one). The proportional weight of
pm is determined as the sum of cumulative weights of the
tuples <pi, pm> and <pm, pj>, where 1 # i,j < m, divided by
the sum of cumulative weights of all the tuples <pi, pj> over
{p1, ..., pm}, where i … j. Recursive reduction of parallelism
is illustrated on the following example. Given the protocol
(i), the proportional weights of the protocols !a, (!c;!e),
(!b+!e) have to be determined. Since (i) contains the
tuples (ii), (iii) and (iv), having cumulative weights 1.3,
0.25 and 0, the proportional weights of the protocols !a,
(!c;!e), (!b+!e) are 1, 0.84 and 0.16. Thus, (i) can be
reduced to (!b+!e);(!a | (!c;!e)) in one step, as the
proportional weight of !b+!e is lower than the threshold
set to 0.2 (on the basis of a number of experiments).

Both the sensitive composition and recursive reduction
of parallelism preserve InitP and FinishP in CPred, since
L(CPred) f L(CP) holds for these reductions. However, InitP
may be typically empty if the component has no explicit
initialization phase. The parallel prefixes reduction takes
advantage of this by considering only prefixes of traces in
L(CP) which start with interleavings of protocol tuples that
have non-zero cumulative weight. Assuming that InitP in (I)
is empty, the basic idea is to replace (p1 | ... | pN) by

 (pi | pj) + (pi | pj) + ... (IV)
where an alternative is introduced for any tuple <pi, pj> such
that its cumulative weight is non-zero (weights evaluated as
in case of sensitive composition); naturally, the “rest” of
traces in (p1 | p2 | ... | pN) ; FinishP is not considered. The
inherent assumption is that concurrency errors will be
discovered by considering only the prefixes of traces in
L(CP) (supposing InitP is empty). For illustration, consider
protocol (i). Assuming it is modified by eliminating !init,
the following protocol tuples are acquired:
 <!a, !c> (vi) cum. weight 0.5
 <!a, !e> (vii) cum. weight 0.8
<!a,!b>, <!b,!c>, <!b,!e>, <!c,!e> (viii), cum. weight 0

Since only the tuples with non-zero cumulative weight are
considered in (IV), the result is (!a|!c) + (!a|!e).

3. Tools & Experiments
This section describes the experiments that we performed

to show the impact of the proposed reductions on time and
space complexity of component checking with JPF. For that
purpose, we have created a prototype tool that supports all the
proposed reductions of parallelism and provides heuristic
detectors for all the patterns P1-P4.

In search for real-life examples of concurrency errors in
the code, we have manually examined a number of
components, ranging from those of the demo application
developed in [1] to those from the Perseus project [19].
Typically, “interesting” components contained pattern
instances in the combinations {P1, P2} and {P3, P4}. The
components are listed in Tab. 2 and Tab. 3. Since
Pessimistic Concurrency Manager was the only strong
deadlock-prone candidate, we created a testing component
(OrderProcessor) where we injected several deadlocks.

The tables show for each of these pattern combinations
and the analyzed component characteristics of several JPF
runs, each of them for the environment generated by a
different reduction (including none) of the component’s
calling protocol. For each environment, two variants of JPF
runs were measured - first, for the standard DFS algorithm for
state space traversal and, second, for the heuristic search (HS,
[6]) that maximizes thread interleavings.

The run characteristics are: the total number of states
traversed by JPF, length of the provided counterexample,
elapsed time to find the first error and size of memory.
Detailed description of the discovered errors is in [13].

The reason for not performing experiments with parallel
prefixes for IpAddressManager is that its calling protocol
has the InitP part non-empty.

4. Evaluation
Results of the experiments (in Tab. 2 and 3) show that the

proposed reductions make discovery of concurrency errors in
the code of primitive components with JPF more feasible by
lowering the time and space complexity. Moreover, shorter

and easy-to-read counterexamples are provided, since less
parallelism (i.e. parallel interleavings of fewer threads) has
to be modeled by JPF and therefore the path to an error
state is typically shorter than if no reduction is applied.
Surprisingly, when heuristic search was applied, JPF
reported only the last transition of the counterexample ((1)
in the tables) - likely a bug.

