
PANDA: Simultaneous Predicate Abstraction and
Concrete Execution

Jakub Daniel and Pavel Parı́zek

Charles University in Prague, Faculty of Mathematics and Physics,
Department of Distributed and Dependable Systems

Abstract. We present a new verification algorithm, PANDA, that combines pred-
icate abstraction with concrete execution and dynamic analysis. Both the concrete
and abstract state spaces of an input program are traversed simultaneously, guid-
ing each other through on-the-fly mutual interaction. PANDA performs dynamic
on-the-fly pruning of those branches in the abstract state space that diverge from
the corresponding concrete trace. If the abstract branch is actually feasible for a
different concrete trace, PANDA discovers the covering trace by exploring differ-
ent data choices. Candidate spurious errors may also arise, for example, due to
overapproximation of the points-to relation between heap objects. We eliminate
all the spurious errors using the well-known approach based on lazy abstraction
refinement with interpolants. Results of experiments with our prototype imple-
mentation show that PANDA can successfully verify programs that feature loops,
recursion, and manipulation with objects and arrays. It has a competitive perfor-
mance and does not report any spurious error for our benchmarks.

1 Introduction

Program verification techniques based on predicate abstraction and iterative refine-
ment have been the subject of extensive research. The set of popular approaches in-
cludes counterexample-guided abstraction refinement (CEGAR) [11] and lazy abstrac-
tion with interpolants [1,16,18], which are implemented in tools such as BLAST [6] and
CPACHECKER [8]. Although these approaches are successful in verifying programs
with predominantly acyclic control-flow, programs containing loops with many iter-
ations and programs with arrays pose a challenge to them. The initial abstraction is
usually too coarse to capture only the feasible executions of a loop. Therefore, these
kinds of approaches are forced to repeatedly refine the abstraction and effectively un-
roll the loop. Many of the unrollings are incomplete, and the corresponding traces are
spurious because they exit the loop prematurely.

Each step of abstraction refinement is considerably costly because it usually in-
volves expensive SMT calls, and therefore use of refinement makes a verification pro-
cedure rather inefficient in this setting. More recent techniques (e.g., SMASH [14])
complement the abstraction refinement with some kind of underapproximating analysis
(e.g., testing) in order to rule out spurious traces and to focus directly on the complete
unrollings with proper number of loop iterations. Some of the recent approaches, such
as DASH [5] implemented in the tool YOGI [20], in fact alternate between predicate

2 J. Daniel and P. Parı́zek

abstraction and concrete execution. Tests always explore a feasible number of loop iter-
ations, and therefore spurious traces that would otherwise cause refinement are avoided,
saving many calls to SMT. In general, the combination of abstraction with testing pre-
serves the benefits of each approach while mitigating their respective weaknesses.

Example 1. Consider the small example program in Figure 1. The function findGreater
searches the array a of integer values and returns the index of the first value that is
greater than t. If no such value is present in a, then the length of the array is returned
instead. The program further contains a procedure main that asserts the correct behavior
of findGreater. The function loadUnknownArray creates an array of arbitrary integer
values with a statically given length and stores it into the variable a. After the call of
findGreater(a, 10), the procedure main asserts the desired property of the returned value.

1 void main (S t r i n g [] args) {
2 i n t [] a = loadUnknownArray () ;
3 i n t i = f i ndGrea te r (a , 10) ;
4 assert i == a . leng th | | a [i] > 10;
5 }
6

7 i n t f i ndGrea te r (i n t [] a , t) {
8 for (i n t j = 0 ; j < a . leng th ; j ++) {
9 i f (a [j] > t) return j ;

10 }
11 return a . leng th ;
12 }

Figure 1. Example program

Both CEGAR and lazy abstraction, as implemented for example in BLAST [6],
would struggle analyzing the loop at lines 8-10 in Figure 1 provided the array was large
enough. They would iteratively discover spurious traces that exit the loop prematurely,
and rule out the traces one by one in separate refinement steps by deriving predicates
that relate j to a specific constant. On the other hand, approaches like DASH employ
testing in order to find the correct number of loop iterations. A run of a test always
represents a feasible execution and thus never yields spurious behavior. Furthermore,
concrete execution is typically cheap because it does not use expensive SMT calls.

Based on the same observations, we introduce a new technique that combines pred-
icate abstraction with concrete execution. We propose a verification algorithm PANDA,
which performs abstract state space traversal that is augmented with simultaneous con-
crete execution in order to eliminate spurious abstract traces on-the-fly. The predicate
abstraction and the concrete execution guide each other during the traversal. Usage of
concrete execution enables PANDA to faithfully capture the behavior of programs writ-
ten in mainstream object-oriented languages, and to support features of such programs
that are hard to model with abstraction predicates. It also allows PANDA to prune infea-

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 3

sible abstract traces that arise due to the overapproximating predicate abstraction, and
thus greatly reduces the number of necessary refinement steps.

The state space is constructed on-the-fly during the systematic traversal by unrolling
the control-flow graph of the program. In each state, all possible outgoing transitions are
determined using the overapproximate abstract information, and then every transition
is explored using both concrete and abstract execution. The complete reachable state
space of a given program is covered in this way.

