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ABSTRACT

Data lineage is a view over the whole data environment of a business
company or government institution, which represents the flow
of data values through the system. It helps people to navigate
through all the data storages and data transformations, find the
origin of a specific data value, or to ensure data consistency after
updates. Manta Flow is an automated data lineage platform that
supports many different technologies, including dialects of SQL
and programs code written in general-purpose languages.

In this paper, we focus on scanners that analyze programs in
Java or C# and generate data flow graphs as output. We describe
the process of their development and present the main concepts of
the modular symbolic data flow analysis that we designed for this
purpose. Then we also discuss technical challenges related to static
analysis of real-world enterprise applications that we have faced,
explain the key ideas of our current solutions, and share the main
lessons learned within this project.
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1 INTRODUCTION

In the modern digital world based on software, practically ev-
ery business company and government agency uses electronic
databases to store their vital data and software to manipulate the
data. This is true in particular for large enterprises, which have
collected huge amounts of data stored in thousands of databases
and tables. Data models and data storage environments used in
most companies are therefore getting very complex, and they are
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also evolving over time when developers (database architects) come
and go. Because of that, it may be very difficult and tedious for
people to manually navigate through all the databases and tables,
find the origin of a specific invalid or suspicious data value, reason
about dependencies between data stored in different tables, or to
ensure consistency of data when doing some updates. Problems
with data management and quality may lead, for example, to wrong
business decisions or to leakage of sensitive private data.

These challenges and possible issues can be addressed with the
help of data lineage information [4, 20], a view over the whole data
environment that shows the origin of each data value and how data
flow through the system. While such a view could be constructed
manually, it would take a very long time and great effort, so auto-
mated data lineage analysis of the whole environment (software
with data together) and visualization of data flow are needed. Bene-
fits include much better understanding of the organization’s data
environment and trust in data values [19, 21].

Manta Flow is an automated data lineage platform developed
by the software company Manta !. The platform consists mainly
of the following parts: (1) scanners that analyze input programs,
SQL, ETL (extract-transform-load) scripts, data analytics scripts,
and definitions of reports, (2) the metadata repository used to store
the resulting data flow graphs (enabling also integration with other
systems), and (3) the web application that presents nice visualiza-
tions of data flow graphs, enabling users to inspect them. Currently,
Manta Flow supports over 40 scanners for many different tech-
nologies, including various dialects of SQL, many popular ETL and
reporting tools, and program code written in general-purpose lan-
guages such as Java, C#, and Python. In this paper, however, we
focus on the scanners for Java and C# programs.

Both scanners have three main components: extractor, the actual
data-flow analysis to be run on input programs, and the scanner-
specific generator of a partial flow graph.

The extractor is responsible for preparing the input for data
flow analysis by retrieving the relevant entities (e.g., Java classes
and libraries) from various locations and sources provided by the
customer. During this process, the extractor also collects important
metadata about the input program and its configuration, and iden-
tifies all entry points. Multiple distribution formats of Java and C#
programs are supported, in particular Java classes (bytecode), a set
of JAR files (Java libraries), Spring Boot executable JAR/WAR files,
NET assemblies, and C# source code files.

The partial flow graphs produced by individual scanners for all
the relevant technologies are then saved into the metadata repos-
itory, where they are merged into the final output Manta graph.
Note that the ability to produce a single output flow graph covering
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multiple technologies is really essential, because most enterprise
applications for data management and processing combine at least
SQL with some ETL jobs or programs written in general-purpose
languages. This was also our original motivation behind developing
scanners for Java and C#, because many enterprise business appli-
cations include some parts implemented in Java or C#, typically
complex business logic.

We illustrate the data lineage information computed by Manta
Flow on the example of a simplified Java program in Figure 1. It
reads data from a database using an SQL SELECT query and writes
into a CSV file. The Java scanner would analyze the program and
create an intermediate graph that captures possible flow of data
from the SELECT query, defined at lines 5-8 and executed at line 9,
to a CSV file named loans.csv. This file is opened at line 1 and new
content (a line of text) is appended at lines 15-16 within the loop
over the result (a list of rows) of the SELECT query.

1 FileWriter fw = new FileWriter("loans.csv");

2 BufferedWriter bufw = new BufferedWriter (fw);
3 Connection con = getConnection("192.168.0.1");
4 Statement stmt = con.createStatement ();

5 String query = "SELECT c.fullname, c.age, " +
6 "|.amount, |.interest " +

7 "FROM client ¢, loan | " +

8 "WHERE c.id = |.client_id";

9 ResultSet rs = stmt.executeQuery(query);

10 while (rs.next()) {

11 String loanStr = rs.getString (1) + "," +

12 rs.getlnt(2) + "," +

13 rs.getlnt("amount") + "," +
14 rs.getDouble("interest");
15 bufw . append (loanStr);

16 bufw . newLine ();

17 }

18 bufw. close ();

19 con.close ();

Figure 1: Java program that reads data from an SQL database
and writes into a CSV file

As the next step, a scanner for the particular dialect of SQL will
parse the SELECT query and definition of the source database, rec-
ognize individual columns in respective database tables, and extend
the flow graph with edges from nodes that represent columns to the
node representing the destination CSV file loans.csv. Both the source
SELECT query and the destination CSV file represent data lineage
endpoints. Figure 2 shows the essential data lineage information
captured by the flow graph. Note that the Manta Flow platform
actually creates graphs that are visually much more appealing than
our schematic diagram and contain a lot of additional metadata,
such as information about the connection to database.
Contribution. The whole data lineage analysis specifically for
Java and C# programs has been designed and implemented within
the scope of a project between software engineers working at the
Manta company, faculty members (researchers) at Charles Uni-
versity and many students. In this paper, we present (1) the story
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SELECT c.fullname, c.age,
l.amount, l.interest

FROM client c, loan |

WHERE c.id = I.client_id

c.fullname
> loans.csv

age

l.amount

i

l.interest

Figure 2: Data flow graph for the example Java program

behind development of Java and C# scanners, (2) the main technical
challenges that we have faced and how we addressed them, and
(3) lessons that we have learned (often the hard way) and that may
be valuable for the readers. We describe especially the challenges,
solutions, our experience, and lessons learned that are related to
the development of static data lineage analysis for large enterprise
applications. We focus just on technical and software engineering
aspects of the whole project, neglecting issues related to operations
(DevOps) and relations with customers, but highlighting software
engineering challenges associated with the development of tools
and products based on static program code analysis. In this focus
on the challenges and experience related to static program analysis
of large enterprise applications, our work complements recently
published studies and techniques by Harman et al. [9], Antoniadis
et al. [1], Wang et al. [18], and Chen et al. [3].

