
Specification and Generation of Environment
for Model Checking of Software Components

Pavel Parizek a,1, Frantisek Plasil a,b,1

a Department of Software Engineering
Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
{parizek, plasil} @ nenya.ms.mff.cuni.cz

b Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic
plasil @ cs.cas.cz

Abstract

Model checking of isolated software components is inherently not possible because
a component does not form a complete program with an explicit starting point. To
overcome this obstacle, it is typically necessary to create an environment of the com-
ponent which is the intended subject to model checking. We present our approach
to automated environment generation that is based on behavior protocols [9]; to
our knowledge, this is the only environment generator designed for model checking
of software components. We compare it with the approach taken in the Bandera
Environment Generator tool [12], designed for model checking of sets of Java classes.

Key words: Software components, behavior protocols, model
checking, automated generation of environment

1 Introduction

Model checking is one of the approaches to formal verification of software
systems that gets a lot of attention at present. Still, there are some obstacles
that have to be addressed, at least partially, before model checking of software
can be widely used in practice. Probably the biggest problem is the size of
state space typical for software systems. One solution to this problem (state
explosion) is the decomposition of a software system into small and well-
defined units, components.

1 This work was partially supported by the Czech Academy of Sciences (project
1ET400300504) and France Telecom under the external research contract number 46127110.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Parizek, Plasil

Nevertheless, a component usually cannot be checked in isolation, because
it does not form a complete program inherently needed to apply model check-
ing. It is, therefore, necessary to create a model of the environment of the
component subject to model checking, and then check the whole program,
composed of the environment and component. The environment should be
created in a way that minimizes the increase of the state space size caused by
the composition.

1.1 Goals and Structure of the Paper

The paper aims at addressing the problem of automated generation of envi-
ronment for model checking of software components implemented in the Java
language. The main goal is to present our approach that is based on behavior
protocols [9] and to compare it with the approach taken in the Bandera En-
vironment Generator tool [12], which is the only other Java focused approach
we are aware of.

The remainder of the paper is organized as follows. Sect. 2 provides an
example to illustrate the problem of environment generation and Sect. 3 in-
troduces the Bandera Environment Generator (BEG) [12]. Sect. 4 starts with
an overview of behavior protocols [9] and then presents the key contribution
- the description of our approach to specification and generation of environ-
ment based on behavior protocols. Sect. 5 provides comparison of the two
approaches and briefly mentions our proof of concept implementation. The
rest of the paper contains related work and a conclusion.

2 Motivation

In order to illustrate how an environment can be created, we present a simple
example - a Java class DatabaseImpl and a handwritten environment for
this class, assuming DatabaseImpl is the intended subject to model checking.
The class implements one interface and requires one internal reference of an
interface type to be set. Therefore, it can be also looked upon as a Database

component with one provided and one required interface.

Key fragments of source code of the DatabaseImpl class look as follows:

public interface IDatabase {

public void start();

public void stop();

public void insert(int key, String value);

public String get(int key);

}

public class DatabaseImpl implements IDatabase {

private ILogger log;

2

Parizek, Plasil

public void start() {

log.start();

}

public void stop() {

log.stop();

}

public void insert(int key, String value) {

...

}

public String get(int key) {

...

}

}

In general, an environment should allow the model checker (i) to search for
concurrency errors (typically reflected by introducing several threads that are
executed in parallel), and (ii) to check all the control flow paths (usually
addressed by a random choice of parameter values for all methods).

Captured by “the important” fragments of its source code, such environ-
ment could take the following form:

public class EnvThread extends Thread {

IDatabase db;

...

public void run() {

db.insert(getRandomInt(), getRandomString());

String val = db.get(getRandomInt());

...

}

}

public static void main(String[] args) {

IDatabase db = new DatabaseImpl();

db.setLogger(new LoggerImpl());

db.start();

new EnvThread(db).start();

new EnvThread(db).start();

...

3

Parizek, Plasil

db.stop();

}

In the example, two threads of control, which enable the model checker
to search for concurrency errors, are created. A random choice of parameter
values for the purpose of checking all the control flow paths is employed as
well (getRandom... calls).

