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Abstract. A key problem in compositional model checking of software systems is that 
typical model checkers accept only closed systems (runnable programs) and therefore 
a component cannot be model-checked directly. A typical solution is to create an 
artificial environment for the component such that composition of them forms a 
runnable program that can be model-checked. While it is possible to create a universal 
environment that performs all possible sequences and interleavings of calls of the 
component’s methods, for practical purposes it is sufficient to capture in this way just 
the use of the component in a particular software system – this idea is expressed by the 
paradigm of assume-guarantee reasoning. 
In this paper, we present our approach to assume-guarantee-based verification of 
software systems in the context of the SOFA 2 component framework. We provide an 
overview of our approach to the construction of an artificial environment for 
verification of SOFA 2 components implemented in Java with the Java PathFinder 
model checker. We show the benefits of our approach on results of experiments with a 
non-trivial software system and discuss its advantages over other approaches with 
similar goals. 

 

1 Introduction 
There has been a general trend in software engineering towards construction of 

software systems in a modular manner, using components with well-defined interfaces 
as basic building blocks [1]. This trend is visible especially in enterprise software 
systems, since use of components as building blocks promotes reuse and makes code 
updates easier, thus reducing the cost of software development and maintenance. 

A typical process of development of a software system from well-defined 
components (supported by formal verification) consists of the following five phases: 

• design of the system’s architecture and component interfaces, 
• definition of a design-level model of behavior (behavior specification) of 

each component in the system, 
• verification of compatibility (compliance) of components’ behavior models, 
• implementation of components in a programming language, and 
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• checking whether the implementation of each component satisfies its 
behavior specification and whether the whole system is free of statically 
detectable errors. 

Behavior specification of a component may have the form of (i) contracts 
(preconditions and postconditions) for individual methods defined, e.g., in a 
formalism like JML [2], or (ii) finite state machine (FSM) or expression in a process 
algebra-based formalism that describes the valid sequences of calls of component 
methods [3][4][5]. In this paper, we focus on checking whether component 
implementations satisfy (obey) their behavior specifications that describe the valid 
sequences of method calls and whether they are free of low-level concurrency errors 
like deadlocks and race conditions. 

The verification technique that is most suitable for checking concurrent software 
systems against temporal properties like compliance with FSM-based behavior 
specification and absence of concurrency errors is model checking [6]. It is based on 
exhaustive traversal of the state space of a software system model (implementation) to 
achieve systematic exploration of all execution paths of the system – in particular, it 
can detect subtle errors that occur only in a specific thread scheduling sequence. 

The main limitation of software model checking is that it does not scale in terms of 
the size of software systems due to the well-known problem of state explosion. The 
state explosion problem manifests itself especially in model checking of a whole 
software system at once – therefore, in case of software systems built from 
components, a natural solution is to apply compositional techniques in order to 
improve scalability. The basic idea of compositional model checking [7] is to verify 
the behavior (determined by design model or implementation) of each component in 
isolation and infer global properties of the whole system from the results of 
verification of individual components. A single component typically has smaller state 
space than the whole system and therefore model checking of the component is less 
prone to state explosion. 

Another problem in model checking of a component is that a typical software 
model checker accepts only a runnable program (closed system). A component is 
inherently an open system – its behavior depends on the context (environment) in 
which it is used – and therefore cannot be model-checked directly. We call this issue 
the problem of missing environment. A typical solution is to create an artificial 
environment which composed with the component yields a runnable program that can 
be model-checked [8] [9]. 

The artificial environment should be constructed in such a way that it exercises the 
component in various ways in order to discover as many errors as possible in the 
component’s model (implementation). Specifically, the artificial environment has to 
perform various sequences of calls of component’s methods (with “reasonably chosen” 
parameter values) in one or more concurrent threads. One option is to create a 
universal environment that performs all possible sequences and interleavings of calls 
of component’s methods to challenge robustness of the component. However, model 
checking with a universal environment is obviously infeasible for non-trivial 
components due to state explosion. Nevertheless, a component is typically expected to 
work properly only in specific environments [10], e.g. those using the component in a 
way that is compliant with its behavior specification. Therefore, for practical 
purposes, it is sufficient to use an artificial environment that simulates the behavior of 
the set of actual environments, in which the component can be used. 

The idea of using an artificial environment that represents the behavior of a 
particular set of actual environments is expressed by the paradigm of assume-
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guarantee reasoning (AGR) [11]. Using this paradigm, the general process of 
verification of a component consists of the following steps [12] (AGR verification): 

1. An environment assumption is specified (constructed), which characterizes 
the behavior of a set of specific contexts (actual environments) in which the 
component is expected to work properly. 

