
FESCA 2009

Automated Construction of Reasonable
Environment for Java Components

Pavel Parizek, Jiri Adamek, Tomas Kalibera

Distributed Systems Research Group
Department of Software Engineering, Charles University in Prague

{parizek,adamek,kalibera}@dsrg.mff.cuni.cz

Abstract

In software component verification, one of the challenges is model checking of isolated components. The
environment of an isolated component is unknown, and therefore a part of an input to a model checker is
missing. This problem can be addressed via automated generation of an artificial environment — component
and its environment form a complete program that can be verified using common model checkers.
Focusing on concurrency errors in Java components, we propose to automatically generate a reasonable
artificial environment that makes efficient detection of concurrency errors with Java PathFinder possible.
Such an environment executes in parallel those component’s methods that interact via concurrency con-
structs of Java and thus likely contain concurrency errors. We employ static code analysis to identify sets
of methods to be executed in parallel and a metric to order the sets according to the degree of interaction.
Benefits of the technique are illustrated on results of experiments performed on real-life Java components.

Keywords: Software components, model checking, environment modeling, state explosion, concurrency
errors, software metric

1 Introduction

Development of reliable and robust software systems often involves decomposition
of the whole system into components, and application of formal methods, such as
model checking [4], for discovery of bugs in components’ code. In this paper, we
focus on components implemented in Java — we use the term component to denote
all kinds of open systems in Java that have a well-defined interface in the form of a
set of public methods (provided by one or more classes), like libraries and plug-ins.

To support typical development process of component software, it is important
to be able to verify not only the whole component application, but also an isolated
software component. The reason is that the components can be developed indepen-
dently — the real environment of a component (e.g. the rest of an application) can
be unknown at the component development time. Moreover, modular verification —
checking one component at a time — helps to increase scalability of model checking,
since a component typically has a smaller state space than the whole system.

Nevertheless, it is in general not possible to apply model checking directly to
the code of an isolated software component, since it is an open system, while model
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checking works only for closed systems. Component’s behavior depends on the
context in which it is used, i.e. on the way the real environment interacts with
the component. Therefore, a part of the information needed for the verification
is missing. We call this issue the problem of missing environment. In case of Java
components the problem can be illustrated by the fact that common model checkers
for Java (JPF [22], Bogor [18]) work only on complete Java programs with the main
method — in particular, they cannot be applied to isolated components that do not
contain main.

A common solution to the problem of missing environment is to construct an
artificial environment [15]. In the context of verification of Java components, the
artificial environment takes a form of a fragment of Java program that simulates the
behavior of a specific real environment — the artificial environment together with
the component’s code form a complete Java program (closed system) that can be
model checked. The artificial environment typically consists of a driver that calls
methods of the component and stubs for dependencies of the component.

Although the Java code of an artificial environment can be written by hand [10],
the preferred way is to generate it automatically from a high-level model of its
behavior [20][14]. The model can be written by hand or constructed automatically,
e.g., based on the behavior of the component subject to checking [5].

The key challenge of automated environment generation is how to define the
model of behavior of the artificial environment — generation of Java code from the
model is straightforward [20][14]. The important aspects of the behavior model are:
coverage of the component’s code, liability of the verification to state explosion [4],
and automation of the model construction. More specifically, it is in general hard to
construct an artificial environment that (i) exercises the component in a way that
triggers most of the errors in component’s code and thus allows the model checker
to find them, and (ii) is simple enough to allow the model checker to detect at least
some of the errors before it runs out of memory due to state explosion [21].

In this paper, we aim at efficient detection of concurrency errors (deadlocks, race
conditions) in Java components using the Java PathFinder model checker (JPF) [22].
Therefore, in our case the challenge is to decide what the behavior of the artificial
environment should be in order to make it possible for JPF to find at least some
concurrency errors before it runs out of available memory or reasonable time due
to state explosion. Note that although state explosion is typically caused by a high
number of parallel threads in the program and/or by big data domains, we focus
only on the level of parallelism, since big data domains are not a problem in our
case (see the end of Sect. 1 for details).