Obviously, creating an environment by hand is hard and tedious work even
in simple cases. A straightforward solution to this problem is to automati-
cally generate the environment from a higher-level abstraction than the code
provides. In Sect. 3 and 4, we present two solutions based on this idea.

3 Environment Generator in Bandera

3.1 Bandera

Bandera [6] is a tool set designed for model checking of complete Java pro-
grams, i.e. those featuring a main method. It is composed of several mod-
ules - model extractor, model translator, environment generator, and model
checker, to name the key of them. The model extractor extracts a (finite)
internal model from Java source code and the model translator translates the
internal model into the input language of a target model checker. Here, the
Bandera tool set supported the Spin and Java PathFinder model checkers
originally, but currently it is intended mainly for a Bandera specific model
checker (Bogor [11]).

3.2 Bandera Environment Generator

The Bandera Environment Generator (BEG) [12] is a tool for automated gen-
eration of environment for Java classes. Given a complete Java program, the
user of the BEG tool has to decompose the program into two parts - the tested
unit, i.e. the classes to be tested, and its environment. Since the environment
part is usually too complex for the purpose of model checking, it is neces-
sary to create an abstract environment. This abstract environment can be
generated from a model created

• either from assumptions the user provided, or

• from a result of code analysis of environment classes (if available).

The model can specify, for example, that a certain method should be called
five times in a row, or that it should be executed in parallel with another
specific method.

Since, usually, there exist no environment classes in case of software com-
ponents, we will further consider only the first option - i.e. that the abstract
environment is generated from user-specified assumptions. For this purpose,
the BEG tool provides two formal notations - LTL and regular expressions.

4

Parizek, Plasil

The actual specification (“environment specification” in the rest of this sec-
tion) takes the form of program action patterns (method calls, assignments,
etc), illustrated below.

An environment specification for the DatabaseImpl class presented in Sect.
2, written in the input language of the BEG tool, could be as follows:

environment

{

instantiations

{

1 LoggerImpl log;

IDatabase db = new DatabaseImpl();

db.setLogger(log);

int x = 5;

}

-- high level specification of the environment behavior

regular assumptions

{

T0: (db.get() | db.insert())*

T1: (db.get(x) | db.insert(5, "abcd"))*

}

}

The instantiations section allows the user to specify how many instances
of a certain type should be created and under which names they can be refer-
enced. In this example, two objects are instantiated - the log instance of the
LoggerImpl class and the db instance of the DatabaseImpl class.

The regular assumptions section contains regular expressions describing
the behavior of the environment with respect to the tested classes. Each
regular expression defines a sequence of actions that should be performed by
a single thread of control. In our example, two threads of control are defined,
both modeling a sequence of calls to the insert and get methods on the
IDatabase interface.

Notice that the whole execution is characterized by the specified threads
(T0, T1) - there is no “main” thread. Consequently, calls to the start and
stop methods on the IDatabase interface cannot be reasonably modeled in
such an environment specification.

The BEG tool also allows to specify parameter values of method calls on
the tested classes. If the value of a parameter is not specified, as in the thread
T0 above, then it is non-deterministically selected from all the available values
of a given type (e.g. from all allocated instances of a given class in the case of
a reference type) during model checking. As a parameter to a method call, it
is even possible to use a variable defined in the instantiations section (such
as x above).

5

Parizek, Plasil

As the BEG tool is not intended specifically for software components, but
rather for plain Java classes, it is necessary to manually specify the environ-
ment for the classes that implement a target component; an alternative would
be to develop a tool for automatic translation of an ADL specification of the
component’s architecture and behavior into the input language of the BEG
tool.

However, since the most recent Bandera release is an alpha version only [6],
not being fully stable yet, we have decided to use the Java PathFinder model
checker (JPF) [13]. Consequently, we faced the problem to create an envi-
ronment generator, since none was available (BEG is not intended for com-
ponents and, moreover, the latest Bandera version does not allow to use the
Java PathFinder as a target model checker any more).