2. An artificial environment for the component is constructed on the basis of 
the environment assumption – a runnable program composed of the 
component and the artificial environment is created this way. 

3. The runnable program is model-checked in order to find whether the 
component (implementation or its model) satisfies its behavior specification 
and contains no low-level errors, when used in compliance with the 
environment assumption. 

Before the component can be used in an actual software system, it has to be also 
checked whether the rest of the software system (other components) satisfies the 
environment assumption, i.e. whether the system will interact with the component in a 
way compliant with the environment assumption. Only if both checks are successful, 
it is guaranteed that the component will work correctly (in conformity with its 
behavior specification) in the given system. 

Both the environment assumption and artificial environment can be in principle 
written by hand, but this would be a daunting task even in simple cases. Therefore, 
key challenges of applying AGR verification include: (i) construction of such an 
environment assumption that model checking of the runnable program composed of 
the component and artificial environment is not prone to state explosion [13], (ii) to 
automate construction of the environment assumption based either on (a) behavior 
specification of the component (to fully exercise it in a way compliant with the 
specification – standalone approach) or (b) behavior models of actual environments (to 
provide their union – context approach), and (iii) automated generation of the artificial 
environment from the assumption. 

In this paper, we present our solution to these challenges in the context of the 
SOFA 2 component framework [14]. We provide an overview of our approach to 
construction of an artificial environment for AGR verification of SOFA 2 components 
implemented in Java using the Java PathFinder model checker (JPF) [15], and we 
show benefits of our approach on results of its application to a non-trivial software 
system built of SOFA 2 components. We use the formalism of behavior protocols [3] 
for behavior specification of components and for definition of environment 
assumptions. 

The rest of the paper is structured as follows. We provide an overview of the SOFA 
2 component framework, behavior protocols and JPF in Section 2. A software system 
that is used for illustration of presented ideas is introduced in Section 3. In Section 4, 
we provide an overview of our approach to AGR verification of SOFA 2 components 
implemented in Java with JPF. We evaluate our approach in Section 5, and discuss 
related work in Section 6. Then we conclude in Section 7. 

2 Background 

2.1 SOFA 2 Component Framework 
The SOFA 2 component framework consists of a component model [16] and a 

runtime environment [17]. The component model defines (i) the concepts of interface 
and component, (ii) the way components can be composed to form a 
system/application, and (iii) other abstractions related to lifecycle of individual 
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components and complete systems. The runtime environment reflects the SOFA 2 
execution model and provides several development and administrative tools. While 
the component model is not specific to a particular programming language, the 
runtime environment currently supports only Java. 

The SOFA 2 component model defines a component as a unit of composition with a 
set of external interfaces of two kinds – provided interfaces specify the services that the 
component provides to its clients and required interfaces specify the services that the 
component requires from its environment (i.e., from other components in the system). 
All external interfaces of a component form its frame. The key feature of the 
component model is that it is hierarchical and therefore supports nesting of 
components – primitive components are implemented directly in a programming 
language and represent leafs of a hierarchy, while composite components are 
composed of nested sub-components. Components at the same level of nesting are 
connected via bindings among interfaces. 

The SOFA 2 component framework also supports formal specification and 
verification of component behavior. Each component can be equipped with a behavior 
specification defined in the formalism of behavior protocols (details in Section 2.2) – 
then it is possible to check whether (i) the Java implementation of each primitive 
component satisfies (obeys) its behavior specification and (ii) all sub-components of a 
composite component communicate without errors and comply with the parent’s 
behavior specification. 

2.2 Behavior Protocols 
The formalism of behavior protocols [3] is a specific process algebra that we use 

for modeling and specification of behavior of SOFA 2 components. A behavior 
protocol prot is an expression that specifies a set of finite traces of method call-related 
events on component’s provided and required interfaces. Four kinds of atomic events 
are supported by the formalism: 

• ?interface.method↑ (acceptance of a method invocation on an 
interface), 

• !interface.method↑ (emit of a method invocation), 
• ?interface.method↓ (acceptance of a return from a method), and 
• !interface.method↓ (emit of a return from a method). 