Focusing on detection of concurrency errors in Java code, we have identified
the following approaches to automated construction of the behavior model of an
artificial environment, which can be employed using the existing techniques:

• Universal environment [6] is the most general possible environment: it calls each
method of a component for an arbitrary finite number of times, and in parallel
with other calls of all the methods (including parallel calls of the same method).
It allows JPF to find all the errors, and can be easily constructed in an automated
way. On the other hand, it is not possible to use such an environment in most
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cases, since verification with JPF is then prone to state explosion due to high
number of parallel threads, even if the well-known approaches for addressing
state explosion are used.

• Random selection of method pairs is based on the fact that race conditions and
deadlocks can be triggered using only two parallel threads in many cases. The
behavior model of an artificial environment defines a sequence of pairs of methods
that must be executed in parallel (a sequence of parallel method pairs), and the
generated environment executes all the pairs in the sequence, one at a time. A
parallel method pair is defined for each pair of component’s methods and the pairs
are ordered randomly — this way, JPF attempts to check parallel execution of all
pairs of component’s methods. The advantages of this approach are (i) relatively
high coverage — all errors triggered by parallel execution of two threads can
be found — and (ii) easy automated generation of the environment’s behavior
model. Checking with JPF is less prone to state explosion than if the universal
environment is used, but traversing the state space of many parallel pairs may
take more time than traversing the state space of a single tuple. Moreover, it is
not certain that an error will be detected by JPF in reasonable time, since the
parallel method pairs are ordered randomly — those involving errors may be at
the end of a sequence of pairs.

• Selection of method pairs via search for suspicious patterns is an approach for
construction of the environment’s behavior model that we first proposed in [13].
It is based on heuristic static analysis of code that searches for specific suspi-
cious concurrency-related patterns in the Java byte code of pairs of component’s
methods. The environment’s behavior model is defined as a sequence of parallel
method pairs, which involves only those method pairs that contain potential con-
currency errors according to the static analysis. The technique typically makes
the detection of concurrency errors in Java code with JPF possible in reasonable
time. However, it also has a drawback — it supports only patterns that involve
pairs of Java methods and, naturally, the supported patterns do not cover all pos-
sible concurrency errors in Java. Therefore, the coverage is lower than in the case
of universal environment and random method pairs — some errors are detected
in low time, but other are not found at all.

All three approaches have certain drawbacks with respect to coverage of com-
ponent’s code, liability of checking with JPF to state explosion, and automation of
model construction. For example, checking with universal environment is prone to
state explosion, while use of patterns allows to find only some concurrency errors.

Therefore, we propose a technique for automated construction of the reasonable
model of environment’s behavior that addresses the drawbacks of the approaches
described above. The key idea of the technique is construction of the environment’s
behavior model directly from the component’s Java code via combination of:

(i) a simple static analysis that acquires specific information about interaction
among component’s methods via concurrency-related constructs of Java (e.g. ac-
cesses to shared variables), and

(ii) a software metric that measures the degree of interaction among methods.
To be more specific, only those pairs (and sets) of methods, whose parallel
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Fig. 1. The whole verification process — the big box on the right side represents the construction of reason-
able artificial environment, and the smaller boxes inside it show the concrete approach to the construction.

execution should be checked with JPF for the presence of concurrency errors, are
selected by the static analysis and metric — the behavior model then defines a
sequence of the selected parallel pairs and sets.

Technically, we express the behavior model of the reasonable artificial environ-
ment in behavior protocols [16][14], which is a formalism for component behavior
specification developed in our group. Values of component’s method parameters
have to be provided by the user in a Java class that works as a container for the
values (see [14] for details). The user is responsible for defining the smallest possible
sets of parameter values that cover all control-flow paths in component’s code —
this way, big data domains (one of the causes of state explosion) can be avoided.
Having the behavior model defined in behavior protocols and the specification of
parameter values in a Java class, the environment generator [12] is used to generate
the Java code of the artificial environment from the model, and then JPF is applied
on the complete program composed of the component and its artificial environment
in order to find actual concurrency errors in the component’s code (in case there
are some). The whole process is shown in Fig. 1.