4 Environment Generator for Java PathFinder

We have built our own environment generator for model checking of com-
ponents implemented in the Java language. Our approach stems from the
assumption that components are during design specified in an ADL (Archi-
tecture Description Language), which, in particular, includes specification of
their provided and required interfaces and also specification of their behavior.
The latter is done via behavior protocols [9]. In this section we show how
this behavior specification can be advantageously employed for generating an
environment necessary for component model checking.

4.1 Behavior protocols

A behavior protocol is an expression that describes the behavior of a software
component in terms of atomic events on the provided and required interfaces
of the component, i.e. in terms of accepted and emitted method call requests
and responses on those interfaces.

Fig. 1. The DATABASE and LOGGER components, defined in Sect. 2

A protocol example for the Database component from Fig. 1 is below:

?db.start↑ ; !log.start ; !db.start↓ ; (?db.insert || ?db.get)* ;

?db.stop{!log.stop}

6

Parizek, Plasil

Since this protocol specifies the interplay on the external interfaces of
Database, it is its frame protocol [9]. Informally speaking, it specifies the
Database functionality that starts with accepting request for start call on
db. As a reaction it calls start at log and issues response to the start call
on db. This is followed by accepting insert on db in parallel with get on db

finitely many times. At the end, it accepts a request for a stop call on db

and, as a reaction, it calls stop at log and issues response to the stop call on
db.

Each event has the following syntax: <prefix><interface>.<method>
<suffix> (where the suffix is optional; the events having no suffix are syn-
tactical shortcuts explained below). The prefix ? denotes an accept event
and the prefix ! denotes an emit event. The suffix ↑ stands for a request
(i.e. a method call) and the suffix ↓ stands for a response (i.e. return from a
method). An expression of the form !i.m is a shortcut for !i.m↑;?i.m↓, an
expression of the form ?i.m is a shortcut for ?i.m↑;!i.m↓ and an expression
of the form ?i.m{prot} is a shortcut for ?i.m↑;prot;!i.m↓, where prot is a
protocol. The NULL keyword denotes an empty protocol.

The example above presents also several operators. The ; character is
the sequence operator, * is the repetition operator and || is the or-parallel
operator. Behavior protocols support also an alternative operator + and an
and-parallel operator |. In fact, the or-parallel operator is only a shortcut; e.g.
a || b stands for a + b + (a | b). The | operator denotes all the possible
interleavings of traces that correspond to its operands.

A behavior protocol defines a possibly infinite set of event traces, each of
them being finite.

Each component has a frame protocol associated with it, and a composite
component can have also an architecture protocol [9]. The frame protocol of
a component describes its external behavior, what means that it can contain
only the events on external interfaces of the component. On the other hand,
the architecture protocol describes the behavior of a component in terms of
composition of its subcomponents at the first level of nesting.

4.2 Cooperation of Java PathFinder with the Protocol Checker

When checking a component application specified via ADL with behavior
protocols, it is necessary (i) for each composite component in the hierarchy to
check compositional compliance of subcomponents at the first level of nesting
and also compliance of a frame protocol with an architecture protocol (ii)
and for each primitive component to verify that an implementation of the
component obeys its frame protocol. For the purpose of checking compliance
of protocols, we use the protocol checker [7] developed in our research group,
and for checking that a primitive component obeys its frame protocol, we
use a tool created via cooperation of JPF with our protocol checker [8]. The
tool has to be applied to a program composed of a target component and its

7

Parizek, Plasil

environment.

Communication between JPF and the protocol checker during checking of
the Database component is depicted on Fig. 2. The left part of the schema
shows the JPF traversing the code (state space) of the component and the
right part shows the state space of the protocol checker, which is determined
by the frame protocol of the component. A plugin for JPF, which we have de-
veloped, traces execution of the invoke and return instructions that are related
to methods of the provided and required interfaces of a target component, and
notifies the protocol checker of those instructions in the form of atomic request
and response events. The protocol checker verifies that the trace constructed
from the received events is compliant with the frame protocol of the compo-
nent. When the protocol checker encounters an unexpected event or a missing
event, it tells JPF to stop the state space traversal and to report an error
(counter example) to the user.