Although pruning based on concrete execution eliminates some spurious traces, it
may not prune everything for two reasons: (1) consistency between abstract and con-
crete executions is checked only locally, and (2) concrete execution still allows for non-
determinism (see Section 3). Therefore, the state space traversal procedure may still
report a spurious error. To address this problem, PANDA uses the well-known approach
of lazy abstraction with iterative refinement that is based on interpolants computed for
the spurious counterexample [16].

In the case of our example program, PANDA eliminates the traces that are spurious
due to an infeasible number of the loop body unrollings (at line 8) without resorting to
iterative refinement. The algorithm explores all the feasible traces — more specifically,
one trace returning from the function findGreater at line 9 for every value of the index
j between 0 and the length of the array a, and one trace returning from findGreater
through line 11.

We implemented the PANDA approach in a tool with the same name. Unlike most
of the tools we target Java and not C. PANDA builds on concrete state space traversal
provided by Java Pathfinder [25], and simultaneously computes predicate abstraction in
such a way that the systematic exploration of a concrete state space and the predicate
abstraction can interact. We also performed experimental evaluation of PANDA on small
examples from our previous work [21] and benchmarks taken from the Competition
on Software Verification [26], and compared its performance with other tools. Results
show that the proposed approach is promising — our prototype implementation has a
competitive performance and does not report spurious errors.

2 Preliminaries

Here we define more formally basic concepts that are used in the rest of this paper, and
the important terminology.
Program. We model programs using control-flow automata (CFA). A program P is a
tuple (C, linit, lerr), where C is a set of control-flow automata representing individual
methods in the program, linit is the initial location of the whole program, and lerr is the
error location. The control-flow automaton C for a method m is a tuple (L,A, len) that
encodes a directed graph with a single root node and labeled edges. Nodes of the graph
correspond to the set L of program locations in the method m, and edges correspond
to the set A of actions between locations. An action a ∈ A from the location l to the
location l′, written as (l, a, l′), is represented by a graph edge that is labeled with the
program statement corresponding to a. The location len ∈ L is the entry point of the
method m. We use the symbol vars(C) to denote the set of local variables that appear
in statements that correspond to actions of the control-flow automaton C.

4 J. Daniel and P. Parı́zek

The initial location linit of the whole program corresponds to the entry point len of
some method minit, which is modeled by Cinit ∈ C. Any two distinct CFA’s may have
only the error location lerr in common. It is the destination location of every action that
triggers a possible runtime error.

A program statement can be either an assume, an assignment, a procedure call, or a
return from the current procedure. The assume statements are used to model the intra-
procedural control flow, such as branching and loops. If there are more actions defined
at one location, they all have to be assume statements. We allow only variables (fields,
array elements) of an integer type and references to heap objects.

Abstraction. The symbol abs denotes a global mapping from program locations to sets
of abstraction predicates. For a given location l, the set abs(l) contains all predicates
associated with the location l, i.e. the set of predicates whose scope includes l.

States. A program state s is a pair (H,S), where H denotes the heap and S is the
call stack. The heap H is a directed graph. Inner nodes of the graph represent objects,
classes, and arrays. Leaf nodes are associated with the concrete values of object fields
and array elements that have an integer type. In general, edges in the graph capture the
points-to relation between heap objects, and associate objects with values of their fields,
respectively arrays with values of their elements. An edge (o, f, v) connects a node that
represents a heap object o with a node that represents the possible value v of the field f .
Similarly, an edge (o, n, v) connects a node that represents an array object owith a node
that represents the value v of an element with the index n.

The call stack is a sequence of tuples (li, σi, Φi) that represent method frames. The
symbol li denotes the current program location within the corresponding method, σi is
the assignment of values to all local variables, and Φi is the valuation of all abstraction
predicates in abs(li). Possible values of each predicate are ⊥, >, and ∗ representing
false, true, and unknown, respectively.

We assume that a program P has a single initial concrete state, and reads input from
the environment during its execution. The initial state s0 has an empty heap and stack
with a single frame. This frame contains the initial location linit where the program
execution starts, initial values σinit of local variables in the scope of the entry CFA,
and the initial valuation Φinit of abstraction predicates (i.e., unknown). More formally,
σinit = {v 7→ 0 | v ∈ vars(Cinit)} and Φinit = {p 7→ ∗ | p ∈ abs(linit)}.

Reachability graph. We use reachability graphs, defined over the set S of program
states and the set T of transitions between states, to model the program behavior and
state space. A reachability graphR(P) for the program P is a possibly infinite directed
graph R = (S, T). A transition τ ∈ T is an edge (s, a, s′) labeled with action a in
some CFA. We use a single monolithic reachability graph for the whole program P .
It is constructed inductively as fixpoint of a monotonic sequence Ri, i ≥ 0 of finite
approximations, which starts in R0 = ({s0} , {}). An approximation Rk+1 extends Rk

with a new state s′ and a transition τ = (s, a, s′) such that s is a state already present
in Rk but unexpanded and a is the action executed by τ . The order of state expansions
can be arbitrary, although we use only the depth-first order in this paper for simplicity.

Note that R(P) is always specific to a given set of abstraction predicates. The sets
S and T , and therefore also the shape of the reachability graph, are changed upon

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 5

refinement. For brevity, we use the symbol R to denote a finite approximation of R(P)
in the rest of the paper.

Alternative interpretations. Each statement of an input program P is executed both
concretely and abstractly. The abstract execution of a single statement may give rise to
multiple alternative interpretations.