 
More complex behavior protocols can be constructed from the atomic events using 

the operators for sequence (;), choice (+), finite repetition (*), and parallel 
composition (|). The parallel composition operator generates all interleavings of 
event traces defined by its operands such that no synchronization is assumed. An 
empty protocol is denoted by the expression NULL. Several syntactical shortcuts that 
enhance readability of protocols can also be used (they are supported by tools): 

• ?i.m{ P } stands for ?i.m↑ ; P ; !i.m↓, and 
• !i.m{ P } stands for !i.m↑ ; P ; ?i.m↓. 

Here, the protocol P models a method body (it can be empty). 
Given a component C, various behavior protocols modeling different aspects of C’s 

behavior can be defined in general – however, a behavior protocol with special 
meaning in the context of SOFA 2 is the frame protocol, which specifies the valid 
sequences of method calls on C’s provided interfaces and valid reactions of C in terms 
of method calls on required interfaces. This way, a frame protocol FPC of the 
component C represents C’s behavior specification. 
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The key benefit of the formalism of behavior protocols is the built-in support for 
checking whether components equipped with frame protocols can communicate 
without errors. This can be done using the consent operator (L) [18] for parallel 
composition of frame protocols – semantics of the consent operator is similar to the 
CCS parallel composition operator, i.e. it forces complementary events (e.g., ?i.m↑ 
and !i.m↓) to synchronize and form an internal action (e.g., τi.m↑); however, it 
also identifies specific communication errors (deadlock and no response to a method 
call). We say that two protocols FP1 and FP2 are compliant if their composition via 
consent (FP1 L FP2) yields no communication errors – components equipped with 
compliant frame protocols behave in a compatible way. The consent operator is 
implemented in the BPChecker [19] tool, which was developed in our group; 
technically, search for communication errors is done via exhaustive state space 
traversal. 

2.3 Java PathFinder 
Java PathFinder (JPF) [15] is a highly extensible and configurable explicit-state 

model checker for Java bytecode programs. It accepts a runnable Java bytecode 
program (with main()) and a set of properties as an input, and checks whether the 
program satisfies all the properties. By default, JPF checks low-level properties like 
freedom from deadlocks and assertion violations, but it can be extended via its API to 
check also high-level properties like compliance of Java code with a behavior 
specification. 

A key feature of JPF is that it provides a powerful API, which allows (i) to extend it 
in various ways (e.g., with domain-specific properties), and (ii) to integrate it easily 
into development and verification frameworks. An important part of JPF’s API is the 
Verify class that provides methods for non-deterministic data choice. It is supposed 
to be used in model checker-aware test drivers (and artificial environments) to 
systematically check the behavior of a fragment of Java code (a class) on all inputs 
from a given set – for example, a call of Verify.getInt(0,3) means that the 
code following the call is checked for each integer value in the range 0..3. 

3 Running Example 
The techniques presented in this paper are illustrated on a part of a software system 

in SOFA 2 [20] that was developed in our research group as a solution to the 
CoCoME assignment [21] (a fragment of its UML component diagram is in Figure 1) – 
further referred to as “CoCoME system”. 
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Figure 1: Architecture of the CoCoME system 

We focus especially on the Store component, which provides the 
StoreQueryIf interface (a fragment of the corresponding Java interface is 
depicted on Figure 2) and has no required interfaces. 

 



 7

 
Figure 2: The StoreQueryIf interface in Java 

The frame protocol of Store, FPStore, is depicted in Figure 3. It states that methods 
of the component can be called in all possible sequences and at most in four parallel 
threads, and that each method can be called a finite number of times. 

 
Figure 3: Frame protocol of the Store component 

4 Construction of Artificial Environment for 
Verification of SOFA 2 Components in Java with Java 
PathFinder 

Our approach to AGR verification of a SOFA 2 component C implemented in Java 
with JPF (AGRJPF verification) is an instance of the general three-step process 
described in Section 1. 

The process of AGRJPF verification of a component C consists of the following 
three steps (illustrated also on Figure 4): 

1. Construction of an environment assumption for C, which consists of two 
elements. The first element is a behavior protocol (assumption protocol) that 
specifies the desired sequences and parallel interleavings of method calls on 
C. It is created alternatively (a) from frame protocol of C (standalone 
approach) or (b) from frame protocols of components forming the actual 
environment (context approach). The second element is a Java class that 
contains a specification of data values, i.e. the possible values of parameters 
for methods of C’s provided interfaces and possible return values from 
methods of C’s required interfaces. 

2. Automated generation of the artificial environment for C from the 
environment assumption – a runnable Java program that can be model-
checked with JPF is then available. 