To summarize, the main contribution of this paper is a technique for efficient
detection of concurrency errors in Java code of isolated components with JPF,
which involves (i) automated generation of a reasonable artificial environment (Java
code) from its behavior model defined in behavior protocols, and (ii) automated
construction of the behavior model via static analysis and software metric.

The rest of the paper is structured as follows. Section 2 introduces a simple
example that is used for illustration of the key ideas of the technique. Section 3
presents the details of the proposed technique — in particular the software metric
that measures degree of interaction among Java methods via concurrency constructs.
Section 4 provides an evaluation of the technique. The rest of the paper contains
related work and conclusion.
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2 Running Example

Throughout the whole paper, we illustrate various aspects of our technique on
Java code of a simple component OrderProcessor (Fig. 2) — its code is free of
concurrency errors for the purpose of simplicity.

public class OrderProcessorImpl implements IOrderProcessor {
private Map orders = new HashMap();
private Map invoices = new HashMap();

public int placeOrder(int count) {
synchronized (orders) {
Order o = new Order(getId(), count, false);
orders.put(o.id, o);
return o.id;

}
}

public double confirmOrder(int id) {
synchronized (orders) {
synchronized (invoices) {
Order o = (Order) orders.get(id);
o.shipped = true;

Invoice i = new Invoice(o.id, o.count);
invoices.put(i.orderId, i);
return i.price;

}
}

}

public void payOrder(int id, double money) {
synchronized (invoices) {
Invoice i = (Invoice) invoices.get(id);
if (i.price <= money) i.paid = true;

}
}

}

Fig. 2. Java code of the OrderProcessor component

Note that the placeOrder and payOrder methods do not interact via concur-
rency constructs of Java, since they access different shared variables and do not use
a common lock object — the former accesses the orders variable, while the latter
accesses only invoices.
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3 Construction of the Behavior Model of a Reasonable
Environment

The idea behind our technique is that a concurrency error can occur during parallel
execution of two or more Java methods only if the methods interact via concurrency-
related constructs of Java, e.g. if they access the same shared variable. Extending
this observation to a heuristic, we assume that high interaction among methods
makes concurrency errors more likely — Java code of the methods with high in-
teraction contains a high number of concurrency-related constructs that might be
used in a wrong way.

We define the degree of interaction among Java methods as a rigorous assessment
(via a software metric) of mutual interaction among the methods via concurrency-
related constructs of Java. Technically, Java methods feature mutual interaction, if
their implementations use the following constructs:

• read/write accesses to shared variables — objects, fields, local variables and array
elements,

• mutual exclusion via synchronized blocks and methods on the same objects
(monitors), and

• synchronization via calls of the wait and notify methods on the same monitors.

Nevertheless, both synchronized blocks and calls of wait/notify methods can
be considered as special cases of accesses to shared variables, since in Java byte
code, locking and unlocking operations (corresponding to a synchronized block),
as well as the wait and notify calls, involve accesses to the shared object that
represents the monitor. Therefore, it is possible to generalize the concurrency-
related interaction among Java methods to read/write accesses to shared variables.

The obvious idea is then to assess the degree of interaction among Java methods
via a metric that takes into account the number of accesses to shared variables in
the byte code of the methods. We propose a new software metric, shared variable
accesses (SVA), for a set of Java methods.

In general, the algorithm for construction of the behavior model of a reasonable
environment takes as an input a list of methods, in which each method of the given
component occurs at least twice — this is necessary to allow application of the SVA
metric on two instances of the same method and thus to allow detection of con-
currency errors in parallel execution of two or more instances of the same method.
However, for simplicity we explain the algorithm only for a set S of methods. Gen-
eralization to a list is straightforward, e.g. via adding different suffixes to elements
that correspond to the same method. The actual process of model construction
consists of the following four steps:

1) Identification of shared variable accesses: Simple static analysis is used to
acquire all necessary information about shared variable accesses in Java byte code
of methods in S, i.e. to provide inputs for the SVA metric — details in Sect. 3.1.

