
Checking Session-Oriented Interactions
between Web Services

Pavel Parizek1, Jiri Adamek1,2

1Charles University in Prague, Faculty of Mathematics and Physics,
Department of Software Engineering, Distributed Systems Research Group

{parizek,adamek}@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

2Academy of Sciences of the Czech Republic,
Institute of Computer Science

Abstract

Although web services are generally envisioned as being
stateless, some of them are implicitly stateful. The reason is
that the web services often work as front-ends to enterprise
systems and are used in a session-oriented way by the
clients. Contrary to the case of stateless services, for a
stateful web service there exist constraints to the order in
which the operations of the service may be invoked.
However, specification of such constraints is not a standard
part of a web service interface, and compliance with such
constraints is not checked by the standard web service
development tools. Therefore, we propose in this paper to
extend a web service interface by a constraint definition
that is based on behavior protocols. Also, we implemented
a tool that checks whether a given BPEL code complies
with the constraints of all stateful web services it
communicates with. The key idea behind the tool is to
translate the BPEL code into Java and then to check the
Java program using Java PathFinder with behavior
protocol extension.

Keywords: web services, BPEL, session-oriented
interactions, behavior protocols, model checking

1. Introduction

Web service is a software system with a well-defined
interface that is able to perform certain operations (specified
in the interface) upon request in the form of a network
message. Standard web service technologies are based on
XML - web services communicate with their clients (e.g.
other web services) via exchange of XML messages using
the SOAP protocol, and their interfaces are defined in the
WSDL [19] language.

To implement its WSDL interface, a web service can use
other web services, and, optionally, add its own business
logic. Borrowing the terminology from the field of software

components ([3, 11]), we call a service that uses other web
services as a composite web service, and the services used by
a composite web service as primitive web services. The key
difference between a composite service and primitive services
is that the inner structure (the implementation) of a composite
service is externally visible, while in the case of a primitive
service it is not; nevertheless, both primitive and composite
services have externally visible WSDL interfaces. A
composite web service typically works as a business process
that integrates several primitive services in a non-trivial way.

In general, a composite web service can be implemented
in any programming language that provides an API for the
web service technologies (e.g. Java and C#) - the only
requirement is that the implementation conforms to the
service’s WSDL interface and uses the SOAP protocol for the
communication. Nevertheless, the usage of languages like
BPEL [18] for implementation of composite web services
(e.g. business processes) has become very popular recently.
Therefore, we focus on composite web services implemented
in BPEL (BPEL web services) in this paper.

Web services are commonly envisioned as being stateless,
in the sense that any two invocations of a single web service
are independent - no state is preserved by the service between
invocations and the clients have to supply all necessary
context information in the request messages. However, in
practice, some web services are implicitly stateful, since they
work as front-ends to stateful resources (e.g. enterprise
systems) and are used in a session-oriented way by the clients
(e.g. BPEL web services). For a stateful web service, there
typically exist constraints to the order in which the operations
provided by the service may be invoked. As an example,
consider an airline web service that works as a front-end to
the on-line reservation system: a client of such a service has
to invoke its operations in a specific sequence (e.g. book
followed by confirm, and then by pay).

Nevertheless, a specification of the constraints on the
order of the operation invocations is not a part of the web

service’s WSDL interface and therefore the compliance
with the constraints cannot be checked. An obvious idea is
(i) to attach a formal specification of the constraints to a
stateful primitive web service in addition to its WSDL
interface and (ii) to create a tool for checking compliance of
a composite web service with the constraints.

The contributions of this paper are:
(1) A technique for checking whether a BPEL web

service is compliant with the specification of constraints on
the order of invocations of every stateful primitive service
it uses (those constraints are defined in the formalism of
behavior protocols [16]), and the implementation of the
technique in the BPEL checker tool [13].

(2) Evaluation of the technique on a case study; all
examples in the paper are taken from the case study.

The remainder of the paper is organized as follows. Sect.
2 provides a short overview of WSDL and BPEL. Sect. 3
introduces behavior protocols and elaborates on the concept
of compliance with the constraints specified via behavior
protocols. Sect. 4 describes the proposed technique for
checking whether a BPEL web service uses stateful
primitive web services in compliance with the constraints,
and Sect. 5 provides details about the evaluation of the
technique on a case study. The rest of the paper contains
related work and a conclusion.