An obvious question is (a) which of the reductions
should be applied in the checking process and (b) in which
order. Since there is no simple relation among the languages
L(CPred_pp), L(CPred_sc) and L(CPred_rrp) for a particular CP,
an obvious answer to (a) is all of them, while as to (b) the
speed assessment indicated by the experiments from Tab. 2
and Tab. 3 might be the driving factor (CPred_pp means the
result of parallel prefixes reduction of CP, etc.). Therefore,
we recommend to apply the reductions in the following
order: (i) parallel prefixes; after no error was discovered by
a run of JPF with the environment generated from CPred_pp,
similar steps are to be taken for (ii) sensitive composition
and (iii) recursive reduction of parallelism (no particular
order of preference of these two). If an error is discovered,
after it is fixed the same reduction is to be repeated in the
checking process. In general, since traces from L(CPred) are
only prefixes of (not all) traces from L(CP), a JPF run upon
a component with the environment generated from CPred
may not find all the errors that would be identified with the
environment generated from CP; this was the case of

checking IpAddressManager for race conditions (Tab. 2b).
Therefore, (iv) “no reduction” is also to be applied, however
it might not be feasible for components with heavily parallel
behavior (Tab. 2c).

As to patterns, another question is (a) in which order and
(b) combinations they are to be applied. The answer to (a) is
easy: they do not directly depend on each other so that there
is no recommended order. As for (b), there is a trade-off: the
more patterns are applied, the higher the cumulative weights
of tuples (Sect. 2) and therefore the resulting CPred contains
more parallelism. The other side of the coin is the more
parallelism the higher the complexity of JPF checking. As a
compromise, the combinations {P1, P2} and {P3, P4} are
feasible since instances of both the patterns in a combination
are not likely to be detected at the same time.

It may seem that heuristic detectors are sufficient for
discovery of concurrency errors of specific types in the code
(i.e. there is no need to run JPF to find such errors). However,
heuristic detectors can issue both false positives and
negatives, since the pattern detection is undecidable in
general (e.g. consider that the types t1 and t2 in P1 are
available statically, while the actual instances L1 and L2 only
at runtime). Thus, JPF has to be used to decide whether there
are “real” concurrency errors in the code.

It should be emphasized that pi in (I) (Sect. 2.2) are
general calling protocols, so that if pi takes again the form
InitP ; (p1 | p2 | ... | pN) ; FinishP, the reduction can be applied

No reduction No reduction (HS) Parallel prefixes Parallel
prefixes (HS)

Sensitive
composition

Sensitive
compos. (HS)

Recursive red.
of parallelism

Recursive red. of
parallelism (HS)

a) in TransientIpDb (project: CRE, size: 65 lines of code (loc) in Java)

No. of states 1189 - 865 261355 16849 - 1189 -

Length of CE 61 - 25 no error 41 - 61 -

Time in seconds 2 - 2 165 15 - 2 -

Memory in MB 7 out of memory 7 167 8 out of memory 7 out of memory

b) in IpAddressManager (project: CRE, size: 240 loc in Java)

No. of states 105652 - - - 172245 171537 155644 156067

Length of CE 44 - - - no error no error no error no error

Time in seconds 199 - - - 332 327 264 265

Memory in MB 13 out of memory - - 19 308 14 259

c) in Pessimistic Concurrency Manager (project: Perseus, size: 400 loc in Java)

No. of states - - 877233 1129069 172 - - -

Length of CE JPF failed - no error no error 50 - JPF failed -

Time in seconds - - 505 550 1 - - -

Memory in MB - out of memory 25 500 11 out of memory - out of memory

Table 2: Detection of race conditions (patterns P3 and P4)

recursively. This recursive application of the reduction
technique was tested only on “toy” components, since we
found it hard to obtain any real-life component with
behavior featuring nested parallelism.

A drawback of the proposed technique is that all the
patterns P1-P4 involve just two methods, i.e. concurrency
errors that span more methods are not considered. Also, the
selected four patterns naturally do not cover all possible
concurrency problems in Java; therefore, our prototype tool
is extensible so that more patterns can be easily added.