The symbol alt(R, s, a) denotes the set {s′ | (s, a, s′) ∈ R} of all alternative inter-
pretations for an action a in the state s in R. The set contains all the already explored
transitions from s. Note that although in general there may be infinitely many alterna-
tive interpretations of an action in any given state in the entireR(P), e.g. interpretations
of x = unknown(), the set alt(R, s, a) is always finite for a given approximation R and
it is initially empty.

The symbol alt∗ denotes the set of potential alternative interpretations that will be
expanded later (in future); it is initially defined as:

alt∗(s, a) =



∅ a is not an action at the current location of s in C
{s′} a is x = unknown() ; s′ is successor for x = 0

{s′1, . . . , s′n} a is x = e ; s′i are successors for valuations of e

{s′} a is m(x) , or return x ; s′ is the only successor

∅ or {s′} a is assume c ; s′ augments s with the condition c

There are no interpretations defined for actions that are not enabled in the given
state. The initial interpretation of x = unknown() is such that x is assigned the value 0.
The interpretation of a regular assignment may not be deterministic due to heap ab-
straction, e.g. in the case of x = a[i], and therefore we consider the set of alternative
interpretations to contain all the choices. Interpretation of procedure calls and returns is
straightforward and affects the call stack component of a program state. The interpreta-
tion of an assume statement depends on the valuation of the assumed condition c in the
state s. If the fact is satisfiable there is one interpretation s′, otherwise there is none.

The new alternatives to be expanded later are discovered on-demand, and in the
majority of cases only a small finite subset of alternatives needs to be expanded. An
expansion of an action a in s effectively moves the corresponding interpretation s′ from
alt∗(s, a) to alt(R ⊕ (s, a, s′), s, a). For convenience, we define a set unexp(s) =
{a | alt∗(s, a) 6= ∅} of actions that are not completely expanded. We assume the pres-
ence of a special unique state send, for which the set unexp(send) is always empty.

Traces. An execution trace tr of the program P is a finite path in the reachability graph
R(P) that starts in s0 and can be viewed as an alternating sequence of states and ac-
tions (s0, a1, s1, . . . , an, sn). Every such trace tr is associated with a trace formula ϕtr

that captures the execution of the program P along the trace. The trace formula ϕtr

is a conjunction of constraints that express the semantics and effects of all executed
statements (corresponding to actions a1, . . . , an). Each constraint is defined using the
static-single-assignment form. We say that an execution trace tr is feasible if the corre-
sponding trace formula ϕtr is satisfiable. A trace tr that reaches the error state serr is
called an error trace or a counterexample.

6 J. Daniel and P. Parı́zek

3 PANDA Algorithm

We describe the core PANDA algorithm in the first part of this section, and then we
provide more details on selected aspects in the following subsections.

The core algorithm is shown in Figure 2. It takes a program P = (C, linit, lerr)
and the initial map abs as input, and constructs the monolithic reachability graph R
for P through iterative unrolling of control-flow graphs in the set C. Note that the map
abs is usually empty at the start, but the user can provide some predicates for specific
locations in this way. The reachability graph R is iteratively unrolled in the function
UNROLL by means of an overloaded function advance and a dual function backtrack
that carry out key steps of the search. When the error location lerr is reached by the
last transition τ ′, the PANDA algorithm checks feasibility of the counterexample cex. If
the error is real then it is reported to the user; otherwise PANDA performs abstraction
refinement in order to eliminate the spurious counterexample and then restarts the state
space traversal. The verification of a program terminates when all the reachable states
are processed. This happens when PANDA backtracks over the initial state s0 and the
current trace tr becomes empty (line 4). Note also that the verification algorithm does
not perform state matching. Our definition of the verification algorithm in Figure 2
contains several other auxiliary functions (scopes, locs, and itp) that are described
later in this section, and also the function TRANS that we first explain as a black box
and then provide more details in Section 3.1.

The function TRANS(R, tr, s, a) performs simultaneous concrete and abstract exe-
cution of a given action a in the state s at the end of the trace tr in R. It returns some
transition τ ′ = (s, a, s′) for some candidate successor state s′ ∈ alt∗(s, a). There is
always at least one successor state, otherwise a /∈ unexp(s). See Section 3.1 for more
details on the selection of s′. New valuation of abstraction predicates in s′ after the
execution of the action a is computed using the standard approach based on weakest
preconditions and decision procedures. In addition, the abstract interpreter uses knowl-
edge of the abstract heap to determine more precise valuation of predicates that capture
aliasing between reference variables. However, predicates that help maintain the alias-
ing relation among variables still have to be introduced through refinement. Effects of
the action a on the concrete part of the program state s are determined by concrete
semantics of the statement corresponding to a.

A non-deterministic choice in the state space is created when the result of abstract
execution of a given action a cannot be determined precisely using information from
the program state. Possible sources of non-determinism include especially predicate
valuations at branching statements (e.g., when the condition is unknown) and overap-
proximating points-to relation due to weak update. The effect of an assignment to a
reference variable is modeled by weak update whenever the destination cannot be de-
termined precisely, and in that case the variable may point to multiple heap objects.
When processing an access to array, PANDA can make choices at two levels to consider
all the possibly affected elements and values — first it has to determine all concrete in-
dices that satisfy constraints encoded by abstraction predicates, and then for each index
it has to find all the array element values based on the points-to relation.