3. Model checking of the runnable Java program with JPF to verify whether 
Java implementation of C satisfies (obeys) the C’s frame protocol and 
contains no low-level concurrency errors like deadlocks and race conditions. 

If model checking with JPF succeeds, it is guaranteed that C (Java code) obeys its 
frame protocol and does not trigger any low-level concurrency errors when used in a 

( 
  ?StoreQueryIf.queryProductById + 
  ?StoreQueryIf.queryStockItem + 
  # calls of other methods on StoreQueryIf  
)* 
| 
# the fragment above is repeated here three more times

public interface StoreQueryIf 
{ 
  StockItem queryStockItem(long storeId, 
        long productbarcode, PersistenceContext pctx); 
  Product queryProductById(long productId, 
        PersistenceContext pctx); 
  ... 
} 
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system that satisfies the environment assumption. The actual technique of the 
checking is based on combining JPF with BPChecker (described in detail in [22]). 

Assumption protocol
Frame protocols
of other primitive

components

Specification of data values
(Java class)

Environment assumption for C
Step 1

Artificial 
environment

for C
C

Runnable Java program

Step 2

Frame 
protocol

of C
Step 3

automated 
generation

JPF

BPChecker

automated 
derivation

a)

b)

 
Figure 4: The process of AGRJPF verification of the component C: a) standalone 

approach; b) context approach 

When C is to be used in a particular software system, it is also necessary to check 
whether the rest of the software system satisfies the environment assumption (as 
mentioned in Section 1). In our case, this can be done via checking behavior 
compliance between the assumption protocol and composition of the frame protocols 
of other components at the same level of nesting. 

The rest of this section provides an overview of our approach to construction of an 
assumption protocol (Section 4.1), specification of data values (Section 4.2), and 
automated generation of an artificial environment (Section 4.3) – more details can be 
found in [23] and [24]. 

4.1 Construction of Assumption Protocol 
Formal definition of the concept of assumption protocol is based on the idea that an 

environment for a component C can be considered as another component EC that is 
bound to C – an assumption protocol APC of C is a frame protocol FPE of EC. 
Nevertheless, APC has to be compliant with C’s frame protocol FPC, since an artificial 
environment for C cannot exercise C in a way that violates its frame protocol. 

The key characteristics that have to be considered in constructing an assumption 
protocol are: coverage of component’s functionality, and, in order to fight state 
explosion, time and space complexity of construction process and the complexity of 
checking the resulting runnable Java program with JPF. Practically, the construction 
process has to be based on a trade-off between the coverage and complexity. 
Therefore, we have designed three specific variants of assumption protocol with the 
aim to reflect typical scenarios of usage of components in real-world software systems 
– inverted frame protocol (APinv), context protocol (APctx), and calling & trigger 
protocol (APtrig). APinv can be algorithmically derived from the frame protocol of C 
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(standalone approach), and the other two can be constructed from the frame protocols 
of other components forming actual environments (context approach). 

An inverted frame protocol APinv
C of a component C models the use of C in all 

ways allowed by FPC, i.e. it has the maximal possible coverage of C’s behavior. An 
artificial environment Einv

C modeled by APinv
C performs all the sequences and parallel 

interleavings of method calls on C that are allowed by FPC and accepts method calls 
from C at the moments specified in FPC. The protocol APinv

C is constructed directly 
from FPC via syntactical transformations (replacement of ! with ? and vice versa), 
and thus time and space complexity of its construction is linear with its length. On the 
other hand, model checking of C in Einv

C with JPF may be prone to state explosion, 
since it calls methods of C in all ways allowed by FPC. 

A context protocol APctx
C models (covers) the actual use of C in a particular 

software system – it is determined by the composition of the frame protocols of all 
other primitive components in the software system. In general, the software system 
may use only a subset of C’s functionality, and therefore the behavior specified by 
APctx

C is a subset of the behavior specified by APinv
C. Consequently, checking of C 

with JPF may be less prone to state explosion if the artificial environment is 
determined by APctx

C instead of APinv
C. On the other hand, APctx

C is computed via 
exhaustive traversal of a composed state space of the frame protocols of all other 
primitive components in the software system, and therefore the process of 
construction of APctx

C has a high time and space complexity, being thus prone to state 
explosion. 