2 DESIRED FEATURES AND INITIAL STEPS

In this section we discuss the originally desired features of the
data lineage analysis, main characteristics of applications that we
aimed to process with our analysis (i.e., the subject domain), and the
initial exploratory steps leading towards our choice of the principal
approach to be implemented.

The original motivation (goal) was to use some kind of static pro-
gram analysis to compute data lineage information for enterprise
business applications that satisfy the following conditions:

e alarge part of the application’s business logic is written in
Java or C#, and

o heavy usage of relational databases (accessed typically via
SQL queries and updated via SQL commands), data ware-
houses, and other data storage technologies (Excel spread-
sheets, plain-text files in a CSV format).

When considering a typical business application, the program code
in Java/C# loads data from a specific source (e.g., from a database
by an SQL SELECT query), processes and transforms the data in
some way, and finally writes the result into a target data storage
space (e.g., to another database using an SQL INSERT statement).



Data Lineage Analysis for Enterprise Applications by Manta:
The Story of Java and C# Scanners

However, very quickly we discovered and realized that appli-
cations in our target domain use many different enterprise frame-
works, not only for the application construction (e.g., Spring [32]),
but in particular for data management and processing. The set of
popular frameworks includes various object-relational mapping
(ORM) libraries such as Hibernate [28] and MyBatis [30] for Java or
Entity Framework Core [27] for C#/.NET, frameworks that enable
to do streaming- and pipeline-based big data processing for the
purpose of data analytics (e.g., Apache Spark [26]). The number of
popular data-processing frameworks is really high, and they are
quite diverse, as we have found out. Support for many of these
frameworks by Java and C# scanners has been always our top
priority from the beginning.

Another very important functional requirement for both scan-
ners was the need to accept binary executable programs as input.
That means, in our context, Java bytecode in the form of Java class
files or JAR libraries, and .NET assemblies compiled from C# source
code. Most customers do not want to share the source code of their
business applications with Manta, or upload it to the Manta Flow
platform. Actually, some customers have always been reluctant to
share even just the binaries for testing and debugging purposes.

Given all these requirements, desired features of the scanners,
and goals set by Manta, right at the beginning of the project we
decided to use techniques of static program code analysis [12] to pro-
cess the input Java/C# programs and compute the data flow graphs.
We neglected other possible approaches, like some kind of dynamic
runtime analysis. More importantly, though, in the initial phases
of the project, we experimented with two principal approaches to
static program analysis: (1) the classic data-flow [13] and pointer
analyses [11, 17] implemented in libraries such as Soot [31] and
WALA [34], and (2) modular analysis based on symbolic linear
interpretation of bytecode in each method of the subject applica-
tion [14]. We have considered maturity of the available libraries,
desirable precision of the data lineage analysis, potential scalability,
and performance. Based on our initial experiments and prior aca-
demic research experience in the field of static program analysis,
we have chosen the second option, that is the modular symbolic
analysis, as more promising for the large enterprise applications
that we wanted to tackle.

One reason behind our decision was that modular static analy-
sis has been widely considered as scalable to large programs with
many classes and methods. In particular, there was already evi-
dence indicating that this approach is useful in practice and can be
successfully applied on a large industry scale [9].

We describe the core principles of our modular symbolic data
flow analysis in the next section.

3 MODULAR SYMBOLIC DATA FLOW
ANALYSIS FOR JAVA/C# BYTECODE

We call the analysis symbolic mainly because it uses names and
values in the form that appears in the source code or, more precisely,
in the compiled bytecode and in the associated debugging infor-
mation (symbol tables). This includes symbolic names of variables
and object fields (attributes), constant string values and integer
constants. Our motivation behind this particular approach was to
make the analysis results easily readable by users that have access
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to source code of their applications, meaning that elements of the
produced flow graphs refer to input program entities by the same
name as in the source code.

The symbolic data flow analysis processes each method (proce-
dure) in the input program separately, one at a time in a modular
fashion, and performs symbolic interpretation of the effects of meth-
ods’ bytecode instructions. For each variable in a given method, the
analysis determines the set of all possible sources (e.g., database
table columns) for runtime values of the variable during execution
of the method. In addition, it also determines the set of possible
values for string variables. This is really important and necessary,
because string variables are used to store textual representation
of SQL statements (both constant and dynamically created), file
names, and other information relevant for data lineage.

A curious reader may wonder if the analysis based on symbolic
interpretation of bytecode instructions computes useful results that
are sound and precise enough. This design decision, like several
others, has been influenced by our desire to handle really large en-
terprise applications by the data lineage scanners. We have believed
from the start that our symbolic bytecode interpretation is really
sufficient for the purpose of data lineage, and we still believe that
our decision was the right one, despite many technical challenges
along the way. There is no need for a more complex and precise
static analysis (that would be less scalable) in our case, as the data
lineage analysis does not have to precisely model control-flow in
each procedure — it just needs to process all statements (bytecode
instructions) in a linear fashion and collect information relevant
for data lineage.

Next, we describe key steps of the whole analysis, including
the core algorithm, explain how it really works, and emphasize
few important aspects that may not be obvious immediately. The
basic principle of the symbolic analysis based on linear bytecode
interpretation has been first presented in [14], but the original
ideas had to be extended quite significantly for the purpose of data
lineage analysis targeting complex enterprise applications, whose
implementation uses all the features of Java and C#.