When executing a procedure call, PANDA computes initial valuation of abstraction
predicates of the new stack frame (i.e., in the callee scope) using predicates over the

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 7

actual arguments of the call. Upon return, valuation of abstraction predicates in the
scope of the caller procedure is updated using valuation of predicates over the actual
arguments of a reference type and predicates over the returned value.

1: function PANDA(P, abs)

2: R← ({s0}, {})
3: tr ← (s0)

4: while tr 6= () do
5: (R, tr, cex)← UNROLL(P,R, tr)

6: if cex 6= ⊥ then
7: if REAL(cex) then return cex
8: abs← REFINE(P, abs, cex)

9: (R, tr)← RESET(R, tr, cex)

10: return safe

11: function REFINE(P, abs, cex)

12: (C, linit, lerr)← P

13: for ϕscp ∈ scopes(ϕcex) do
14: Lscp ← locs(cex, ϕscp, C)
15: for l ∈ Lscp do
16: p← itp(ϕscp, ϕcex, l)

17: if p 6∈ abs(l) then
18: abs(l)← abs(l) ∪ {p}
19: return abs

20: function UNROLL(P,R, tr)

21: (C, linit, lerr)← P

22: cex← ⊥
23: s← last state of tr

24: if ∃a ∈ unexp(s) then
25: τ ′ ← TRANS(R, tr, s, a)

26: R← advance(R, τ ′)

27: tr ← advance(tr, τ ′)

28: else
29: tr ← backtrack(tr)

30: if tr reaches lerr then
31: cex← tr

32: return (R, tr, cex)

33: function REAL(cex)

34: return is ϕcex satisfiable?

35: function RESET(R, tr, cex)

36: return (({s0}, {}), (s0))

Figure 2. PANDA algorithm

New abstraction predicates are derived from a spurious counterexample cex in the
function REFINE by the means of interpolation. We use a variant of the standard ap-
proach based on computing an interpolation-sequence [23] over the trace formula ϕcex.
The trace formula is obtained as a conjunction of clauses that encode individual state-
ments, heap manipulation (via read and write), and the non-deterministic choices made
during their execution (e.g., choice of a concrete array index when processing state-
ments like x = a[i]). In our case, interpolants are generated separately for each method
call in ϕcex. To ensure a proper scope of interpolants within each individual method
call on the given trace, PANDA uses a procedure similar to nested interpolants [15]. The
function scopes divides the whole trace formula ϕcex into many fragments, where each
of them corresponds to the scope of execution of some method call. The function locs
returns a list Lscp of locations that appear in the given fragment of the trace formula,
i.e. in the corresponding scope. Note that if a method m is executed several times in
cex, then the function scopes will return a separate fragment ϕscp for each execution
of m, and similarly a location can appear multiple times in Lscp (e.g., due to a loop

8 J. Daniel and P. Parı́zek

in the code). Actual interpolants for every fragment ϕscp are computed by the function
itp(ϕscp, ϕcex, l), which calls an interpolating solver. This approach respects method
call boundaries and variable scopes. In particular, interpolants generated for locations
inside a method m contain only symbols that represent local variables of m.

3.1 Dynamic Pruning and Discovery of Feasible Covering Paths

A consequence of the simultaneous concrete and abstract execution is that a transition
may reach an inconsistent combined state. This situation occurs when an action a al-
lows for non-deterministic expansion, i.e. when the abstract pre-state s induces multiple
alternative interpretations in alt∗(s, a), while there is usually a single successor in the
concrete state space. In such a case, the concrete successor is consistent only with one
of the abstract successors.

Figure 3 illustrates dynamic pruning and discovery of feasible covering paths, the
strategy that we propose for resolving such situations. The function TRANSpruning is
the implementation of TRANS from Section 3. First, at line 2, it selects and executes one
interpretation of action a in the state s (there must be at least one due to the check at
line 24 in Figure 2) and marks it as processed at line 4. Further, if the abstract part of s′

overapproximates the concrete part, i.e. when there are no inconsistencies, the function
returns a transition leading to s′. Otherwise, PANDA is bound to prune the current trace
by returning transition to send at line 10, because the currently analyzed interpretation is
not consistent. Then the main algorithm is forced to backtrack in the next iteration, i.e.
in the next call to UNROLL. However, there may still exist a concrete trace that captures
different values returned by the unknown statements and conforms to the same abstract
trace. Its existence is checked at lines 6 and 7 by means of generating a model for the
related trace formula, and the corresponding branch will be explored by PANDA under a
different combined trace inR. Although we omit this from the pseudocode of TRANS in
Figure 3, when PANDA searches for the alternative concrete trace, it first tries to reuse
the already discovered values that were returned in statements x = unknown() (in order
to minimize backtracking) and only then it explores new models. PANDA extracts new
interpretations (i.e., new values of all unknown statements) from the model and adds
them into respective sets alt∗, so that they are explored later (line 9). Here the operator
· [x← e] produces a state that differs from its operand only in valuation of the variable
x, which is fixed to the value e. Note that a single value returned by some unknown
may prevent further execution of a trace in combination with specific values of other
unknown statements along the trace, and it may permit the execution in combination
with different values.

Example 2. Now consider the situation depicted in Figure 4 that illustrate the whole
process. On the left, there is a short code snippet, which first stores a non-deterministic
value into the variable x and then compares this variable with the constant 1. The rest
of the figure shows combined concrete and abstract traces that are explored by PANDA
during analysis of the code snippet. Dashed circles represent abstract states, solid dots
represent concrete states, tubes depict abstract transitions, and finally solid arrows stand
for concrete transitions. Each state label always applies to both the concrete and abstract
part of a state, and the same is true for transitions.