2) Metric value computation: The value of the SVA metric is computed for each
subset Si of the set S (Sect. 3.2) — subsets of S that contain methods featuring no
interaction (identified by the zero value of the metric) are dropped, since absence
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of any interaction eliminates the possibility of a concurrency error.
3) Ordering and pruning of subsets: Remaining subsets of S are sorted according

to their SVA metric’s values in descending order, forming an ordered list L — the
order of application of JPF to the subsets, with the purpose of checking parallel
execution of methods in each subset, is determined this way. The list L is then
pruned: an element Li corresponding to Si is removed from L if there exists an
element Lj (corresponding to Sj) with higher metric’s value such that Si ⊆ Sj ,
since (i) checking of parallel execution of methods in Lj would find all the errors
that would be detected by checking parallel execution of methods in Li, and (ii) Li
would be checked after Lj because of the ordering.

4) Generating environment’s behavior model and code: The pruned and ordered
list L is expressed in the formalism of behavior protocols, yielding a model of envi-
ronment’s behavior, and the model is used as an input for the environment generator
that generates the corresponding Java code.

The rationale behind selection of several subsets of S instead of using their union
is that, in general, checking of parallel execution of all methods in the union may
not be realistic due to state explosion, while checking of some of the subsets may
be realistic. Ordering prioritizes those method subsets that have a high value of
the metric and therefore more likely feature a concurrency error, with the goal of
detection of the error in low time and memory. In particular, parallel execution of
methods in the subset with the highest SVA metric value is checked first by JPF —
in an ideal case, this subset contains the methods whose parallel execution leads to
a concurrency error (assuming there is an error in the component’s code).

In case of the simplified OrderProcessor component (Sect. 2), which provides
methods in the set SOP = {placeOrder, confirmOrder, payOrder}, the result of
the steps 1-3 can be e.g. the list LOP = ( {placeOrder, confirmOrder, payOrder},
{placeOrder, confirmOrder}, {confirmOrder, payOrder} ) that contains selected
subsets of SOP — the actual order of elements in LOP depends on the metric.
Nevertheless, the set {placeOrder, payOrder} is not included in LOP , since these
two methods do not interact via Java concurrency constructs.

3.1 Identification of Shared Variable Accesses via Static Analysis

The purpose of static analysis is to provide all the information about Java byte code
of component’s methods, which the SVA metric needs as an input. Specifically, the
analysis provides:

• the set of component’s methods, whose size is expected to be in the interval
[2,∞), since parallel execution of less than two methods does not make sense,

• the list of shared variables, i.e. variables that are accessed by any two or more
methods from the set (size of the list is in [0,∞)), and

• the number of accesses to each shared variable in each method from the set —
obviously, the number has to be in [0,∞).

Given a Java class that implements a component, the analysis is applied sepa-
rately on each method. It involves (i) construction of the control-flow graph of the
method in a similar way to [23], and (ii) a linear scan of Java byte code instructions
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in each control-flow path, which identifies all shared variable accesses in the paths.
An access to a shared variable is represented by any instruction that either reads
the content of a variable from the shared memory or writes to such a variable. Since
the number of shared variable accesses may differ over control-flow paths, we define
the number of shared variable accesses for a method as an average of the numbers
for all control-flow paths. Typically, the numbers for different control-flow paths
are roughly the same and thus the average is a good approximation.

Note, however, that the static analysis is in general imprecise, since it works
only with static types and names of the shared variables. There are two reasons for
that: (1) the ASM library [1], which is used by the analysis, provides no additional
information on runtime values of the variables, and (2) we decided not to perform
any complex data-flow analysis for the purpose of efficiency. A consequence of this
imprecision is that the analysis may report ”spurious interactions”, i.e. it may
report that two methods interact via accesses to a common shared variable when
they actually access different variables with the same types. On the other hand, the
analysis is conservative — it won’t miss any interaction via concurrency constructs
of Java, since use of types results in an over-approximation of the actual behavior.