2. WSDL and BPEL

The Web Services Description Language (WSDL) [19]
is an XML-based language for definition of a web service
interface. In particular, a WSDL document for a specific
web service describes ports of the service, operations
provided on the ports, and messages that represent input
parameters and results of the operations. Each WSDL
document can be divided into two parts: (i) the definition of
data types (via XML Schema), abstract messages,
operations and port types, and (ii) the deployment-related
information like definition of endpoints and port instances.
An endpoint definition specifies the binding of abstract
messages and operations to a concrete network protocol and
message format, and a port instance associates a network
address with a binding. In order to be usable by a BPEL
web service, a WSDL document also has to contain BPEL-
specific definition of partner links. A partner link is a
“connection” between a BPEL web service and a primitive
web service, which may involve one or two roles associated
with port types. For synchronous and one-way operations,
one role is associated with a port type, while for
asynchronous (callback) operations, there are two roles
(each associated with a port type): one for the request from
a client and the other for the callback invocation.

The following fragment of a WSDL document specifies
a web service that allows to book a flight (denoted as
AirlineService in the rest of the paper).

<definitions name="AirlineService">
 <portType name="BookPort">
 <operation name="IsAvailable">
 // declaration of input/output messages
 </operation>
 // definition of Book, Confirm and Cancel
 </portType>

 <partnerLinkType name="BookSvcLink">
 <role name="bookSvc"
 portType="air:BookPort"/>
 </partnerLinkType>
</definitions>

The definitions of data types and messages are omitted
from the AirlineService WSDL document, since
messages and their content are not relevant for the technique
proposed in this paper. Note that the BookSvcLink partner
link type involves one role, what implies that all operations
on the BookPort port are synchronous or one-way.

As indicated in Sect. 1, the Business Process Execution
Language (BPEL) [18] is an XML-based language for
definition of business processes on the basis of the web
service technologies (SOAP, WSDL, etc). A BPEL process
is a composite web service implemented in BPEL (a BPEL
web service) that interacts with several primitive services.

BPEL supports atomic sending and receiving of messages
(i.e. invoking a web service operation and wait for a reply),
and typical features of modern programming languages like
data manipulation operations, control-flow structures (e.g. if-
else, loops, and parallel execution) and fault-handling.

A typical BPEL process definition consists of many
elements, the most important being:

(1) import of WSDL documents for primitive web services
used by the BPEL process;

(2) definition of partner links (with types from the WSDL
documents), where each partner link corresponds to one
primitive service used by the process;

(3) declaration of variables for message content, with
types corresponding to messages defined in WSDL;

(4) primary (top-most) activity of the process.
BPEL supports two kinds of activities - basic and

structured. Basic activities are used for low-level tasks like
message sending and receiving (XML elements <invoke>,
<receive> and <reply>) and data manipulation
(<assign>), while structured activities represent control-
flow structures (e.g. <flow>, <while>, and <if>-<else>).

In this paper, the focus is on message exchange-related
basic activities, which can be divided into two groups - those
that cause a message to be sent (<invoke> and <reply>)
and those that cause a message to be received (<receive>
and <invoke>). The <invoke> activity supports two styles
of communication: request-response and one-way. Each
message represents an invocation of an operation or a reply,
and is specific to a partner link name, port type and operation

name (correlations and service instances are ignored - see
Sect. 4.2 for details).

A structured activity may contain recursively nested
activities of both kinds and also nested scopes, where a
scope is a part of a BPEL process definition that provides
context for nested variable declarations, various handlers
(e.g. for faults), and its primary activity. The top-most
element of the process definition - the <process> XML
element - is a special scope, denoted as a root context.

The following fragment of a BPEL process definition
illustrates the key concepts of BPEL on the interaction
between the AirlineCustomer process (i.e. a BPEL web
service) and two instances of a primitive service with the
AirlineService WSDL interface.