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 9

1: function TRANSpruning(R, tr, s, a)

2: s′ ← any successor in alt∗(s, a)

3: τ ← (s, a, s′)

4: remove s′ from alt∗(s, a)

5: if s′ is consistent then return τ
6: M ← model of ϕtr⊕τ
7: if M 6= ⊥ then
8: for all (s1, b, s2) ∈ tr and b is x = unknown() do

9: augment alt∗(s1, b) with s2[x←M(x)]

10: return (s, a, send)

Figure 3. The implementation of TRANS within PANDA

The process of pruning inconsistent traces and discovering feasible alternative traces
that cover the pruned behavior is divided into three phases. Each of the phases is illus-
trated with a subfigure to the right of the code snippet in Figure 4.

1 x = unknown () ;
2 i f (x > 1) {
3 . . .
4 }

phase 1

s1

s2

s′

b

a

τ1

τ2

phase 2

s1

s′2

b τ ′1

phase 3

s′2

s′′

a τ ′2

Figure 4. On-the-fly discovery of feasible covering paths

Phase 1. PANDA expanded the action b corresponding to x = unknown() in state s1 to
produce the transition τ1 and reach the state s2. The default interpretation of b is equiv-
alent to x = 0 (recall the definition of alt∗). At this point, the then-branch is selected first
and TRANS(R, tr, s2, assume x > 1) yields the state s′, which is not consistent because
the abstract state satisfies x > 1 while the concrete state assigns 0 to x. This is the rea-
son why the solid dot is not included in the dashed circle for the state s′, and therefore
the solid arrow leaves the tube — representing the inconsistency between concrete and
abstract interpretation of the action a in the state s2. However, a different interpreta-
tion of b in s1 exists that would produce a consistent transition. It is extracted from the
model of ϕ(s1,b,s2,a,s′). We suppose, for the purpose of the example, that the discovered
interpretation of b is equivalent to x = 2, although many other integer values could be
returned from unknown(). The new interpretation is added to the set alt∗(s1, b) before
TRANS returns send and forces PANDA to backtrack to s1.

10 J. Daniel and P. Parı́zek

Phase 2. After the backtrack, b ∈ unexp(s1) as it was reintroduced in the previous
phase, and so it is selected for expansion. In the middle subfigure, the alternative inter-
pretation s′2 of the action b is expanded by PANDA in TRANS(R, tr, s1, b). As a result,
the state s′2 is added to the reachability graph R.

Phase 3. The search now continues from s′2. In the right-most subfigure, TRANS ex-
plores the interpretation of a in state s′2. This time, it is consistent and yields the tran-
sition τ ′2 and the state s′′. Thus the abstractly reachable then-branch is covered also by
the concrete execution, although first it has been discovered with a concrete trace that
had no feasible extension entering the branch.

In general, dynamic pruning eliminates many infeasible traces from the abstract
state space based on the knowledge of concrete states. That is an important benefit of
the simultaneous concrete and abstract execution. Note, however, that usage of pruning
does not guarantee that all the infeasible abstract branches are eliminated, because it
handles only choices introduced by actions that read non-deterministic values. Although
only the feasible concrete execution traces will be explored for many input programs,
iterative abstraction refinement still may be necessary in the case of choices caused by
non-determinism of other kinds (e.g., imprecise heap abstraction).

3.2 Soundness and Termination

In this section, we discuss soundness of the proposed PANDA algorithm, and why it
may not terminate in general. We show that dynamic pruning and discovery of feasible
covering paths is sufficient to guarantee exploration of all the feasible behaviors of the
given program.

We say that a reachability graph R is complete if every reachable state of the pro-
gram P is directly contained in R, and that R is precise if it does not contain a spurious
trace reaching serr.

The proof of soundness of our verification procedure PANDA is based on the fol-
lowing theorem.

Theorem 1. The program P is safe if and only if the error state serr is not contained
in a complete and precise reachability graph R constructed for P .

Proof. We show the two directions of the equivalence separately for some complete
precise reachability graph R for P .

⇐) The state serr is not in R, and since R is complete it contains all the reachable
states of P . Therefore, serr is not reachable in P and by definition P is safe.

⇒) Assume that P is safe. Then, serr is unreachable in any execution of P , and any
abstract trace reaching serr is spurious. Because the given R is precise, it cannot
contain spurious abstract trace reaching serr and thus serr is excluded fromR.

What remains to be shown is that when PANDA does not report an error in P , it
either terminates with a complete precise reachability graphR(P) or does not terminate
at all. Precision ofR follows from the abstraction refinement step of the main algorithm.

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 11

PANDA either does not terminate or there are finitely many refinement steps, and thus
the resulting reachability graph may not contain spurious error traces and it is precise.