3.2 Metric for Degree of Interaction between Concurrent Methods

When designing the SVA metric, we have identified the following three choices,
which determine whether and to what extent the metric will prioritize (i.e. produce
higher values for):

(C1) low or high (or any) number of methods in a set;
(C2) extreme sharing of a specific variable over uniform sharing of the variable,

where extreme sharing means high number of accesses to the selected variable in one
method and low number of accesses to the variable in other methods, and uniform
sharing means relatively high number of accesses to the variable in all the methods;

(C3) extreme sharing of a single variable by all methods over uniform sharing
of all variables by all the methods.

Nevertheless, we believe that realization of the choices cannot be done at the de-
sign time of the metric and without knowledge of the component subject to checking,
since different options of the choices may be appropriate for different components —
it should be possible to realize all three choices (C1, C2, C3) at run-time. Therefore,
we have decided to implement the SVA metric via a parameterized function.

The inputs of the function are information about Java byte code of all methods
in a given set (acquired by static analysis), and the output of the function is a single
real number in the interval [0,∞) that expresses the degree of interaction among
methods in the set.

In order to reflect the choices C1, C2 and C3, the function implementing the
SVA metric was designed to have three independent parameters (α, β, and γ), which
allow to configure the metric to a great extent. To be more specific,

• the value of the parameter α determines whether extreme sharing (for α > 0.5)
or uniform sharing (for α < 0.5) of a variable is preferred and to what degree,

• the value of the parameter β determines whether extreme sharing of one variable
(for β > 0.5) or uniform sharing of all variables (for β < 0.5) is preferred, and
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• the value of the parameter γ determines whether low or high (or any) number of
methods is preferred, and to what degree.

Regarding the parameters’ domains, we decided to use the interval [0, 1] for all three
parameters to allow easy tuning of metric’s behavior for different components.

Important aspect of the choices C2 and C3 is that they are of a similar nature —
specifically, both of them involve selection of a representative element from a given
set according to the value of a specific parameter (α or β), where the elements of the
set quantify a certain phenomenon — the number of accesses to a shared variable
in our case — and the selected value characterizes the whole set. For example,
the selected value can be median (maximum, minimum) of all elements of the set.
In both cases (C2 and C3), we decided to use the quantile function. Technically,
P−quantile over an ordered data set identifies a value that divides the data set in
two parts: one part contains the low 100P % of the data set and the other part
contains the rest. In particular, 0.5−quantile corresponds to median, 0−quantile to
minimum and 1−quantile to maximum. By changing the values of both α and β, it
is possible to configure the SVA metric to prefer either extreme or uniform sharing.

As for the choice C1, we had to find an expression that allows increasing and
decreasing of the metric’s value according to the number of methods and value of the
parameter γ. Specifically, we were looking for an injective and continuous function
that maps the number of methods in [2,∞) and value of γ in [0, 1] to a real number in
the interval [0,∞). From the many functions satisfying this requirements we picked
|M |tan(2γ−1), where M stands for the given set of methods. If tan(2γ − 1) < 0 then
low numbers of methods are preferred, and vice versa.

Nevertheless, despite all the possibilities of the SVA metric’s configuration, the
following should always hold: if the value of the SVA metric for a method set M1

is higher than the metric’s value for a set M2 (assuming the same configuration is
used in both cases), then methods in the set M1 involve higher degree of interaction
than the methods in the set M2.

Following all the reasoning above, the function implementing the SVA metric
has the following form, where qX stands for X−quantile, M stands for the given
set of Java methods, V stands for the set of all variables shared by at least two
methods in the set M , and Ai,j denotes the number of accesses to the variable Vi
in the method Mj :

qβ (qα (Ai,j , j = 1..|M |) , i = 1..|V |) · |M |tan(2γ−1)(1)

The function is evaluated via a three-step process. At first, a representative
number of accesses is selected for each variable Vi from the ordered list of numbers
of accesses to Vi in all the methods in M via the α−quantile of Ai,j , j = 1 . . . |M |.
Then, a representative number of accesses to any shared variable from the set V in
any method is selected via β−quantile of the ordered list of representative numbers
of accesses to individual variables. Finally, the intermediate result computed so far
is multiplied by the sub-expression |M |tan(2γ−1) in order to take the size |M | of the
method set and the value of γ into account.