<process name="AirlineCustomer">
 <partnerLinks>
 <partnerLink name="BookSvcOne"
 partnerLinkType="air:BookSvcLink"
 partnerRole="bookSvc" />
 <partnerLink name="BookSvcTwo" ... />
 </partnerLinks>

 // declaration of variables for messages

 <sequence> // primary activity
 // message-content related operations
 <flow>
 <invoke partnerLink="BookSvcOne"
 portType="air:BookPort"
 operation="IsAvailable" ... />
 <invoke partnerLink="BookSvcTwo" .. />
 </flow>
 <if> // (1)
 <condition>...</condition> // flight
 available at BookSvcOne ?
 ...
 <invoke partnerLink="BookSvcOne"
 operation="Book" ... />
 <if>
 <condition>...</condition> // flight
is booked ?
 <invoke partnerLink="BookSvcOne"
 operation="Confirm" ... />
 <else>
 <invoke partnerLink="BookSvcOne"
 operation="Cancel" ... />
 </else>
 </if>
 <elseif>
 // as above (the if-branch), but for
BookSvcTwo
 // a call to Cancel is not specified
 </elseif>
 </if>
 </sequence>
</process>

The BPEL process first creates connections to two
instances of a stateful primitive web service with the
AirlineService WSDL interface over the BookSvcOne
and BookSvcTwo partner links. Then it invokes the

IsAvailable operation over both BookSvcOne and
BookSvcTwo in parallel (via <flow>), and, depending on the
availability of a flight, it invokes Book either over
BookSvcOne or over BookSvcTwo. If BookSvcOne was
selected, then the process invokes Confirm or Cancel,
while if BookSvcTwo was selected, then it invokes Confirm
or does nothing (call to Cancel over BookSvcTwo is not
specified). Note that the <else> branch (i.e. the default
option) of the top-most <if> activity (marked with (1) in the
example) is not defined, so that if the flight won’t be booked
for one of BookSvcOne and BookSvcTwo, nothing happens.

3. Correct Usage of Primitive Web Services

In this section, the idea of primitive web service usage
correctness is described in detail. The term is defined in the
context of the following setup: let C be a composite web
service implemented in BPEL, which uses stateful primitive
web services P1, ..., Pn. As emphasized in Sect. 1, the
correctness here means that C behaves in compliance with the
specification of constraints upon the order of operation
invocations for each Pi.

To refine this definition, in Sect. 3.1 session protocols are
introduced, specifying the correct orders of invocations of
operations provided by primitive web services, and in Sect.
3.2 compliance of C with the session protocol of Pi is defined.

3.1. Session Protocols

In [16], behavior protocols were introduced as a formal
language to specify behavior of software components. They
were successfully used for the SOFA [16] and Fractal [9]
component models. In this paper, a behavior protocol is used
to specify constraints on the order of invocation of operations
provided by a stateful primitive web service within the scope
of a single session. Such a behavior protocol is called session
protocol and is specific to a single partner link.

To define the syntax and semantics of session protocols,
it is not necessary to extend the original behavior protocols
by any new construct; in fact, just a subset of the behavior
protocol features defined in [16] is needed. This section
describes the subset.

Syntactically, a session protocol is an expression over a
set of message tokens. A message token denotes either
sending or receiving of a message, while a message may be
either a request for a web service operation or a response to
such request (for a one-way operation only the request
exists). E.g., a service calling an operation first sends a
request and then it receives a response, while the service
providing the operation first receives a request and then it
sends a response. The structure of a message token is as
follows: it consists of a symbol denoting either sending (!) or
receiving (?), followed by a port type, the dot symbol (.), an
operation identifier, and the symbol denoting either request

(^) or response ($). A port type is typically prefixed by a
namespace identifier, “:” is used as a delimiter. In this
paper, a short version of namespace identifiers (a simple
string) is used, which is not necessarily unique in general.
Long version (fully qualified name) would consist of an
URI, which may be quite complex, thus making the
message tokens unreadable. The “NULL” identifier is special
- it specifies an empty behavior.

While a message token expresses sending or receiving of
a single message (the most simple behavior that can be
specified), session protocol operators allow to express
complex behavior, using the message tokens as building
blocks. There are three operators: non-deterministic
alternative (+), sequence (;) and repetition (*).

Finally, abbreviations are used as syntactic sugar for
typical constructions: for an operation o, the symbol ?o
stands for the sequence ?o^;!o$ and !o stands for
!o^;?o$, and for an arbitrary session protocol P, the
symbol ?o{P} stands for ?o^;P;!o$.