Now assume that PANDA terminates on P and the reachability graph R is not com-
plete, i.e. there is a reachable state s of P that is not contained in R. In that case, there
must be a trace tr from s0 to s and a state

◦
s that is the first state on that trace not

contained in R. Let (
•
s, a,

◦
s) be the transition reaching

◦
s on the trace tr for the first

time, which means that
•
s ∈ R. The only reason for a consistent reachable state

◦
s to be

excluded from R is that it was never included in alt∗(
•
s, a). Since the heap abstraction

and computation of abstract successors are overappoximating, the sets of alternative
interpretations for assignment statements, branching, looping, function calls, and re-
turns are overappoximating as well, and they never exclude any abstractly reachable
successor unless it is pruned. Every abstract successor that is being pruned is analyzed
(lines 6-9 in Figure 4) for feasibility and appropriate enabling interpretations of actions
along the trace are added to alt∗, so that they can be explored later. Consequently, if
the algorithm terminated without processing the alternative that reaches

◦
s, it could not

have been feasible and R is, in fact, complete.

Theorem 2. PANDA soundly verifies safety of programs.

Proof. Follows directly from the discussion above.

The whole PANDA algorithm may not terminate. The reachability graph may be
infinite due to unbounded loops and recursion that admit infinite number of concrete
traces of different lengths. Also, the abstraction refinement loop may diverge for input
programs with possibly infinite state spaces [16].

4 Implementation

We implemented the proposed verification algorithm in the tool called PANDA, which is
built upon Java Pathfinder (JPF) [25] and accepts programs in Java. JPF is responsible
for concrete execution of Java bytecode instructions and systematic traversal of the
concrete state space, and it also provides concrete values taken from dynamic program
states. Predicate abstraction and lazy refinement are performed with the help of SMT
solvers. The current version of PANDA uses CVC4 [4] and Z3 [19]. The complete source
code of our implementation, including examples and benchmark programs, is available
at https://github.com/d3sformal/panda.

In the rest of this section, we describe several optimizations of the core algorithm
in Figure 2 that apply to the restart of state space traveral after refinement.

The basic variant of the function RESET backtracks to the initial state, and drops all
information about the state space fragment explored before the spurious error was hit.
However, in this case PANDA would explore again the fragment of the program state
space that has already been proven safe. A more efficient approach, heavily inspired by
lazy abstraction [16] used in BLAST [6], is the following: (1) determine which loca-
tions and states on the spurious error trace are affected by the refinement, (2) backtrack
only to the last state of the longest unaffected prefix of the error trace, and (3) then

12 J. Daniel and P. Parı́zek

resume state space exploration from that point with the refined abstraction. Location l
is affected by the refinement when new predicates were added to abs(l).

Another limitation of the basic PANDA algorithm is repeated exploration of certain
safe fragments of the program state space. We designed an optimization that is based
on recording information about explored state space branches. During the traversal,
PANDA remembers all safe branches for each choice on the current trace, and when the
traversal resumes with the more precise abstraction it skips the recorded branches.

5 Evaluation

We performed experiments on three groups of Java programs in order to evaluate PANDA.
A brief description of each group of benchmarks follows.

The first group contains 7 benchmarks from the categories loops and arrays of the
Competition on Software Verification (SV-COMP) [26]. Four benchmarks in this group
(Array, Invert String, Password, and Reverse Array) use arrays whose content is based
on non-deterministic input, Eureka 01 computes aggregate properties of data structures
based on the values of corresponding elements of multiple arrays, TREX 03 involves
loops with a possibly large number of iterations but without a single explicit control
variable, and the benchmark Two Indices maintains a relation over array elements at
different indices. We had to translate all of them from C into Java, and we also reduced
the sizes of arrays in both language variants, because the current version of PANDA is
not yet optimized for programs with large arrays.

The second group contains 4 example programs that we used in previous work [21],
namely Data-flow Analysis, Cycling Race, Image Rendering, and Scheduler. These
benchmark programs are more realistic; they involve manipulation with arrays (sort-
ing), field accesses on heap objects, and loops.

The third group contains variants of two benchmarks from the CTC repository [24]:
Alarm Clock and Producer-Consumer. We translated the original concurrent programs
into sequential programs using an approach similar to context-bounded reduction [22].

As the benchmark programs in the second and third group are relatively larger, we
used them to find whether PANDA is competitive in terms of scalability. Note also that
source code of all the programs contains assertions but the corresponding error states
are not reachable.

We ran PANDA and selected other tools – namely BLAST [6], CPACHECKER [8],
UFO [1], and WOLVERINE [17] – on all the benchmark programs in order to find
whether our proposed approach is competitive with respect to the ability of verify-
ing program safety and the running time. We used CPACHECKER in the version from
SV-COMP’15, BLAST and UFO in the versions from SV-COMP’14, and WOLVERINE
from the year 2012. Table 1 contains results of the experiments.

For PANDA, we report the total running time (t), size of the reachable state space
(|S|), number of refinement steps, maximum number of abstraction predicates at some
location, and the total number of satisfiability queries executed by PANDA. For the other
tools, we report only the total running time in case the respective tool provided a correct
answer. Other possible outcomes are expressed by specific symbols. We use the symbol
7 to denote that a tool reported a spurious error (i.e., a wrong answer), the symbol ? to

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 13

Table 1. Experimental results and comparison with other tools

Benchmark
PANDA

BLAST CPA UFO WOLVERINE
t |S| #ref |abs| #sat

Array 4 s 38 0 7 1802 2 s 2 s 1 s 1 s
Eureka 01 23 s 741 0 53 11462 7 ? 7 timeout
TREX 03 21 s 1425 0 9 14371 7 7 1 s 1 s
Invert String 6 s 126 0 18 2728 7 6 s 7 9 s
Password 22 s 870 0 19 12837 23 s 3 s 7 4 s
Reverse Array 5 s 135 0 18 2358 7 3 s 7 3 s
Two Indices 4 s 55 0 15 1921 7 2 s 7 1 s
Data-flow Analysis 379 s 508 0 64 8159 ? ? 7 7