The whole data lineage analysis takes as input the program
(binary) code in the form prepared by the extractor, that means
a set of classes and libraries, and produces data flow summary
for each method in the program. All those flow summaries are
then transformed into a flow graph by other modules of the Manta
platform. The data lineage analysis itself consists of the following
main steps:

(1) preparation of the analysis scope and class hierarchy,

(2) building the call graph of statically reachable methods,

(3) computing the alias analysis for all methods, and

(4) run of the actual modular symbolic analysis that computes
a data flow summary for each application method.

After that follows post-processing of method flow summaries and
construction of the flow graph by a transformer component (visu-
alizer), but that is not covered in this paper. We describe each of
the four steps in more detail below.

Class hierarchy. The analysis scope is just a list of application
classes and libraries that the analysis has to process, while the
class hierarchy is an internal representation of the analysis scope
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that provided also important metadata about loaded classes and
methods (in addition to their code).

Call graph. In the second step, the program call graph is con-
structed with a given entrypoint method as the root node, which
represents the starting point of program execution. The entry-
point method is designated by the user. For example, it can be
the static method main in case of standalone Java applications, or
some method defined by the public interface of a service run and
managed by an enterprise application framework like Spring. We
have tried several approaches to call graph construction within this
project. Initially we used the approach that builds the call graph
together with pointer analysis data [7, 8, 10], specifically the algo-
rithm 0-CFA implemented by the WALA library, but later we have
switched to a simpler approach based on Class Hierarchy Analysis
(CHA) [5] and Rapid Type Analysis (RTA) [2]. The primary moti-
vation behind this decision was the need to support dependency
injection (autowiring), that means classes and methods added to
the analysis scope via mechanisms not fully resolvable just from
the bytecode. One popular mechanism, used also by the Spring
framework [32], is to specify the actual class names in a declarative
way using configuration XML files. When the program is run, such
classes and methods are loaded at some point during program exe-
cution. More information about handling of dependency injection
is provided at the end of Section 4.

Aliasing. We have designed also the auxiliary analysis that com-
putes aliasing information as symbolic and modular. For every
application method and for each program code location within
the method, the analysis determines all pairs (sets) of symbolic
variables and expressions that may be possibly aliased at the code
location. It works by processing assignment statements in one or
more iterations, propagating aliases transitively over assignments,
until it reaches a fixed point. Note that method calls also have to be
considered; in particular, the analysis must record the "is-aliased" re-
lation between the return value in a callee method and the variable
in a caller used to store the result.

Modular symbolic computation of method flow summaries. For the
purpose of computing the data flow summaries in an efficient and
scalable manner, we have chosen a variant of the classic worklist
algorithm used in many static program analyses [13]. It processes
the application methods one-by-one until a fixed point over the
flow summaries is reached. Figure 3 shows the top-level iterative
worklist-based algorithm for computing method flow summaries.

A key characteristic of the algorithm is that only application
methods are ever added to the worklist represented by the variable
queue (lines 1, 9, 10, and 13) because only application methods
have to be processed by the symbolic interpreter of bytecode. The
code of library methods is not processed at all by the symbolic
analysis. Just the calls of library methods from application code are
evaluated, using specific handlers that capture their effects on data
flow information.

The algorithm involves usage of two other data structures, method
flow summaries (variables oldSumm and newSumm) and invocation
contexts (variable ctx). A method flow summary contains three
items: (1) a mapping from symbolic variables (expressions) accessed
in the method to sets of possible data sources of their values, (2) a
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1 queue = {each application method in the scope}
2 while not empty(queue) do

3 mth = removeHead (queue)

4 for ctx € getlnvocationContexts (mth) do

5 oldSumm = retrieveFlowSummary ( mth, ctx)

6 (newSumm, cm2newCtxs) = analyzeMethod (mth, ctx)

7 updateFlowSummary ( mth, ctx, newSumm)

8 if not equal(oldSumm, newSumm) then

9 for ce € getAppCallees(mth) do queue = queue & ce
10 for cr € getAppCallers(mth) do queue = queue & cr
11 end if

12 for ce € getAppCallees(mth) do

13 if not cm2newCtxs [ce] = @ then queue = queue ® ce
14 end for

15 end for

16 end while

Figure 3: Iterative worklist-based algorithm for computing
method flow summaries

set of possible constant string values for each string variable, and
(3) a set of possible constant values for each integer variable.

An invocation context for a method captures flow data for its
arguments, including the method call receiver object and static
variables (fields). Usage of invocation contexts enables the modular
analysis to simulate propagation of data values (and the associated
flow information) over method call boundaries. Note also that the
analysis keeps a set of invocation contexts for each method, in order
to capture flow data for distinct argument values, and computes
a method flow summary for each context separately. Due to all
this, our modular symbolic analysis is partially context-sensitive.
Invocation contexts effectively represent call-strings of the length 1.
Our motivation behind this limited form of context-sensitivity is to
achieve greater analysis precision in the common case of a method
called at multiple locations (call sites) and with different sets of
argument values (coming from different sources).

In each iteration of the algorithm, the procedure analyzeMethod
(line 6) computes the flow summary for a given method and a
specific invocation context, and does that in a way that reflects
the currently known data flow information (summaries) about all
methods. We provide much more details about how this procedure
works later in this section, and in the subsequent sections too.