How the operators and abbreviations can be used is
illustrated in the following example that corresponds to the
BPEL code from Sect. 2 - the session protocol specifies the
constraints upon the order of invocations of a primitive web
service having the AirlineService WSDL interface.

?air:BookPort.IsAvailable ;
(
 (
 ?air:BookPort.Book ;
 (
 ?air:BookPort.Confirm^
 +
 ?air:BookPort.Cancel^
)
)
 +
 NULL
)

It states that first the synchronous IsAvailable
operation on air:BookPort must be invoked (i.e. a
request is received and later a response is sent), then an
optional invocation of the synchronous Book operation
follows, and if Book was invoked, it is required that one of
the Confirm and Cancel one-way operations is invoked
(i.e. a request is received, but no response is sent). The
NULL branch is for the case when Book was not invoked.

Note that a session protocol is an abstraction of the
primitive service’s behavior, since only message exchange-
related events (i.e. sending and receiving) and control-flow
are modeled. Original behavior protocols abstract from
method parameters that are analogous to message content,
and thus session protocols do not model message content.

Moreover, we do not model parallelism in session
protocols (although original behavior protocols [16] support
it), since invocations of a specific primitive service in the
scope of a single session are rarely performed in parallel;

nevertheless, a BPEL web service can interact with several
primitive services in different sessions in parallel.

3.2. Compliance with Session Protocols

To define the compliance of a composite web service C
implemented in BPEL with a stateful primitive web service
Pi equipped with a session protocol Si, the semantics of
session protocols has to be defined first. Formally, a session
protocol is a regular expression upon the alphabet Ai of all
message tokens that occur in Si. Each sequence of the
message tokens, that is specified by a session protocol, is
called a trace. All traces that are specified by Si form the
language L(Si), providing the semantics of the protocol.
Detailed definition of the language of a particular session
protocol can be found in [16]. The language of the protocol
from Sect. 3.1 consists of three traces; this is one of them:

 ?air:BookPort.IsAvailable^,
 !air:BookPort.IsAvailable$,
 ?air:BookPort.Book^,
 !air:BookPort.Book$,
 ?air:BookPort.Confirm^

When C is run, its real communication with Pi can be
formalized as a sequence of message tokens from Ai as well.
Let us denote a message received by Pi from C by a message
token beginning with the ‘?’ symbol, and a message sent by
Pi to C by a token starting with ‘!’. For each run of C and Pi,
the sequence of such tokens (ordered by the time in which
they occurred) formalizes the communication between C and
Pi during the run. Let us denote the set of all such sequences
(for all possible real runs) as L(C, Pi).

Based on the relation between the specified traces (L(Si))
and the sequences denoting the communication during the
real runs (L(C, Pi)), we formally define the compliance of a
composite web service with a session protocol as follows:

Definition (session compliance). A composite web service
C complies with the session protocol Si of a primitive web
service Pi iff L(C, Pi) f L(Si).

E.g., the BPEL code from Sect. 2 is not compliant with the
session protocol from Sect. 3.1 in case of the primitive
service connected over the BookSvcTwo partner link (a call
to Cancel is missing). The trace specified in the BPEL code,
but not present in the language of the protocol, is:

 ?air:BookPort.IsAvailable^,
 !air:BookPort.IsAvailable$,
 ?air:BookPort.Book^,
 !air:BookPort.Book$

4. Checking BPEL against Session Protocols

The proposed technique aims at checking the property of
session compliance between a composite web service
implemented in a limited version of the BPEL language

(details in Sect. 4.1) and session protocols of stateful
primitive web services, as defined in Sect. 3.2. As there
exists no model checker for BPEL that could be changed or
customized to check the session compliance, we decided to
use the following two-step process:

(1) Translation of BPEL implementation of a composite
web service into a Java program using modified version of
the B2J tool (details in Sect. 4.2).

(2) Checking of the Java program with a tool based on
combination of the Java PathFinder model checker and
behavior protocol checker (details in Sect. 4.3).

We decided to use this approach (instead of
implementing our own model checker for BPEL) because
reuse of a well-established model checker is a common
practice in the area of formal verification. The main
advantage is that such a model checker supports complex
heuristics and optimizations; implementing those in our
own tool would be very difficult and time consuming.