Cycling Race 5 s 87 0 28 2151 6 s 3 s 2 s 2 s
Image Rendering timeout - 44 s - 7

Scheduler 5 s 108 0 35 2185 ? 4 s 7 4 s
Alarm Clock 970 s 21200 0 20 87628 ? 7 7 -
Producer-Consumer timeout ? 7 - 7

indicate that a tool says ”don’t know”, and the character ”-” when a tool fails for some
other reason (e.g., missing support for a particular language feature). We put the limit
of two hours on the running time for all experiments.

The results show that PANDA did not have to perform abstraction refinement in
the case of all our benchmarks for which verification finished before the time limit. In
addition, PANDA did not report a spurious error for any benchmark program, unlike
some of the other tools. This observation supports our claim that simultaneous abstract
and concrete execution is very precise and avoids spurious behaviors.

Regarding performance, the results are mixed — PANDA is faster than other tools
for some of the programs and slower in other cases, but its running times are competitive
for all the benchmarks. Data for the benchmarks Alarm Clock, Image Rendering, and
Producer-Consumer show that PANDA has limited scalability, but the other tools failed
on these benchmarks with the exception of CPACHECKER on Image Rendering. By
manual inspection of execution logs, we found the following main reasons for the long
running times and state explosion in the case of these three programs.

1. Each trace contains many non-deterministic data choices (unknown statements) for
which multiple concrete values have to be explored.

2. Some of the more complex SMT queries executed by PANDA, in particular those
used to derive new return values for unknown statements, take a very long time to
answer — for example, even up to 200 seconds in the case of Image Rendering.

On the other hand, PANDA successfully verified the programs Alarm Clock, Data-flow
Analysis, and Eureka 01, for which all the other tools failed or reported a wrong answer.

14 J. Daniel and P. Parı́zek

6 Related Work

Many verification techniques based on the CEGAR principle [11] have been proposed in
the past. However, we are not aware of any existing approach that combines abstraction
with concrete execution in the same way as PANDA does. We provide details about
selected techniques and highlight the main differences.

The PANDA algorithm extends the approach to lazy predicate abstraction, which
was originally proposed by Henzinger et al. [16] and implemented in BLAST [6]. Si-
multaneous combination of abstraction with concrete execution allows PANDA to prune
many infeasible execution paths and spurious errors on-the-fly during the state space
traversal, thus avoiding many expensive steps of abstraction refinement. In the more
recent work of McMillan [18] and Alberti et al. [3], lazy abstraction is done using only
interpolants without predicate abstraction, but in this case it is more difficult to check
whether a given state was already covered during traversal. UFO [1] is another ver-
ification technique that combines abstraction, unrolling of a control flow graph, and
interpolants. It captures multiple error traces with a single formula in order to reduce
the number of necessary refinement steps.

CPACHECKER [8] is a tool that performs multiple custom analyses simultaneously,
using the framework proposed by Beyer et al. [7]. For example, it enables users to com-
bine predicate abstraction with shape analysis. The definition of each program analysis
consists of an abstract domain, transfer relation, merge operator, and an operator that
performs the covering check. It might be possible to implement the PANDA algorithm
in CPACHECKER, assuming that different analyses can exchange the necessary infor-
mation during a run of the tool. Concrete execution would have to be expressed as one
of the analyses.

Charlton [9] proposed another framework that supports combination of multiple
analyses and verification techniques. The analyses are executed in steps by the overall
worklist algorithm. In each iteration, they exchange computed facts about the program
behavior using logic formulas, and they can also query each other.

The DASH algorithm [5] combines testing with abstraction in an iterative manner
to achieve better precision and performance. In each iteration, it explores the current
abstract state space in order to search for a possible error trace. Then, if there is an
abstract error trace, DASH attempts to find a corresponding concrete trace by creating
and running new tests. Based on their results, it can either confirm the presence of a real
error or extend the current forest of tests. Only when such a test cannot be found, the
abstraction is refined by predicates that are derived from the first infeasible transition
on the given error trace. Like in the case of PANDA, use of concrete execution (testing)
saves many refinement steps and helps to avoid many SMT queries, especially if the
input program contains loops with many iterations. The main difference is that DASH
performs the individual phases, i.e. concrete execution and changes of the abstraction,
consecutively (in turns), while PANDA unrolls the reachability graph on-the-fly using
both concrete execution and predicate abstraction simultaneously (in tandem). This en-
ables PANDA to refine multiple regions of the abstraction in each iteration, achieving
faster convergence.

SMASH [14] combines may analysis (abstraction) with must analysis (concrete ex-
ecution in the form of dynamic test generation) using a compositional approach based

PANDA: Simultaneous Predicate Abstraction and Concrete Execution 15

on procedure summaries. In each step, it can update either the may summary of some
procedure or the must summary, but not both of them simultaneously. The key feature
of SMASH is the alternation (interplay) of testing and abstraction such that intermediate
analysis results are exchanged between the two. Both the DASH and SMASH algorithms
are implemented in the YOGI tool [20].