When the value of the SVA metric is computed for each subset of the given set of
methods, the ordered list of method subsets is created — subsets are ordered accord-
ing to the metric’s value in descending way. Note that the values of the SVA metric’s
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parameters (α, β, and γ) affect only the order of method subsets in the list, not the
inclusion or exclusion of a specific subset. E.g. in case of the OrderProcessor com-
ponent (Sect. 2), use of the values α = 1, β = 1, and γ = 0.107301 (tan(2γ−1) = −1
in this case) results in the order ( {placeOrder, confirmOrder}, {confirmOrder,
payOrder}, {placeOrder, confirmOrder, payOrder} ), while use of the values
α = 0.5, β = 0.5, and γ = 0.5 (tan(2γ − 1) = 0 in this case) results in the
order ( {placeOrder, confirmOrder, payOrder}, {placeOrder, confirmOrder},
{confirmOrder, payOrder} ) — the main reason behind the difference is that
smaller sets of methods are preferred in the first case due to the value of γ.

4 Evaluation

In order to perform evaluation of the proposed technique, we have developed a
prototype tool that integrates our implementation of the static analysis and SVA
metric with JPF and the Environment Generator for JPF [12].

The prototype tool works in a fully automated way. As an input, it accepts

• Java code of the component subject to checking (e.g. a group of Java classes),
• list of public methods of the component that can be executed in parallel (parallel

methods),
• a sequence of methods that have to be called during initialization of the compo-

nent; this is empty in many cases (when no explicit initialization is necessary),
• specification of methods’ parameter values in a Java class that works as a con-

tainer for the values [14], and
• the values of the SVA metric’s parameters.

For the given component, our tool creates the reasonable artificial environment (Java
code) and then runs JPF on the complete Java program composed of the component
and its environment. Since the technique aims at detection of concurrency errors,
we have configured JPF to search only for deadlocks and race conditions.

Among the questions that should be answered by experimental evaluation of the
SVA metric, we have identified the following three as the most important:

1) Does the proposed technique really make efficient detection of concurrency
errors in Java components with JPF possible ?

2) Does the proposed technique give better results than the alternative ap-
proaches described in Sect. 1 — random selection of method pairs and search for
suspicious patterns — and if so, in what respect ?

3) What combinations of values of the SVA metric’s parameters should be used
in order to minimize time and memory requirements of detection of concurrency
errors in Java code with JPF ?

To answer these questions, we have performed a number of experiments on two
real-life Java components. We have used the ConcurrentHashMap class (2000 lines of
code (loc) in Java) from the implementation of the java.util.concurrent package
in GNU Classpath (version 0.97.1) [8] and the Daisy file system [17] (800 loc), which
was used as an assignment for the challenge problem at the CAV/ISSTA 2004 event
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— the DaisyDir class is used as an entry point.
The Daisy file system contains concurrency errors prepared by author (S. Qadeer)

in advance for the purpose of evaluation of various verification tools. In case of
ConcurrentHashMap, we have manually injected an error (race condition) via re-
moval of calls of lock() and unlock() in the size method.

4.1 Configuration of Experiments

We have performed experiments for the following kinds of artificial environments,
all based on parallel execution of particular sets or pairs of methods:

• random pairs — pairs of methods selected randomly,
• patterns — pairs of methods selected via search for suspicious patterns [13],
• ordered pairs — pairs of methods selected and ordered via static analysis and the

SVA metric, and
• ordered lists — lists of methods selected and ordered via static analysis and the

SVA metric.

Selection and ordering of methods in both ordered pairs and ordered lists is per-
formed via the algorithm described in Sect. 3 — the difference is that use of ordered
lists means selection of lists of arbitrary size, while use of ordered pairs means se-
lection of lists of size 2.