We decided to use the Java PathFinder model checker
(JPF) [17] for two reasons: first, it has Java as its input
language; Java is very rich and therefore it is possible to
transform BPEL to Java with minimal loss of information
caused by language difference (however, we remove some
information on purpose as an optimization of checking).
Second, we already had a working JPF-based solution for
checking of correspondence between Java code and
behavior protocols of software components [15] that we
reused with only a minor modification.

4.1. Level of BPEL Support

An input of the first step (BPEL to Java translation) is
the implementation of a composite web service in the
limited version of the WS-BPEL 2.0 language [18], which
is the most recent standardized version of BPEL. The
unsupported features of WS-BPEL 2.0 include:

(i) time-related activities (e.g. onAlarm event, <wait>
activity, etc), since our model checking tool for Java (i.e.
JPF) does not handle time properly,

(ii) handling of faults (e.g. network-related errors), and
(iii) deployment-related information (endpoints and

bindings), since they are necessary only at run-time - for the
purpose of the proposed checking technique, a message
source and destination is uniquely identified by a partner
link name, port type and operation name.

Technically, if an unsupported BPEL construct is found
in the input (BPEL code), it is ignored and a warning is
printed.

4.2. Translation of BPEL into Java

As indicated above, checking of compliance between
BPEL implementation of a composite web service and
session protocols of stateful primitive services involves

translation of BPEL code into a Java program. The principal
requirement upon BPEL-to-Java translation is that it has to
preserve important aspects for compliance checking, i.e.
message exchange-related activities and control-flow
structures, while all the other aspects (e.g. message content)
should be ignored in order to make the Java program as
simple as possible.

Stemming from this requirement, the key ideas of our
approach to translation of BPEL code into a Java program are
(a) to represent message exchange-related basic activities of
BPEL as calls to special methods in Java, (b) to perform
complete abstraction of message content (XML) and data
manipulation operations, and (c) to map each structured
activity of BPEL on its natural counterpart in Java. For the
purpose of translation, a modified version of the B2J tool [1],
which is a part of the Eclipse STP project, is used.

Complete abstraction of message content (XML data) and
data-manipulation operations (like assignment and XPath
expressions) is performed, since session protocols model only
control-flow and message exchange-related events (i.e. no
data), and, moreover, inclusion of the code for manipulation
with XML data in the Java program would cause a significant
growth of the JPF state space size. Technically, XML data-
related constructs of BPEL are either ignored or modeled via
non-determinism (using the Verify class provided by JPF).
The former applies, e.g., to the <assign> activity and the
latter to XPath expressions. Correlations are also ignored in
our checking algorithm, since there is no need to distinguish
between several instances of the same primitive service that
interact with the composite service over partner links with the
same name; inherent assumption is that interaction between
a composite web service and a specific instance of a primitive
service can be uniquely identified by a partner link name.

As to (a) above, each message exchange related basic
activity of BPEL is translated into a call of a specific Java
method. Specifically, activities that cause a message to be
sent (i.e. <invoke> and <reply>) are translated into calls of
the stubSEND method and activities that cause a message to
be received (i.e. <receive> and <invoke>) are translated
into calls of the stubRECEIVE method. Note that for each
<invoke> in the BPEL code, there are calls to both
stubSEND and stubRECEIVE only if an output variable is
specified in the activity (i.e. a reply is expected), otherwise
there is only a call to stubSEND. The stubSEND and
stubRECEIVE methods are empty stubs that are added to the
Java program by the translator tool. As parameters, both
methods get a partner link name, a port type, and an operation
name; therefore, each call to one of these methods uniquely
identifies the corresponding message for the purpose of
compliance checking.

Consequence of (i) modeling message submission and
reception via calls to empty Java methods, (ii) no support for
fault-handling, and (iii) missing support of time in JPF is that
complete abstraction of the behavior of network
communication infrastructure is performed during translation

of BPEL into Java. In particular, all message exchange-
related activities are considered to finish immediately with
a success; e.g., for the <receive> activity, the message to
be received is considered to be already available at the time
the activity is executed (there is no point in modeling a wait
for a message if JPF has no support for time).

Other basic activities (besides <invoke>, <receive>
and <reply>) are either mapped to a natural Java
counterpart (e.g. <exit> is translated to the
System.exit(0); statement) or ignored, resp. not
supported. The latter applies to the <assign>, <wait> and
<empty> activities.