When the newly computed flow summary for a given method
mth is different from the previous one (see the check at line 8),
i.e. when the flow data for mth changed possibly due to recently
updated information about other methods that are callees or callers
of mth, then all the callers and callees of the method have to be
added (again) to the queue (lines 9 and 10) in order to ensure that
their flow summaries eventually reflect this new summary of mth.
Here, the key principle is that, after update of data flow information
for some method, the analysis has to recompute flow summary
for all other possibly affected methods to produce sound results.
Finally, if some new invocation contexts for some callees of mth
were recorded during the analysis of mth, then all the respective
callees are added to the queue for another round of processing.
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Symbolic interpretation of bytecode. We have already indicated
that our analysis computes a data flow summary of each method
using symbolic interpretation of its bytecode (within the proce-
dure analyzeMethod). The interpreter performs linear traversal of
the sequence of bytecode instructions for the given method and
evaluates the effects of each bytecode instruction on the data flow
information associated with symbolic expressions. During the pro-
cess of analyzing the bytecode of a given method, the interpreter
manipulates with a stack of symbolic expressions, which contains
operands and results of bytecode instructions. We could say that our
symbolic interpreter simulates the execution of method’s bytecode
with respect to data flow information.

The symbolic analysis of method’s bytecode has been designed
as partially flow-sensitive; it distinguishes between different pro-
gram code locations and computes flow data specific for every code
location. Even though the symbolic interpreter just traverses the
sequence of bytecode instructions once and in a linear fashion, it
has a limited support for control-flow branches and loops. More
specifically, the interpreter maintains association of each bytecode
instruction with a control-flow branch into which it belongs, keeps
the flow data for branches separately, and merges the flow data
only at join points. In the case of loops, recognized by the presence
of a backward jump, a solution that we have decided to use is to
compute an over-approximation by taking flow data that exist at
the end of the loop body and merge them to all relevant program
code locations within the loop body. This approach quite precisely
approximates the possible effects (behavior) of multiple loop itera-
tions. Flow data summary for a method is computed by merging
the data over all control-flow paths, and thus reflects all possible
executions of the method.

1 count =

2 // [push count to expression stack]

3 threshold =

4 // [push threshold to expression stack]

5

6 if (count > threshold) {

7 // [pop count and threshold from the stack]
8 // [new control -flow branch registered]

9

10 data = executeQuery ("SELECT « FROM orders");

1 // [data: "SELECT » FROM orders"]

13 } else {

14 // [another control-flow branch registered]
15

16 data = loadFile("/tmp/neworders.csv");

17 // [data: "/tmp/neworders.csv"]

19 } // [join point]

20 // [data: "SELECT s FROM orders ",
21 //
2 processOrders (data);

"/tmp/neworders. csv "]

Figure 4: A fragment of program code with flow data
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Figure 4 illustrates the process of interpreting bytecode and
computing flow data on a small code fragment that involves an if-
then-else statement. All the statements are processed in a sequence
from top to bottom. Comments in square brackets describe the ef-
fects of bytecode instructions, in particular updates of the symbolic
expression stack, flow data information, and control-flow branches.

Flow data propagation. The most important bytecode instruc-
tions (program statements) with respect to possible effects on data
lineage, which deserve special attention, are these: assignment
statements and method calls. We describe our approach to handling
these statements (and modeling their effects) in a generalized uni-
fied way, as propagation of flow data from source expressions to
respective target expressions. In the case of an assignment v := o, the
primary source expression is the value o specified at the right-hand
side and the primary target is the destination variable v on the
left-hand side. The situation is a bit more complicated in the case
of method calls, where propagation of flow data over the method
call boundaries has to be simulated and evaluated with respect to
actual arguments (in the caller), formal parameters (in the callee)
and return values. It is done in two separate steps, processing of
invoke and return. First, the invocation of a callee method is eval-
uated, where flow data for actual arguments of the call (source)
are propagated to formal parameters (target). The actual receiver
object and the formal parameter this are considered too. When the
declared target of the call statement is an application method, a new
invocation context for the callee is created, filled with arguments’
flow data, and then recorded (but only if the new context is different
from all the already observed contexts for the callee method). Sec-
ond, upon processing the return from callee, flow data associated
with return expressions in the callee (source) are propagated to the
variable in the caller scope (target) where the result of the method
call is stored.

While propagation from source to target expressions may seem
as quite straightforward, here we need the emphasize the additional
really essential aspect of the propagation procedure. It has to con-
sider also field access paths defined over the primary source and
target, array access expressions, and even aliasing information. For
example, when processing the statement v := o, flow data for the
field access expression o.f.g are propagated to v.f.g. In general, we
designed the general unified handler for assignment such that it
collects the set AEg,. of all access expressions (to object fields or
array elements) over the primary source, including their possible
aliases, and for each element of the set AE,. propagates flow data
to the corresponding expression over the primary target.

Handling of method calls. We want to discuss two more issues
related to simulation of method calls that we had to consider hen
designing our handler: (1) interfaces and (2) library methods.

The declared target of a method call statement, that means a
target specified in the bytecode, may be an interface method or a
virtual method. When the declared target method belongs to an
interface defined by the application (i.e., not by some library), or
when it is an interface possibly implemented by some application
class, the handler must consider all the concrete target methods
defined by application classes that implement the respective in-
terface. Similarly, in the case of virtual or abstract methods, all
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concrete implementations defined in subclasses must be consid-
ered, We extended our basic handler procedure to accommodate
these situations. Flow data are propagated from the caller to every
possible concrete target callee method, specifically to the new invo-
cation context specific to each concrete callee. The effects of return
are simulated such that flow data in the caller are updated based on
the currently available method flow summaries for all the callees
together, ensuring that no information about data flow is lost.
Library methods are not analyzed by the symbolic bytecode
interpreter, as we already mentioned. Our approach is to model
the effects of calls to library methods on data flow information by
the means of semantic descriptions that are predefined (configured)
in advance by Manta engineers. The semantic description of a
library method can be either (1) specified in a declarative way using
our simple DSL implemented in Java or (2) encoded in the form
of Java program code (using the programmatic approach) when
the library method’s behavior is more complicated. Examples of
semantic descriptions are provided in the following sections, for
Java core standard libraries in Section 4 and for enterprise data-
manipulation frameworks in Section 5. For practical purposes, we
have explicitly defined semantic descriptions just for a rather small
number of library methods, those deemed by Manta engineers
to have effects on data flow information and frequently used in
customer applications. Calls of other library methods are processed
by so-called identity handler that is applied by default when no
explicit semantic description exists for the library method. The
identity handler just propagates merged flow data for the receiver
object and each argument of the library call to the return value.