In case of ordered pairs and ordered lists, we have performed several experi-
ments for different configurations of the SVA metric in order to find the effect of
different values of the SVA metric’s parameters on time and memory complexity of
JPF checking. We have identified several combinations of values of the SVA met-
ric’s parameters that represent reasonable defaults. Name of each combination of
parameter values consists of three letters that denote the selected values: the first
letter corresponds to the parameter α, the second corresponds to β and the third
to γ. We selected the following three values for the parameters α and β:

• the value of 0 corresponding to U (for preference of uniform sharing),
• the value of 1 corresponding to E (for preference of extreme sharing), and
• the value of 0.5 corresponding to C (standing for central, i.e. for something

between extreme and uniform sharing).

For γ, we selected only two values:

• the value of 0.5 corresponding to letter N (for no dependency on the size of a
method list; tan(2× 0.5− 1) = 0 in Expr. 1), and

• the value of 0.107301 corresponding to S (for preference of smaller lists of methods;
tan(2× 0.107301− 1) = −1 in Expr. 1).

For illustration, the name EES means that the value of α is 1, value of β is 1 and
the value of γ is 0.107301. Note that only the value of 0.5 (letter N) is used for the
parameter γ in case of ordered pairs, since the number of methods is always equal
to 2 — there is no need to express the dependence on the size of a list of methods.

Since the proposed technique aims at making detection of concurrency errors
possible in reasonable memory and time, we have configured the experiments in
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such a way that the time and memory available for JPF are both limited — the
limits are set to 1024 MB and 4 hours. We have set these limits on the basis of
initial experiments.

All the experiments were performed on the following configuration (HW & SW):
PC with 2xDualCore CPU (Intel) at 2.3GHz and 4GB RAM, Gentoo Linux with
all the latest updates available in Oct 2007, Sun Java SDK build 1.6.0_02-b05
(64-bit, mixed mode). Regarding Java PathFinder, we used the current version as
of Oct 2007 and turned partial order reduction on for each experiment.

4.2 Results of Experiments

Results of the experiments that we have performed are listed in Table 1.
The characteristics of each experiment that we measured are total time in sec-

onds and amount of memory (in MB) needed by JPF. Total time includes the time
needed to construct the artificial environment (and its behavior model, i.e. time
needed to perform static analysis and compute the SVA metric) and time needed
by JPF to find an error.

The table contains also the column ’> Limit’, which contains the ratio of the
number of JPF runs that exceeded one of the limits to the number of all JPF runs
(e.g., 9/24) or 0 if no JPF runs exceeded the limits. The columns ’Time’ and
’Memory’ contain average results for successful JPF runs — the value is set to n/a,
if no JPF runs were successful (i.e. all runs exceeded one of the limits). If no
error was detected in a specific experiment, e.g. due to very aggressive selection
of method pairs or lists, then the symbol ”-” is used, and time and memory are
provided in parentheses.

4.3 Discussion of Results

The results of experiments (Table 1) show that the proposed technique — use
of an artificial environment constructed on the basis of the SVA metric — may
significantly reduce the time and memory needed for detection of concurrency errors
in Java components with JPF with respect to the alternative approaches (random
selection of method pairs and search for suspicious patterns), as can be seen in
the case of the Daisy file system. Nevertheless, since our technique is based on
heuristic, it is not realistic to expect that it will give better results in all cases —
e.g. checking with the artificial environment based on random pairs needs slightly
less time and memory than ordered pairs (and significantly less than ordered lists)
for ConcurrentHashMap.