Structured activities are, in general, mapped to their
natural counterparts in the Java language. For illustration,
<flow> is mapped to a set of parallel threads and <while>
is mapped to a loop. Details on the translation of selected
structured activities (not illustrated on the example below)
and further examples are in [14].

All the other possible elements of a scope (i.e. sub-
elements of <scope> or <process>), like fault handlers
and declaration of variables, are either ignored or mapped
onto their Java counterparts in a very similar way to some
other BPEL construct (e.g., event handlers are translated in
almost the same way as the <pick> activity).

For illustration, a fragment of the Java code generated by
translation of the BPEL code from Sect. 2 follows (more
complete version is in [14]):

 public void activity1() {
 activity8(); // <flow>
 activity11(); // <if>
 }

 public void activity8() { // <flow>
activity
 Thread th1 = new Thread() {
 public void run() { activity9(); }
 };
 Thread th2 = new Thread() { ... };
 // threads are started via Thread.start
 // wait till the threads finish (via
calls of Thread.join)
 }

 public void activity9() {// synch. <invoke>
 stubSEND("BookSvcOne",
 "air:BookPort", "IsAvailable");
 stubRECEIVE("BookSvcOne”,
 "air:BookPort", "IsAvailable");
 }

 public void activity11() { // <if> activity
 int if3 = Verify.random(2);

 if (if3 == 0) { /* if branch */ }
 if (if3 == 1) { /* else-if branch */ }
 if (if3 == 2) { /* for missing else */ }
 }

4.3. Cooperation of Java PathFinder with
Behavior Protocol Checkers

As indicated above, the proposed technique aims at
checking the property of session compliance between a
composite web service implemented in BPEL and session
protocols of several primitive services. For the Java program
generated from BPEL code during translation, the original
property (related to BPEL) can be rephrased as compliance of
all possible sequences of calls to the stubSEND and
stubRECEIVE methods with session protocols of the
primitive services.

For checking of a Java program against the given property,
an extension of the approach presented in [15] is used. The
key idea of [15] is to check compliance of a Java program to
a behavior protocol via combination of JPF with behavior
protocol checker (BPC) [10]. Specifically, both checkers
cooperate during traversal of their state spaces: JPF notifies
BPC on execution of important Java byte code instructions
that correspond to behavior protocol events (method
invocations and returns in case of [15]), while traversing the
state space of a Java program, and BPC checks whether the
events form a trace allowed by the behavior protocol. If JPF
notifies BPC about an event that is not allowed at the
particular point in the behavior protocol’s state space, a
violation of compliance between Java code and behavior
protocol is reported. Moreover, JPF can backtrack only if
BPC agrees so that each trace in the behavior protocol is
checked completely (coordination of backtracking is used).

Here the approach of [15] is reused with the following
modifications:

(i) Since a composite web service (implemented in BPEL)
can interact with several stateful primitive services, JPF
cooperates with several instances of BPC in parallel, where
each BPC instance corresponds to a single primitive service
instance “connected” via a partner link and is therefore
identified by the partner link’s name.

(ii) Important byte code instructions with respect to
session protocols are calls of the stubSEND and
stubRECEIVE methods. When JPF detects a call of one of
these methods, it extracts the values of the method’s
parameters (partner link name, port type and operation), and
notifies the BPC instance associated with the partner link
name about the particular event (e.g., ?<port
type>.<operation>^ for a call to the stubSEND method).

(iii) JPF is allowed to backtrack only if all instances of
BPC agree; in a similar way, JPF and all BPC instances have
to reach an end state at the same time.

5. Evaluation

We have created a prototype implementation of the
proposed technique in the BPEL checker tool [13] and
applied it to a case study (Fig. 1), which models a customer

process for booking a flight at an airline service and paying
for the flight via a credit card. Specifically, the case study
involves the AirlineCustomer business process (a
fragment of its BPEL definition is in Sect. 2) and five
primitive web services (Airline Service 1, Airline
Service 2, Payment Terminal, Card Center 1,
Card Center 2).