5. Related work
In particular, we are not aware of any other technique

that addresses the state explosion in code checking of
software components via application of heuristics (for
reduction of parallelism) when constructing a component
environment (in typical code model checkers, heuristics are
used to guide state space traversal). The Bandera
Environment Generator (BEG) [21] can generate an
environment for sets of Java classes; however, the
environment’s behavior specification has to be provided by
the user (i.e. it is not derived from the component’s
behavior specification), who ad-hoc determines the level of
parallelism in the environment.

While there are very few techniques for component
environment generation, a lot of related research has been
done in detection of concurrency errors in the code. This
includes (i) static analysis upon an abstraction of the code
(e.g. Chord [12]), (ii) dynamic detection of errors during a
run of an instrumented program (e.g. Eraser [20]), (iii)
search for predefined bug patterns in the code (e.g. Jlint [9]
and FindBugs [8]), and (iv) model checking (e.g. SLAM [3]
and Java PathFinder [22]). In general, each technique based
on (i)-(iii) reports false positives and misses some of the
concurrency errors that are discovered by other such

techniques. Specifically, static analysis suffers from over-
abstraction of the code and reporting false positives (spurious
errors). Even though (ii) reports no false positives, it checks
only selected execution paths, consequently not discovering
all errors. Despite that tools searching for predefined bug
patterns (iii) typically report false positives and fail to
identify all errors, they are used in practice because of their
low time and space complexity. Short characteristics of the
selected tools based on (i)-(iii) are below.

The Chord tool [12] is a static detector of race conditions
that combines four different techniques of static analysis (e.g.
call graph construction and lock analysis) in order to
minimize the number of false positives it reports.

Popular dynamic detector of race conditions is Eraser [20],
which uses the well-known lockset algorithm. This tool can
be applied only to binary executables.

The generic FindBugs tool [8] locates predefined patterns
via a combination of linear byte code scan and data- and
control-flow analysis. It aims at detection of all kinds of
errors in Java code (e.g. null pointer dereference), but it has
a limited support for concurrency errors - it is focused rather
on incorrect usage of Java concurrency-related API (e.g.
Thread.run() is used instead of Thread.start()). In a
similar vein, the generic Jlint tool [9] searches for instances
of predefined bug patterns in byte code; unlike FindBugs, it
can detect potential deadlocks and race conditions within the
inherent limits of static pattern analysis.

A technique similar to what we proposed in Sect. 2 and 3
is the combination of runtime analysis with model checking
[7], where the purpose of runtime analysis is to detect
potential race conditions and deadlocks. The model checker
(JPF) is used to check whether the potential errors detected
by runtime analysis are real or not. While our technique is
based on a specific generation of environment (needed to
make a component complete program anyway) focused on

No reduction No reduction (HS) Parallel prefixes Parallel
prefixes (HS)

Sensitive
composition

Sensitive
compos. (HS)

Recursive red.
of parallelism

Recursive red. of
parallelism (HS)

a) in OrderProcessor (testing component, size: 100 loc in Java)

No. of states 77133 29713 359 788 1526 8428 1527 1361

Length of CE 52 (1) 19 (1) 36 (1) 37 (1)

Time in seconds 28 14 1 3 2 7 2 2

Memory in MB 6 86 5 5 5 8 5 7

b) in Pessimistic Concurrency Manager (project: Perseus, size: 400 loc in Java)

No. of states 142 - 54 4990 90 25449 93 7372

Length of CE 121 - 33 (1) 69 (1) 72 (1)

Time in seconds 1 - 1 5 1 44 1 11

Memory in MB 8 out of memory 5 13 11 47 10 26

Table 3: Detection of deadlocks (patterns P1 and P2)

concurrency errors identified by static analysis, the
technique [7] directs JPF checking of a complete program
to focus on particular concurrency errors identified in a
specific preceding run.

6. Conclusion and future work
In this paper, we addressed the state explosion problem

encountered in JPF code model checking of primitive
software components in case the checked property is
absence of concurrency errors. Since JPF checks only
complete programs, an environment has to be provided for
a component to make it a complete program. In [16, 14], we
described how such an environment can be generated from
the behavior specification of the component and of its
deployment context (specifically, from its calling protocol).
The key idea is to reduce parallelism in the calling protocol
on the basis of the information provided by static analysis
of the component code, searching for concurrency-related
patterns; by a heuristic, some of these patterns are denoted
as “suspicious”. Then, the environment is generated in such
a way that it exercises in parallel only those parts of the
component’s code that likely contain concurrency errors.