Evaluation and remarks. Our experience with the core modu-
lar symbolic data lineage analysis, described above in this section,
gathered mostly through usage of the Java and C# scanners on appli-
cations provided by customers, indicates that the symbolic analysis
works well in principle and computes results that are sufficiently
precise. But the real technical and software engineering challenges,
encountered and observed within this project, were mostly related
to precise and scalable handling of program constructs, features,
and software development approaches typical for large enterprise
business applications. We provide details in the following two sec-
tions. First, in the next section, we focus on the program constructs
and software development approaches used in the case of large
real-world Java/C# programs, and thoroughly describe how they
are handled by the scanners. Then, in Section 5, we provide an
overview of relevant features specific to large enterprise applica-
tions, point out the associated technical challenges, and present
our current solutions together with discussion of their benefits and
limitations. Although we present the challenges in the context of
Manta and its Java/C# scanners, we believe the challenges are more
general and especially relevant to the development of any static
analysis tool aiming at large enterprise systems written in Java or
C#. Some of the challenges are similar to those discussed in recently
published studies [1, 3, 18].

4 CHALLENGES RELATED TO ANALYSIS OF
REAL-WORLD APPLICATIONS

An obvious implicit functional requirement on the Java and C# scan-
ners has been to ensure they can process real-world applications
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written in those languages and compute valid data lineage for them.
During the course of this project, when trying to fulfill this overall
goal, we have encountered numerous technical challenges (kind
of) specific to real-world applications that are much more complex
than simple (toy) programs that we used for our initial experiments
with static data lineage analysis. In particular, those members of
the project team coming from the academic background could not
really imagine, at the beginning, how many challenges and of what
kind specifically we would have to face.

Programming language features. The major challenge that we
discuss as the first is the need to properly support all the features of
Java [22] and C# [24] programming languages, including those fea-
tures that are rather obscure, and to support also the Java/JVM [23]
and .NET/CLR [25] bytecode sequences (patterns) that compilers
may produce. Here, by the word "properly" we mean correctly,
without failures, and with useful precision. The list of relevant
features includes the basic program constructs, such as object (in-
stance) fields, arrays, control-flow structures (if-then-else, loops),
static fields, and so on. But, the list contains also features and pro-
gramming constructs that turned out to be more tricky to handle,
specifically the following:

e abstract classes and interfaces;

e inheritance, with all its trickier aspects like calls of superclass
constructors and fields declared in superclasses;

e static constructors (initializers);

e inner classes (which have synthetic references to the outer
class and may access its fields);

e lambda methods, some of which implement functional in-
terfaces (e.g., java.util.function.Predicate), and possibly with
captured arguments (local variables defined in the enclosing
syntactic scope).

We provide more details about the way some of these language
features and constructs are handled by the symbolic analysis.

One of the difficulties related to abstract classes and interfaces
with multiple concrete implementations is to make sure that flow
data are not propagated between methods in an overly imprecise
way. Flow data associated with an interface (abstract) method, either
in its summary or invocation context, should be computed as union
of the flow data for all the concrete implementing methods. But, the
content of the flow summary or invocation context associated with
the interface method cannot be simply propagated to a particular
concrete implementing method (defined in a subclass), because it
may refer to entities that belong to another subclass. For illustration,
consider the program in Figure 5. It contains interface A with two
subclasses B and C, where each of the subclasses declares its own
field and implements the method load. The flow data computed
for A.load should refer to data sources for both B.f and C.g, set in
the respective concrete implementing methods. But it would be
overly imprecise to simply propagate all flow data from A.load to
B.load, for example, because then flow data for B.load would refer
to the unrelated field C.g. Our solution has been to apply carefully
designed filters, which omit flow data according to well-defined
criteria during propagation in specific directions. The criteria reflect
the syntactic scopes in which expressions are visible.

Similarly, flow data computed for the return expression in one
concrete implementing method ¢m cannot be simply propagated to
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1 interface A {

2 void load ();

3 }

4

5 class B implements A {

6 int f;

7 void load () {

8 f = executeQuery ("SELECT ... ");
o }

10 }

11

12 class C implements A {

13 int g;

4 void load () {

15 g = loadFile("/tmp/data.csv");
16 }

7 }

Figure 5: A program that illustrates flow data propagation for
an interface method with several concrete implementations

the respective abstract method am, because the return expression in
cmmay involve, e.g., some local variable that would not make sense
in flow data for the return expression of am. The carefully designed
filters, applied in propagation, help to avoid many spurious entries
in the computed flow data.

In the case of lambda methods in Java, the main challenge was
to determine a correct mapping between functional interface meth-
ods (e.g., Supplier.get and Function.apply) and synthetic compiler-
generated methods that represent implementations of lambda ex-
pressions at the bytecode level. For that purpose we had to create
an auxiliary modular symbolic analysis that computes this mapping
for variables of function object types in advance. This auxiliary
analysis follows the same principles as the main symbolic data
flow analysis, that means usage of worklist, iteration until a fixed
point is reached, and propagation of information over assignment
statements and method call boundaries. Captured arguments of
lambda methods are supported by flow data propagation from the
enclosed syntactic scope to their invocation contexts, like for stan-
dard methods. Note that delegates in C#/.NET are handled in a very
similar way to lambda methods in Java/JVM.

We also want to highlight one important aspect of symbolic
evaluation of array access expressions. The analysis maintains flow
data just for those individual elements accessed through indexes
explicitly specified in the bytecode. But the problem is that many
different expressions used as an index may;, in fact, refer to the same
element. Our solution was to use the covering relation, which for
every observed array index expression determines all the affected
elements with respect to flow data propagation. For example, the
array expression a[i] covers a[0] and a[1], so any change to flow
data for a[0], e.g. through explicit assignment, therefore affects also
flow data for a[i] and vice versa.