PANDA resembles also mixed symbolic and concrete execution, implemented in
tools such as DART [13] and KLEE [10]. However, in PANDA the concrete execution
and predicate abstraction are performed simultaneously in such a way that they guide
each other, while in DART, for example, they do not interact during the traversal of
one path. In addition, PANDA uses predicates that are more expressive than path con-
straints in DART, because it generates new predicates by applying interpolation to trace
formulas (i.e. not just by extraction from the program code). It is also more efficient
because it can prune several infeasible paths in one step. The main practical limitation
of symbolic execution is that users must put a bound on the number of explored paths
and their depth. Tools based on this approach are therefore used mainly for dynamic
test generation and bug hunting, while PANDA can explore all paths in the reachability
graph of a given program to check whether it is safe.

Some work has been done also on combining symbolic execution with predicate
abstraction and iterative refinement. The approach proposed by Albarghouthi et al. [2]
uses symbolic execution to explore the underapproximation of a program behavior, and
in each iteration checks whether the abstract model created by symbolic execution is
also an overapproximation of the concrete state space. Abstraction refinement is per-
formed to add new predicates that would enable the verification procedure to cover
more feasible execution paths.

7 Conclusion

In this paper we presented the PANDA algorithm that combines predicate abstraction
with simultaneous concrete execution. Dynamic pruning, the method that we proposed
for solving inconsistencies between concrete and abstract execution, eliminates many
spurious execution paths on-the-fly. A consequence of this combination is a higher anal-
ysis precision that allows PANDA to keep the number of necessary refinement steps to a
minimum. Specifically, PANDA did not have to perform abstraction refinement for any
of the benchmark programs that we used in our experiments.

In future, we plan to optimize our prototype implementation and we would also like
to use a different abstract representation of the program heap. Our long term goals in-
clude support for data containers, concurrency, and predicates over data shared between
threads, most probably through adaptation of some already known techniques [12, 21].

Acknowledgements. This work was partially supported by the Grant Agency of the
Czech Republic project 13-12121P and by Charles University institutional funding
SVV-2015-260222.

16 J. Daniel and P. Parı́zek

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. From Under-Approximations to Over-
Approximations and Back. In Proceedings of TACAS 2012, LNCS, vol. 7214.

2. A. Albarghouthi, A. Gurfinkel, O. Wei, and M. Chechik. Abstract Analysis of Symbolic
Executions. In Proceedings of CAV 2010, LNCS, vol. 6174.

3. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy Abstraction with
Interpolants for Arrays. In Proceedings of LPAR 2012, LNCS, vol. 7180.

4. C. Barrett, C.L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and
C. Tinelli. CVC4. In Proceedings of CAV 2011, LNCS, vol. 6806.

5. N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs from Tests. In Pro-
ceedings of ISSTA 2008, ACM.

6. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The Software Model Checker BLAST.
STTT, 9(5-6), 2007.

7. D. Beyer, T. A. Henzinger, and G. Theoduloz. Configurable Software Verification: Con-
cretizing the Convergence of Model Checking and Program Analysis. In Proceedings of
CAV 2007, LNCS, vol. 4590.

8. D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for Configurable Software Verification.
In Proceedings of CAV 2011, LNCS, vol. 6806.

9. N. Charlton. Program Verification with Interacting Analysis Plugins. Formal Aspects of
Computing, 19(3), 2007.

10. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proceedings of OSDI 2008, USENIX.

11. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction
Refinement. In Proceedings of CAV 2000, LNCS, vol. 1855.

12. A. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-Aware Predicate Abstraction
for Shared-Variable Concurrent Programs. In Proceedings of CAV 2011, LNCS, vol. 6806.

13. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. In Pro-
ceedings of PLDI 2005, ACM.

14. P. Godefroid, A. Nori, S.K. Rajamani, and S. Tetali. Compositional May-Must Program
Analysis: Unleashing the Power of Alternation. In Proceedings of POPL 2010, ACM.

15. M. Heizmann, J. Hoenicke, and A. Podelski. Nested Interpolants. In Proceedings of
POPL 2010, ACM.

16. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Proceedings of
POPL 2002, ACM.

17. D. Kroening and G. Weissenbacher. Interpolation-Based Software Verification with Wolver-
ine. In Proceedings of CAV 2011, LNCS, vol. 6806.

18. K. McMillan. Lazy Abstraction with Interpolants. In Proc. of CAV 2006, LNCS, vol. 4144.
19. L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In Proceedings of TACAS 2008,

LNCS, vol. 4963.
20. A. Nori, S.K. Rajamani, S. Tetali, and A. Thakur. The Yogi Project: Software Property

Checking via Static Analysis and Testing. In Proceedings of TACAS 2009, LNCS, vol. 5505.
21. P. Parizek and O. Lhotak. Predicate Abstraction of Java Programs with Collections. In Pro-

ceedings of OOPSLA 2012, ACM.
22. S. Qadeer and D. Wu. KISS: Keep It Simple and Sequential. In Proc. of PLDI 2004, ACM.
23. Y. Vizel and O. Grumberg. Interpolation-Sequence Based Model Checking. In Proceedings

of FMCAD 2009, IEEE.
24. Concurrency Tool Comparison, https://facwiki.cs.byu.edu/vv-lab/index.

php/Concurrency_Tool_Comparison
25. Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf
26. Competition on Software Verification, http://sv-comp.sosy-lab.org/2015/