By results of several experiments, we have shown that
the main benefit of the proposed three reductions of calling
protocol is the possibility to generate an environment
allowing discovery of concurrency errors via JPF with
reasonably low time and space complexity. Even though
use of these reductions may prevent discovery of some of
the errors (which would be detected when no reduction was
employed), there is a trade-off: checking with no reduction
likely provides no result, since state explosion occurs.

As a future work, we plan to generalize the proposed
technique with support for byte code patterns involving an
arbitrary number of parallel methods; this way, the static
code analysis should be able to detect more potential
concurrency errors. In addition, we will focus on more
elaborated definition of the weight function - with respect
to (i) specific code features (like the number of attributes
shared by methods), and (ii) probability of parallel
execution of component’s methods.

Acknowledgments
This work was partially supported by the Grant Agency

of the Czech Republic (project number 201/06/0770).
Special credit also goes to Pavel Jezek for his key role in
designing the demo application in [1].

References

[1] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P.
Parizek, and F. Plasil: Component Reliability
Extensions for Fractal Component Model,
http://kraken.cs.cas.cz/ft/public/public_index.phtml

[2] ASM: Java bytecode manipulation framework,
http://asm.objectweb.org

[3] T. Ball, S. K. Rajamani: The SLAM Project: Debugging
System Software via Static Analysis, POPL 2002, ACM

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.
B. Stefani: The FRACTAL component model and its
support in Java. Softw., Pract. Exper. 36(11-12), 2006

[5] E. Clarke, O. Grumberg, and D. Peled: Model Checking,
MIT Press, Jan 2000

[6] A. Groce, W. Visser: Heuristics for Model Checking Java
Programs, Proceedings of the 9th International SPIN
Workshop on Model Checking of Software, 2002

[7] K. Havelund: Using Runtime Analysis to Guide Model
Checking of Java Programs, In SPIN Model Checking
and Software Verification, LNCS 1885, 2000

[8] D. Hovemeyer, W. Pugh: Finding Bugs is Easy, ACM
SIGPLAN Notices, vol. 39, pages 92-106, Dec 2004

[9] Jlint, http://artho.com/jlint/
[10] M. Mach, F. Plasil, and J. Kofron: Behavior Protocol

Verification: Fighting State Explosion, IJCIS, Vol.6,
Number 1, ACIS, ISSN 1525-9293, pp. 22-30, 2005

[11] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer:
Specifying Distributed Software Architectures. Proc. 5th
European Software Engineering Conference

[12] M. Naik, A. Aiken, and J. Whaley: Effective Static Race
Detection for Java, In Proceedings of PLDI’06, ACM

[13] P. Parizek, F. Plasil: Heuristic Reduction of Parallelism
in Component Environment, Tech. Report No. 2007/2,
Dep. of SW Engineering, Charles University, Mar 2007

[14] P. Parizek, F. Plasil: Modeling Environment for
Component Model Checking from Hierarchical
Architecture, Accepted for publication in Proceedings of
FACS’06, ENTCS, Sep 2006

[15] P. Parizek: Environment Generator for Java PathFinder,
http://dsrg.mff.cuni.cz/projects/envgen

[16] P. Parizek, F. Plasil: Specification and Generation of
Environment for Model Checking of Software
Components, Accepted for publication in Proceedings of
FESCA 2006, ENTCS, 2006

[17] P. Parizek, F. Plasil, and J. Kofron: Model Checking of
Software Components: Combining Java PathFinder and
Behavior Protocol Model Checker, SEW’06, IEEE CS

[18] F. Plasil, S. Visnovsky: Behavior Protocols for Software
Components, IEEE Trans. on Soft. Eng. 28(11), 2002

[19] Perseus project, http://perseus.objectweb.org
[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.

Anderson: Eraser: A Dynamic Data Race Detector for
Multithreaded Programs, ACM Transactions on
Computer Systems, 1997

[21] O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu:
Automated Environment Generation for Software Model
Checking, Proceedings of ASE’03, 2003

[22] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda:
Model Checking Programs, Automated Software
Engineering Journal, vol. 10, no. 2, Apr 2003