Basic libraries. Another major challenge has been support for
basic libraries, including strings, collections, file I/O, databases (the
JDBC API [29] in case of Java), and few other.
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Precise modeling of string operations, such as concatenation, and
their possible results is especially very important for data lineage
analysis, because data flow endpoints used in Java/C# programs are
identified by strings. Consider, for example, text of SQL queries and
commands, names of database tables, and paths to files. An SQL
query may be constructed like this (in Java): String query = "SELECT *
FROM orders" + year + " WHERE price > " + minPrice. String constants are
concatenated together with values of several variables. To achieve
high precision and reduce over-approximation as much as possible,
and to make space for non-trivial optimizations, we have decided to
implement handlers for string operations directly in the scanners
in the form of Java code. String concatenation is evaluated by gen-
erating all the possible sequences (combinations) from input string
fragments. Figure 6 shows an example that involves two string
variables that together encode the name of a database table. Each of
these two variables has several (2-3) possible string constant values
tracked in their associated flow data. The result of concatenation is
stored into the flow data for the variable query.

1 String tabNameBase =

2 // ["orders", "invoices"

3 String tabNameYear =

s // ["20207, "2021", "2022"]

5

6 String query = "SELECT »« FROM " + tabNameBase
7 + "_" + tabNameYear +

8 " WHERE customer_id > " + cld;
9 // ["SELECT + FROM orders_2020

10 WHERE customer_id = UNDEF"

11 "SELECT » FROM orders_2021

12 WHERE customer_id = UNDEF"

13

14 "SELECT +« FROM invoices_2022

15 WHERE customer_id = UNDEF"]

Figure 6: Evaluation of string concatenation

The example in Figure 6 shows one additional feature of our
handler for string concatenations. Note the variable cld without any
flow data, especially without any known possible constant value.
In such cases, the handler uses the special constant _ UNDEF__
as the default value. When the user observes this constant in the
data lineage graph, it serves as an indicator that the analysis could
not determine any possible string constant value for the respective
variable. The reason may be that the actual value of the variable is
not explicitly defined anywhere in the bytecode (source code), but
provided as input at runtime.

Sound and reasonably precise modeling of collections is also
needed for data lineage analysis, simply because programs that
access databases or files typically use collections to store data in
memory and pass them around. Taking into account common usage
patterns of collections that we observed in enterprise applications,
we have determined that, besides the content of collections, our
model has to support also iterators.

Our basic approach to modeling collections uses an abstraction
that represents all the concrete elements (stored values) by a single
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abstract summary node (element). It does not distinguish individ-
ual elements. Therefore, flow data for the summary element are
equal to the union of flow data for all objects ever added to the
collection, over-approximating its possible runtime content. This
model for collections is expressed using the mechanism of semantic
descriptions for individual operations. A semantic description for a
particular operation with collections, that means a handler for calls
of the corresponding library method, specifies how the flow data
both for the collection variable (a method call receiver) and for the
operation’s return value should be updated to reflect flow data of
the call arguments.

For illustration, the basic variant of the semantic description for
the call v = Map.get(k) in a human-readable form looks like this:

propagation : from — collection — to — returnvalue

Since only the union of elements’ flow data is maintained in the
basic model, the description reflects the abstract non-deterministic
mapping of any possible key to any possible value, and therefore
flow data for the whole collection are propagated to the return
value of Map.get.

The semantic description for List.add(o) looks like this:

propagation : from — argument — to — receiver

Flow data of the newly added element are merged into flow data of
the whole collection (receiver object).

Later during the course of this project, we have extended the
basic approach to modeling collections by precise tracking of flow
data for elements that are only ever accessed through a constant
key or index. This was motivated by the need to improve precision
of analysis results for some data-processing frameworks that take
method call arguments (or provide results) in the form of maps
with specific constants as keys. The extended model for collections
has these main features:

o it stores flow data separately for keys and values in maps,

e precisely tracks the association of constant keys (in case of
maps) and numeric indexes (in the case of lists) to flow data
for values, and

e keeps information about iteration order for collections that
are initialized just with constants in a specific order (using
some form of constant initialization block).

Specifically, flow data for values associated with constant keys are
not represented by the summary node.

Our extended model also tracks flow data for field access expres-
sions over the collection elements.

To increase the analysis precision even further, based on typical
usage of collections and strings together observed in customer
applications, we have added support for precise evaluation of string
concatenation in the case of collections (i) that contain only string
constants as elements and (ii) for which there is just a single known
exact iteration order.

Dependency injection and external configuration. Modern real-
world applications use also many other advanced features and
constructs, like dependency injection and loading configuration
from external sources (e.g., XML documents), that make data lineage
analysis more difficult.
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Here we focus on dependency injection mechanisms provided by
the very popular Spring framework [32]. The most relevant aspect
is the definition of implementation classes for interfaces through
autowiring. Consider the small example program in Figure 7. The
field svc in the class Application is annotated with @Autowired, so
there is no explicit assignment of an implementing object in the
source code, but the dependency injection framework would search
for some implementation (HttpService in this example), create an
instance, and then assign it to the field using reflection. All that is
done automatically behind the scenes by the framework.

1 interface Service {

2 int handleRequest(String payload);

3 }

4

5 class Application {

6 @Autowired

7 Service svc;

8

9 void runWorker () {

10 String data = waitForRequest ();

11 int res = svc.handleRequest(data);
12 }

13 }

14

15 class HttpService implements Service {
16 int handleRequest(String payload) { ... }

Figure 7: Dependency injection through autowiring

For the purpose of computing sound data lineage for such appli-
cations, it is necessary to (1) collect all fields of interface types with
"autowired" values, (2) for each of the respective interfaces find all
possible concrete implementing classes in the analysis scope, and
(3) then add concrete methods of every implementing class to the
call graph and worklist. Our symbolic analysis determines the set
of all possible implementing classes for a given interface based on
the class (type) hierarchy. The currently implemented support for
dependency-injection frameworks within the data lineage scanner
for Java is fully covered in [15].