Fig. 2. Communication between the Java PathFinder and Protocol Checker

4.3 Modeling the Environment with Inverted Frame Protocol

The environment of a component can be advantageously modeled by its in-
verted frame protocol [1], constructed from the components frame protocol by
replacing all the accept events with emit events and vice versa. The inverted
frame protocol constructed this way forces the environment

• to call a certain method of a particular provided interface of the component
at the moment the component expects it, and

• to accept a certain method call issued on a particular required interface of
the component at the moment the component “wishes” to do so.

The inverted frame protocol of the Database component introduced above
is:

!db.start↑ ; ?log.start ; ?db.start↓ ; (!db.insert || !db.get)* ;

!db.stop{?log.stop}

8

Parizek, Plasil

Our environment generator accepts all syntactically valid frame protocols
with the exception of protocols of the form ?a + !b and !a* ; ?b. The reason
for not supporting frame protocols of the form ?a + !b is that the environment
driven by inversion of such a protocol cannot determine how long it should
wait for the !b event to occur before it emits a call that corresponds to the ?a
event and therefore disables the other alternative (i.e. !b). Protocols of the
form !a* ; ?b are not supported for a similar reason - the environment is not
able to determine when the repetition !a* is going to finish. It is recommended
to use protocols of the form !a* ; !b instead (wherever possible) because in
such case the !b event tells the environment that the repetition has finished.

In order to minimize the size of the state space that JPF has to traverse,
our environment generator performs several transformations of the frame pro-
tocol of the target component before creating the inverted frame protocol and
generating the code of the environment. The key goal of the transformations
is to

• get as many instances of the alternative operator + as possible at the out-
ermost level of protocol nesting. The advantage of this approach is that
all these alternatives can be checked in parallel by multiple instances of
JPF, thus lowering the time requirements for model checking of the target
component.

• reduce the number of repetitions, and also event interleavings caused by the
| operator, even at the cost of accuracy.

For example, our generator transforms

• an iteration over some subprotocol to an alternative between an empty
protocol and a sequence of two copies of the subprotocol (e.g. the protocol
!a* is transformed to the protocol NULL + (!a ; !a)),

• a sequence that contains some alternatives to an alternative between all
possible sequences (e.g. the protocol !a ; (!b1 + !b2) is transformed to
the protocol (!a ; !b1) + (!a ; !b2)),

• an and-parallel operator connecting two subprotocols, both of them being
alternatives, to an alternative between selected pairs of subprotocols con-
nected by the | operator - the pairs are selected in a way ensuring that each
element of the two alternatives is present at least in one of the pairs (e.g.
the protocol (!a1 + !a2) | (!b1 + !b2) is transformed to the protocol
(!a1 | !b1) + (!a2| !b2)), and

• an and-parallel operator with three or more subprotocols to an alternative
between selected pairs of subprotocols, where each pair is connected by the
| operator and followed by a sequence of subprotocols that do not belong
into the selected pair; the pairs are selected in such a way that the first
subprotocol is paired with the second, the second with the third, and so on
(e.g the protocol a | b | c | d is transformed to the protocol ((a | b)

; c ; d) + ((b | c) ; a ; d) + ((c | d) ; a ; b)).

9

Parizek, Plasil

4.4 Specification of Values of Method Parameters

Our solution to specification of the possible values of method parameters is
based on the idea that the user defines the set of values which are to be
considered as parameters. From the implementation point of view, these sets
are to be put into a special Java class serving as a container for all the sets
of values. The value of a method parameter of certain type is later non-
deterministically selected from the set of values considered for that type and
method. In addition to the sets of values common for the whole component,
it is also possible to define sets that are specific to a particular method or
interface.

Below is a fragment of the specification of values for the Database com-
ponent:

putIntSet("IDatabase", "insert", new int[]{1, 2, 5, 10});

putIntSet("", "", new int[]{1, 3, 5, 12});

putStringSet("", "", new String[]{"abcd", "EFGH1234"});

The first statement defines a set of integer values that is specific to the insert
method of the IDatabase interface. The other two statements define the sets
of integers and strings that are to be applied to all methods of the Database

component interfaces.