Let us focus on the interaction between
AirlineCustomer in the role of a composite web service
and Airline Service 1+2 in the roles of stateful
primitive services (pointed to by the BookSvcOne and
BookSvcTwo partner links from AirlineCustomer). A
fragment of the WSDL interface for these primitive services
is presented in Sect. 2 (AirlineService) and their
session protocol is introduced in Sect. 3.1. The BPEL
checker successfully detected a violation of the session
protocol in the interaction between the AirlineCustomer
process and Airline Service 2 (connected to the
process via the BookSvcTwo partner link) - the missing call
to Cancel (end of Sect. 2) was reported.

A consequence of the complete abstraction of the
message content (XML data) and data-manipulation
operations (including XPath expressions), performed during
the BPEL to Java translation (Sect. 4.2), is that spurious
errors may be reported by the BPEL checker. However, if
the abstraction would not be employed, checking of session
compliance between BPEL code and session protocols
might be infeasible in some cases.

One of the typical cases of a spurious error is depicted
on the following example that involves a slightly modified
fragment of the BPEL code from Sect. 2
(AirlineCustomer).

 <if>
 <condition>expr</condition>
 <invoke partnerLink="BookSvcOne"
 operation="Confirm" ... />
 </if>
 <if>
 <condition>not expr</condition>
 <invoke partnerLink="BookSvcOne"
 operation="Cancel" ... />
 </if>

The difference from the original BPEL code in Sect. 2 is
that a separate <if> activity with an inverted condition is
used to guard the call to Cancel, instead of an <else>
branch. As indicated in Sect. 4.2, an <if> activity is
translated to a non-deterministic choice between several
alternatives, including one for the case when the condition
associated with <if> is satisfied and one for the “default”
case (with all conditions - for <if> and all <elseif> - not
satisfied). Thus, when checking the BPEL code fragment
above against the protocol ?air:BookPort.Confirm^ +
?air:BookPort.Cancel^ (a fragment of the session
protocol from Sect. 3.1), the tool may report a spurious error
that involves a call to Confirm followed by a call to Cancel
(if the alternative for the case of satisfied condition is selected
for both <if>s).

Since the BPEL checker does not check whether a
detected error is real or possibly spurious (e.g. via simulation
run driven by the error trace) and also does not provide any
hints with respect to this issue, it is up to the user to manually
examine each reported error in order to find whether it is
spurious or real. Addressing this issue is a future work.

6. Related work

There exist several approaches to behavior verification of
web services implemented in BPEL that aim at checking
various properties of interactions among web services.
However, as far as we know, none of them aims at checking
of session compliance as the technique proposed in this
paper. Short characteristic of selected approaches is provided
below.

In [7], the authors present a technique for checking LTL
properties of multiple interacting web services implemented
in BPEL. The key idea of the technique is (i) translation of
BPEL implementation of each web service into a process
specified in Promela (input language of the SPIN model
checker [8]), so that a complete Promela model is created,
and (ii) checking of the Promela model against LTL
properties using SPIN. The technique performs no abstraction
of message content and data manipulation operations (a
subset of XML Schema and XPath is translated into Promela
as well), and supports message content-related properties.

The technique presented in [6] aims at checking of
correspondence between implementation (in BPEL) and
specification (in Message Sequence Charts - MSC) of a
composite web service with respect to the traces of sent and
received messages during interaction with (primitive) web
services. The key idea is the translation of both BPEL
implementation and MSC specification into the Finite State
Process (FSP) notation, and subsequent checking of trace
equivalence between FSP models of BPEL and MSC using
the LTSA model checker [12].

There are also approaches to service behavior modeling
that try to address sessions explicitly. SCC [2] provides the

Airline
Service 1

Airline
Service 2

Card Center 1
Airline

Customer

Card Center 2

Payment
Terminal

BookPort BookPort

Figure 1: Architecture of the case study

user with powerful mechanisms of session naming and
scoping, inspired by π-calculus. The sessions here allow to
specify complex interactions between the processes (not
only the classic procedure calls). In addition, sessions may
be closed; therefore, interruption, service cancellation, or
update can be specified. SOCK [4] is a formal framework
for service communication and composition. It consists of
three specification languages - the service behavior
calculus, the service engine calculus, and the service system
calculus. Those three languages form three layers of the
framework; sessions are supported on all the layers.

Although both SCC and SOCK are languages for service
specification explicitly dealing with sessions, no tools were
developed so far for verification of SOCK or SCC
specifications. The purpose of the languages is different: to
provide a compact process-algebra-like formal language
for the domain of services allowing theoretical analysis of
services, and also direct interpretation of code written in the
languages as a part of a service implementation.