5 CHALLENGES RELATED TO ANALYSIS OF
LARGE ENTERPRISE APPLICATIONS

We have already mentioned that another group of technical chal-
lenges that we had to face (in our work on data lineage scanners)
is related specifically to large enterprise applications that involve
business logic written in Java or C#. Such applications manipulate
with large amounts of complex data in order to automate business
processes [6], and thus represent one of the main target application
domains for data lineage analysis.

Frameworks. A really big never-ending challenge (still ongo-
ing) is the need to support many data processing and manipula-
tion frameworks (libraries) used in enterprise applications. The list
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of popular frameworks includes JDBC API [29], Spring JdbcTem-
plate [33], MyBatis [30], Hibernate [28], Apache Spark [26], and
Entity Framework Core [27] (for C#/.NET). Like for the basic li-
braries, we use semantic descriptions that capture the effects of
calls to framework methods on the data flow information.

For illustration, we take as examples two methods provided
by the JDBC API Our semantic description for the method State-
ment.executeQuery(String sql) just specifies that (1) a new data flow
source is created for every possible concrete string value of the
argument sql, (2) each of the data sources is linked to information
about the database connection, and (3) then everything is propa-
gated to the return value of type ResultSet. The semantic description
for ResultSet.getInt takes the data source associated with a method
call receiver (that represents a set of SQL queries) and makes its
fresh copy, refines this copy with identification of a database table
column (index or name), and propagates the refined information
about data sources to the return value.

In general, we strive to define the semantic description (han-
dler) of data flow effects of each framework method in a way that
corresponds as closely and precisely as possible to its API docu-
mentation, resorting to imprecise over-approximation just when
needed to express the respective behavior in a feasible way for the
purpose of static analysis.

Semantic descriptions for public methods (API) of every sin-
gle framework are grouped together in the form of a data lineage
analysis plugin that is responsible for handling and processing just
everything related to the particular framework. Note, however, that
for each supported framework we have explicitly defined handlers
just for a subset of its API, focusing on the API operations that are
really used in customer applications. In the case of most plugins
that we have developed so far, semantic descriptions combine a
declarative part (written in a simple DSL) with rather complicated
program code that implements the DSL and performs actual modi-
fications of respective flow data objects. The plugins also have to
load and process relevant metadata, such as definitions in XML files
and configurations in Java property files.

Probably the most challenging aspect from a high-level software
engineering perspective has been the need to support many frame-
works, each based on a different approach (paradigm) to data manip-
ulation. Consider, for example, the MyBatis persistence framework
where object-relational mapping (ORM) definitions are written in
rather complicated XML documents, and the Apache Spark frame-
work centered around pipeline processing of data frames.

Callbacks. Next, we focus on a common feature of many enter-
prise data-manipulation frameworks, usage of callback methods for
application-specific operations with data. An example of typical us-
age of callbacks in the context of Spring JdbcTemplate is presented
in Figure 8. The call of the framework API method query at line 6
gets also the application-specific function object that encapsulates
the callback method processRow. When this callback is invoked by
the framework, it receives a ResultSet object that represents one
row of the SQL query result.

Very early we have found out that precise modeling of the effects
of callbacks from libraries (frameworks), within the context of
symbolic data lineage analysis, is hard for the following reasons.
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1 void testQueryWithCallback () {

2 DataSource ds = new OracleDataSource ();

3 // configuring the data source (URL, ...)
4 JdbcTemplate jt = new JdbcTemplate(ds);

5

6 res = jt.query("SELECT « FROM orders",

7 new OrdersRowCallbackHandler ());
s }

9

10 class OrdersRowCallbackHandler

11 implements RowCallbackHandler {

12 void processRow (ResultSet rs) {
13 ... = resultSet.getString (1);
14 }

Figure 8: Usage of callbacks by Spring JdbcTemplate

e There is no edge in the call graph that directly connects
(i) application method am that invokes framework method
fm with (ii) callback method cm possibly invoked by fm. In
our example, there is no call graph edge from testQueryWith-
Callback to processRow.

e It is not possible to say where exactly in the scope of the
library (framework) method the application-defined callback
method is really invoked, since we do not inspect the code
(implementation) of library methods. In addition, we cannot
tell in which order are the callbacks invoked (when there is
more than one).

Therefore, we have decided to use a solution that computes a
relatively coarse over-approximation both for the callback method
and for the library (framework) method that invokes the callback.
We present the key ideas of our solution.

o Input flow data for the callback include flow data of the re-
ceiver object and every argument of the "invoker" framework
method.

Flow data associated with the result of the framework method
are propagated into flow data for the receiver object and ev-
ery argument of every callback possibly invoked from the
framework method.

Flow data for the receiver object and for every call argument
of the framework method (including field access paths over
these expressions) are augmented with flow data that model
the result of callback’s invocation.

e For every callback possibly invoked within execution of a
framework method, flow data representing the result of this
callback are propagated (i) to the result of the whole frame-
work method and (2) to arguments of every other callback
invoked by the framework method.

Finally, input flow data for a specific callback are computed
by merging the data over all invocations of library (frame-
work) methods that may invoke the callback.

We have implemented all these ideas within plugins (handlers) for
the respective frameworks and in the core symbolic analysis.
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Correct symbolic data flow analysis of the actual callback meth-
ods is ensured too, in a way described here. For each application
method am, the analysis keeps a set of possible callbacks from all
library and framework methods called by am. In addition, for each
application method used as a callback somewhere, the analysis
keeps a set of application methods that may "trigger" it via some
library call. This enables proper updates of the worklist and other
data structures:

e When the flow summary for application method am changes,
meaning that input flow data for library methods called by
am may have changed too, every relevant callback method
is added to the worklist.

o Also when the flow summary of method cm used as a callback
is updated, then every application method that may "trigger"
execution of cm via some library call is added to the worklist.