The main drawback of this approach is that the user has to define on
his/her own the sets of values in such a way that will force the model checker
to check all the control flow paths in the component.

5 Evaluation

In this section we compare the two approaches to modeling the environment
described above, i.e. the approach of the BEG tool and our approach based
on behavior protocols.

The main differences between them are:

• The BEG tool allows to specify parallelism only at the outermost level of
regular expressions that specify behavior of the environment (there is no
such limit in case of behavior protocols).

• Behavior protocols have no support for method parameters, therefore the
possible values of method parameters must be specified separately in a spe-
cial Java class, while the BEG tool allows to specify the values of method
parameters directly in the expressions that specify behavior of the environ-
ment.

It is worth to mention that there is also a difference in that the BEG tool
targets plain Java classes with informally specified provided and required in-
terfaces, while our approach targets the software components having provided
and required interfaces defined in an explicit way.

As a speciality, another advantage of support for specification of parame-

10

Parizek, Plasil

ter values directly in expressions that specify behavior is that it enables the
environment generator to select a proper version of an overloaded method -
or to generate a code that will non-deterministically invoke all versions of the
method that conform to the specification.

We have created an implementation of the environment generator that uses
the inverted frame protocol of a component as a model of the environments
behavior. It aims at components that use the Fractal Component Model [5]
and expects that the Fractal ADL is used to define components. We have
successfully applied our environment generator to a component-based appli-
cation composed of 20 components. Transformations of the frame protocol,
described in Sect. 4.3, reduce the size of the state space determined by the
protocol approximately thirty times in case of more complex components,
therefore lowering also the time required for model checking of the compo-
nents, all that at the cost of accuracy, though. Nevertheless, model checking
of more complex components with environment generated from their frame
protocols with no transformations applied is not feasible. Despite the abstrac-
tions of the environment introduced by transformations of the frame protocol,
the technique is still much more systematic than simple testing. Let us again
emphasize that model checking of a component without an environment is not
possible at all, because JPF is applicable only to complete Java programs, not
isolated software components.

6 Related work

Except for the Bandera Environment Generator [12], we are not aware of
any other approach to specification and generation of environment for model
checking of software components or parts of object-oriented programs. Nev-
ertheless, there exist model checkers for object-oriented programs that do not
need to generate an environment because these tools usually extract a finite
model from a complete program (featuring the main method) and then check
the model - an example of such a model checker is Zing [2].

There are also tools that solve the problem of automatic generation of
environment for fragments of procedural programs (e.g. drivers, libraries, etc).
An example of such a tool is the SLAM [4] model checker, which is a part of the
SDV tool for verification of device drivers for the Windows operating system.
Given a program, the checker creates a Boolean abstraction of the program
(all value types approximated by Boolean) and then checks whether some
desired temporal properties hold for the abstraction. It uses the principle of
refinement to discard errors that are present in the abstraction but not in
the original program (false negatives). The environment for device drivers is
defined by the interfaces provided by the Windows kernel. The SLAM tool
models the environment via training [3]. Here, the basic principle is that, for
a certain procedure P that is to be modeled, it first takes several drivers that
use the procedure P, then it runs the SDV tool on those drivers and therefore

11

Parizek, Plasil

gets several Boolean abstractions of the procedure P, and finally merges all
those abstractions and puts the resulting Boolean abstraction of the kernel
procedure P into a library for future reuse.

Our tool for environment generation is partially based on [10]. The tool
that is described in the thesis, designed for the Bandera tool set, also uses
the inverted frame protocol idea; it is also focused on components compliant
to the Fractal Component Model [5]. We decided not to use this tool mainly
because it generates an environment that increases the state space size quite
significantly, since it does not employ any of transformations described in Sect.
4.3 and also does not provide any means for specification of method parameter
values - all that makes it almost unusable in practice.