7. Conclusion and Future Work

In this paper, we presented a technique for checking
session compliance - the compliance of a composite web
service implemented in BPEL with the constraints on the
order of operation invocations on primitive web services
(specified via session protocols). The key idea of the
technique is to translate the BPEL implementation of a
composite web service into Java and then to check the Java
program with a tool based on combination of Java
PathFinder and the behavior protocol checker. We have
implemented the proposed technique in the BPEL checker
tool [13] and illustrated usability of the tool for detection of
violations of the session compliance on a case study.

The main issue of the technique is that spurious errors
may be reported by the checking tool. This is a consequence
of the abstraction of message content (XML data) and data
manipulation operations during the BPEL to Java
translation. As a future work, we plan to address this issue
via partial abstraction of XML data or the well-known
approach of counterexample guided abstraction refinement
(CEGAR) [5].

Acknowledgments
This work was partially by the Czech Academy of

Sciences project 1ET400300504 and partially supported by
the ITEA/EUREKA project OSIRIS Σ!2023.

References

[1] B2J: tool for BPEL to Java translation,
http://www.eclipse.org/stp/b2j

[2] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I.
Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara,

D. Sangiorgi, V. Vasconcelos, and G. Zavattaro: SCC: a
service centered calculus, Proceedings of WS-FM 2006,
LNCS 4184

[3] T. Bures, P. Hnetynka, and F. Plasil: SOFA 2.0:
Balancing Advanced Features in a Hierarchical
Component Model, Proc. of SERA 2006, IEEE CS

[4] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G.
Zavattaro: SOCK: a calculus for service oriented
computing, Proceedings of ICSOC 2006, LNCS 4294

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith:
Counterexample-guided abstraction refinement, Proc. of
12th CAV, LNCS 1855, 2000

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer: Model-
based Verification of Web Service Composition,
Proceedings of ASE’03, IEEE CS

[7] X. Fu, T. Bultan, and J. Su: Analysis of Interacting BPEL
Web Services, Proceedings of WWW’04, ACM

[8] G. Holzmann: The Spin Model Checker: Primer and
Reference Manual, Addison-Wesley, 2003,
http://www.spinroot.com

[9] P. Jezek, J. Kofron, and F. Plasil: Model Checking of
Component Behavior Specification: A Real Life
Experience, Proceedings of FACS'05, ENTCS, vol. 160

[10] M. Mach, F. Plasil, and J. Kofron: Behavior Protocol
Verification: Fighting State Explosion, IJCIS, Vol. 6,
Number 1, ACIS, ISSN 1525-9293, pp. 22-30, 2005

[11] J. Magee, J. Kramer: Dynamic Structure in Software
Architectures, Proceedings of FSE’4, Oct 1996

[12] J. Magee, J. Kramer: Concurrency - State Models and
J a v a P r o g r a m s , J o h n W i l e y , 1 9 9 9 ,
http://www.doc.ic.ac.uk/ltsa/

[13] P . P a r i z e k : B P E L c h e c k e r , 2 0 0 7
http://dsrg.mff.cuni.cz/projects.phtml?p=bpelchecker

[14] P. Parizek, J. Adamek: Modeling and Verification of
Session-Oriented Interactions between Web Services:
Compliance of BPEL with Session Protocols, Tech.
Report No. 2008/2, Dep. of SW Engineering, Charles
University, Jan 2008

[15] P. Parizek, F. Plasil, and J. Kofron: Model Checking of
Software Components: Combining Java PathFinder and
Behavior Protocol Model Checker, Proceedings of
SEW’06, IEEE CS

[16] F. Plasil, S. Visnovsky: Behavior Protocols for Software
Components, IEEE Transactions on Software
Engineering, vol. 28, no. 11, Nov 2002

[17] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda:
Model Checking Programs, Automated Software
Engineering Journal, vol. 10, no. 2, Apr 2003

[18] Web Services Business Process Execution Language
(W S - B P E L) , V e r s i o n 2 . 0 ,
http://www.oasis-open.org/committees/tc_home.php?w
g_abbrev=wsbpel

[19] Web Services Description Language (WSDL),
http://www.w3.org/TR/wsdl