In hindsight, correct, efficient, and reasonably precise handling of
callbacks has been one of the most difficult challenges from the
algorithmic point of view. Both researchers and engineers have
spent really a lot of time tweaking the algorithms, design and im-
plementation (when trying to get it right).

Performance and scalability. While the modular symbolic data
flow analysis works well in principle, it does not scale well enough
for really large enterprise applications. Here we are talking about
applications that consist of thousands of classes and tens of thou-
sands methods. The size of an input application, in terms of the total
number of Java/C# methods, greatly influences the running time
of data lineage analysis, because most of the application methods
are processed several times (even 20-30 times in some cases) before
the top-level algorithm reaches a fixed point over the method flow
summaries.

Therefore, we have tried many algorithmic optimizations during
our work on this project, and evaluated their benefits for perfor-
mance and scalability of the data lineage analysis on customer
applications. We discuss few of the optimizations that we designed
and implemented, in particular those with a really big impact, below
in this section and in the next one.

The total running time and memory consumption of the sym-
bolic data lineage analysis depends very much on the number of
symbolic expressions for which it tracks and propagates flow data.
Note that flow data include also possible string values and other in-
formation, they contain more than just identification of data sources
(text of SQL statements, file names, etc). So an obvious idea was
to reduce the number of such "tracked’ expressions, but the real
challenge here was the design and especially implementation of a
procedure that would compute the set of relevant symbolic expres-
sions, i.e. those for which data flow information needs to be tracked,
in a way that is (1) fully automated, (2) correct, (3) efficient, and
(4) sufficiently precise. After much thought and many experiments
(research), we have decided to use the following approach:

(1) Tracking flow data for symbolic expressions used as argu-
ments for operations with data sources and endpoints, argu-
ments to calls of data-processing frameworks, and expres-
sions used to store the results of such operations.

(2) Then also tracking flow data for all symbolic expressions
(A) that those in the first group depend on transitively through
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assignments or (B) into which some from the first group may
be propagated.

Our approach has been greatly inspired by the algorithms for pro-
gram slicing [16], both forward and backward. Note also that the
final set of tracked symbolic expressions is computed gradually over
the run of symbolic analysis. It may be extended in each iteration
of the top-level worklist algorithm. This way, the analysis can still
track all the important data lineage information that the scanners
should report, capturing in the graph all the data endpoints and the
flow of data between them, while ignoring possible values of the
irrelevant program expressions.

Another optimization that has a really great benefit is usage of
the subsuming relation over invocation contexts. The key principle
is this: when the analysis gets to the state in which there would be
two different invocation contexts, ¢; and c¢s for method m, and ¢y
subsumes ¢, meaning that c; contains all the information stored
in ¢; and possibly more, then it suffices to keep just c; and merge
all the data flow information associated with ¢ into that for c;.

6 IMPLEMENTATION

Manta engineers and university students have implemented the
whole symbolic data lineage analysis, including all the algorith-
mic optimizations described above, within the proprietary closed-
source Manta Flow platform. The current implementation features
also many low-level performance optimizations that proved to be
very useful — for example, a copy-on-write mechanism for data
structures that capture flow information (summaries, invocation
contexts), and extensive caching of intermediate results of various
computations performed as steps of the analysis.

All the developers together have created a large test suite, which
includes (1) unit tests for small code fragments (individual meth-
ods and classes, small pieces of functionality) but also (2) many
integration tests. The integration tests are designed to validate the
complete run of a scanner on small input programs manually pre-
pared by the developers. The input programs used by tests have
around 30-50 lines of code each, covering all the different features
of Java/C#, supported core libraries (strings, collections), and calls
of the supported operations of data-processing frameworks. Vali-
dation of the scanner output is based on comparing the computed
flow graph against manually defined expectations in the form of as-
sertions over the flow graph. The assertions check the overall flow
graph structure, existence of nodes with specific content (that rep-
resents specific data endpoints), and existence of paths (sequences
of edges) between specific pairs of nodes.

7 EXPERIENCE AND LESSONS LEARNED

In this final section, we discuss the key points of our experience
gathered so far during the whole process of developing the scanners
for Java and C#, and share the most important ("take-away") lessons
that we have learned and that may be interesting for others.
During our work on the scanners, a really large amount of work
(lot of time and effort) has been dedicated to development of per-
formance and scalability optimizations, many times sacrificing pre-
cision for performance and vice versa, in order to make sure that
scanners are able to compute precise and useful data lineage graphs
within practical time bounds. Especially testing and debugging of
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the performance issues, optimizations and precision improvements
on large applications requires lot of time and effort. Also the process
of defining the semantic descriptions (handlers) for selected individ-
ual methods (API) of data manipulation and processing frameworks
is very time consuming.

Precision of the computed data flow graphs inherently depends
on the level of approximation that is applied during a run of static
analyses (caused, e.g., by merging flow data over all control-flow
paths within a single method). While many features of the static
analyses used in Manta scanners have some effect on the precision
of the result, here we want to highlight especially the following
two as very important in practice: (1) approximation introduced
by models (semantic descriptions) of library procedures for string
manipulation and (2) merging flow data (summaries) computed
for different invocations (call contexts) of individual application
methods. Note that, without high level of over-approximation and
quite aggressive performance and scalability optimizations that
affect precision of the resulting flow graphs, the static analyses
performed by scanners would be absolutely infeasible.

The whole endeavour of trying to process large enterprise ap-
plications, provided by customers, has shown the limitations of
modular static analysis in practice. For some of the large applica-
tions, our scanners run for tens of hours (few days), need really a
lot of memory (tens of GBs), and produce just partial results. Our
experience with the design and implementation of data lineage
scanners (analysis) shows that, while the design of some analysis
optimizations may be quite straightforward, the real challenge is
to create a both correct and efficient implementation that provides
observable benefits when scanners are used on large applications.
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