7 Conclusion

Direct model checking of isolated software components is usually not possible
because model checkers can handle only complete programs. Therefore, it
is necessary to create an environment for each component subject to model
checking.

In this paper, we have compared two approaches to generating environment
of components, resp. classes - namely the Bandera Environment Generator
(BEG) tool [12] in Sect. 3, and our approach that is based on behavior
protocols [9] in Sect. 4. Main differences between the two approaches lie in
the level of support for parallelism, in support for specification of parameter
values, and in the fact that the BEG tool is focused on plain Java classes while
our approach targets software components with explicitly defined provided and
required interfaces.

As to future work, an automated derivation of sets of values used for non-
deterministic choice of method parameters is our current goal. It is motivated
by the fact that manual definition of such sets requires the user to carefully
capture a way that will let the model checker to check all the control flow
paths in a target component. A viable approach to the derivation of possible
parameter values could be to use static analysis of Java source code (or byte
code).

Acknowledgments

We would like to record a special credit to Jiri Adamek and Nicolas Rivierre
for valuable comments and Jan Kofron also for many hints regarding the
integration of the protocol checker with JPF.

12

Parizek, Plasil

References

[1] Adamek, J., and F. Plasil, Component Composition Errors and Update
Atomicity: Static Analysis, Journal of Software Maintenance and Evolution:
Research and Practice, 17(2005), pp. 363-377

[2] Andrews, T., S. Qadeer, S. K. Rajamani, J. Rehof and Y. Xie, Zing: a model
checker for concurrent software, Technical report, Microsoft Research, 2004

[3] Ball, T., V. Levin and F. Xie, Automatic Creation of Environment Models via
Training, TACAS 2004, 93-107

[4] Ball, T., S. K. Rajamani, The SLAM Project: Debugging System Software via
Static Analysis, POPL 2002, ACM, 1-3

[5] Bruneton, E., T. Coupaye, M. Leclercq, V. Quma, and J. B. Stefani, An Open
Component Model and its Support in Java, In Proceedings of the International
Symposium on Component-based Software Engineering (ICSE 2004 - CBSE7),
LNCS, 3054(2004), May 2004

[6] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby
and H. Zhueng, Bandera: Extracting Finite-state Models from Java Source Code,
ICSE 2000, ACM, 439-448

[7] Mach, M., F. Plasil and J. Kofron, Behavior Protocol Verification: Fighting
State Explosion, International Journal of Computer and Information Science,
6(2005), 22-30

[8] Parizek, P., F. Plasil and J. Kofron, Model Checking of Software Components:
Making Java PathFinder Cooperate with Behavior Protocol Checker, Tech.
Report No. 2006/2, Dep. of SW Engineering, Charles University, Jan 2006

[9] Plasil, F., and S. Visnovsky, Behavior Protocols for Software Components, IEEE
Transactions on Software Engineering, 28(2002)

[10] Potrusil, T., “Specifying Missing Component Environment in Bandera”, Master
Thesis, Department of Software Engineering, Faculty of Mathematics and
Physics, Charles University, Prague, 2005

[11] Robby, M. Dwyer and J. Hatcliff, Bogor: An extensible and highly-modular
model checking framework, In FSE 03: Foundations of Software Engineering,
pp. 267-276, ACM, 2003

[12] Tkachuk, O., M. B. Dwyer and C. S. Pasareanu, Automated Environment
Generation for Software Model Checking, 18th IEEE International Conference
on Automated Software Engineering (ASE03), p. 116, 2003

[13] Visser, W., K. Havelund, G. Brat, S. Park and F. Lerda, Model Checking
Programs, Automated Software Engineering Journal, 10(2003)

13

	Introduction
	Goals and Structure of the Paper

	Motivation
	Environment Generator in Bandera
	Bandera
	Bandera Environment Generator

	Environment Generator for Java PathFinder
	Behavior protocols
	Cooperation of Java PathFinder with the Protocol Checker
	Modeling the Environment with Inverted Frame Protocol
	Specification of Values of Method Parameters

	Evaluation
	Related work
	Conclusion
	References