As for the SVA metric’s parameters, the results of experiments show (i) that
use of different parameter values may yield very different results, and (ii) that the
best option with respect to efficient detection of concurrency errors would be to use
ordered pairs or ordered lists with those combinations of values of the SVA metric
parameters that prefer extreme sharing (i.e. EES and EEN). Again, since the SVA
metric is based on a heuristic, it is not realistic to expect that the combinations EES
and EEN will give the best results for all components.
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Daisy File System ConcurrentHashMap

Time Memory > Limit Time Memory > Limit

Ordered pairs

EEN 1 49 0 94 313 0

CCN 1 51 0 95 306 0

UUN 9783 1023 0 89 303 0

Ordered lists

EEN 1 52 0 411 369 0

EES 1 49 0 4332 580 0

CCN 1 47 0 4343 411 0

CCS 1 47 0 4505 622 0

UUN n/a n/a 2/2 414 368 0

UUS 9782 1023 0 64 229 0

Patterns 1 51 0 - (57) - (165) 0

Random pairs 1715 310 9/24 65 169 0

Table 1
Results of experiments

5 Related Work

Although lot of research has been done in model checking of software components
implemented in mainstream languages like Java and C (see, e.g., [7] and [3]) and
construction of artificial environment for model checking of components [15][20][21],
we are not aware of any other approach that attempts to make model checking —
and, in particular, detection of specific errors in code — feasible and possible in
limited time and memory via automated reduction of environment’s complexity.

Well-known approaches to addressing state explosion, when it is caused by a high
number of parallel threads, include partial order reduction [4] and heuristics for state
space traversal [9] — however, these techniques can be applied only during model
checking of complete programs, not to the construction of an artificial environment
for an isolated component.

The approach to environment construction described in [21] uses Bandera En-
vironment Generator (BEG) [20] for automated generation of a driver (Java code)
from the behavior model provided by the user and automated extraction of stubs
from existing implementation of real environment (if available) via static analysis.
The key difference from our approach is that we support completely automated
generation of reasonable behavior model of the artificial environment, while in case
of [21] the reasonable behavior model has to be specified by hand at least for the
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driver – the hard part would be to manually identify potential concurrency errors
and define model of such an environment that would (i) trigger all the errors and
(ii) involve reasonably low number of parallel threads.

Similarly, we are not aware of any concurrency-related complexity metrics for
modern object-oriented programming languages (C++, Java). Although there exist
several approaches to measuring the complexity of concurrent programs in Ada ([11],
[19]), none of them could be used instead of our SVA metric. In particular, they
either measure the control-flow complexity of concurrent programs [11] or aim at
Ada-specific constructs like active rendezvous [19].

6 Conclusion

We proposed a new technique for efficient detection of concurrency errors in Java
code of software components using the Java PathFinder model checker (JPF). The
key idea of the technique is automated generation of a reasonable artificial envi-
ronment for isolated components on the basis of static analysis of Java byte code
and the new software metric (SVA) for sets of Java methods. The static analy-
sis identifies the sets of component’s methods that interact via concurrency-related
constructs of Java (e.g. accesses to shared variables) and the SVA metric orders
the sets according to the degree of interaction among methods. The artificial en-
vironment is then generated in such a way that parallel execution of methods in
the set with the highest SVA metric’s value is checked first by JPF in order to find
concurrency errors in less time and memory.

Our experiments with several real-life Java components show that the proposed
technique may give significantly better results than the alternative approaches (ran-
dom pairs of methods, search for suspicious patterns) for some components — in
particular, it makes detection of concurrency errors with JPF possible in limited
time and memory, if JPF is applied to the complete program composed of the com-
ponent and the reasonable environment constructed on the basis of the SVA metric.
It is, however, not realistic to expect that the technique will give better results
for all components, since it is based on a heuristic. Note also that the technique
does not perform exhaustive verification and therefore can only be used to show
presence of bugs in the code, not their absence — in particular, it will not discover
concurrency errors that are caused by a specific complex sequence of method calls.

Although the technique proposed in this paper aims at components implemented
in Java, it can be ported to another programming language (e.g., C or C#), provided
a model checker that supports verification of multi-threaded programs written in
the language is available.

In future, we plan (i) to employ more precise static analysis of Java code (e.g.
points-to and shape analyses) in order to provide more accurate assessment of in-
teraction among methods, and (ii) to design several versions of the SVA metric
using different functions and compare all the versions on several components. We
would also like to perform more extensive evaluation of the proposed approach on
a greater number of components, provided we will have complex components that
contain some concurrency errors — usage of fault seeding techniques (e.g. [2]) is one
of the options to get such components.
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