 A calling & trigger protocol APtrig
C is an optimization of APctx

C. Again, it models 
(covers) the actual use of C in a particular software system, but it is constructed via 
syntactical transformations of the frame protocols of all components in the software 
system (including C). The key idea of the construction algorithm is inlining of method 
bodies specifications – for each binding between a required interface R of a component 
C1 and a provided interface P of a component C2 in the system’s architecture, all the 
method calls on R are replaced by corresponding method bodies specifications that are 
defined in the frame protocol of C2. Nevertheless, APtrig

C assumes that frame 
protocols of all components in a software system comply with specific syntactical 
patterns that are related to interleaving of the events corresponding to callbacks and 
autonomous activities (performed by inner threads of C) with other specified events. 
In principle, APctx

C captures interleaving of all events accurately, while APtrig
C does it 

precisely only for the events on C’s provided interfaces and for triggers of callbacks, 
over-approximating interleavings of other events on C’s required interfaces. 
Consequently, the corresponding artificial environment Etrig

C is simpler than Ectx
C, and 

therefore AGRJPF verification of C is less prone to state explosion. Moreover, the 
process of construction of APtrig

C (via syntactical transformations of frame protocols) 
has lower time and space complexity than construction of APctx

C, which involves 
exhaustive traversal of the composed state space of frame protocols of all other 
primitive components. A more detailed explanation of APtrig

C construction is beyond 
the scope of this paper – a full-fledged description and a claim that assuming the 
patterns is viable are in [23]. 

All three assumption protocols for the Store component are depicted in Figure 5. 
APctx

Store captures a subset of behaviors specified by APinv
Store, since other components 

in the CoCoME system (e.g., StoreApplication) use only a subset of 
functionality of Store. Specifically, the StoreApplication component calls 
(via the Data component) the methods queryProductId and 
queryStockItem in three parallel threads, and all other methods of the 
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StoreQueryIf interface in two threads or not at all in parallel. The protocols 
APtrig

Store and APctx
Store are equal, since Store has no required interfaces and 

therefore no interleaving of events on required interfaces has to be captured in 
APctx

Store.

 
Figure 5: Assumption protocols of the Store component 

4.2 Specification of Data Values 
The specification of data values has to be provided by the user in the form of a Java 

class that works as a container for the values. Given a component C subject to AGR 
verification, the user has to specify (i) a set of possible values for each method 
parameter in a provided interface of C and (ii) a set of possible return values for each 
method of a required interface of C. The key requirement on these sets is that they 
should cover all paths in the control-flow graph (CFG) of Java code of each method of 
C – in other words, for each path p in the CFG of any method m of C, there should be 
at least one combination of values defined in these sets that triggers p when m is called 
by the artificial environment.  

For illustration, a fragment of the specification of data values for Store may take 
the form depicted in Figure 6. The fragment states that (i) the set of possible values 
for the first parameter (of type long) of the queryProductById method of the 

APinv
Store = ( 

   !StoreQueryIf.queryProductById + 
   !StoreQueryIf.queryStockItem + 
   # calls of other methods on StoreQueryIf  
 )* 
 | 
 # the fragment above repeated three more times 
 
APctxStore = APtrigStore = 
 ( !StoreQueryIf.queryStockItem* ; ... )* 
 | 
 ( 
   !StoreQueryIf.queryProductById* 
   + 
   !StoreQueryIf.queryStockItem* 
 )* 
 | 
 !StoreQueryIf.queryProductById* 
 | 
 ( 
   ... ; 
   ( 
     ( !StoreQueryIf.queryProductById*; ... ) 
     + 
     ( ... ; !StoreQueryIf.queryStockItem* ) 
     + 
     ... 
   ) 
 )* 
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StoreQueryIf interface is {1, 2}, and (ii) the value null should be used for 
the second parameter (of the type cocome.PersistenceContext) in all calls of 
the method. By calling the constructor of StoreDataValues, the specified values 
are stored in an internal data structure. 

 
Figure 6: Specification of data values for the Store component 

4.3 Generation of Artificial Environment 
The artificial environment EC for a component C is generated by a tool – 

Environment Generator for Java PathFinder (EnvGen) [24] – that we have developed. 
The input of EnvGen includes a particular assumption protocol APC, specification of 
data values, and the signatures of C’s provided and required interfaces. The output of 
EnvGen is the artificial environment in the form of a set of Java classes that contains 
(i) a “driver” class with the main method, which calls the methods on C’s provided 
interfaces in line with APC and with parameters taken from the specification of data 
values, and (ii) stub implementations of the required interfaces of C (which accept the 
calls issued by C). The driver class employs the JPF’s API for non-deterministic data 
choice (the Verify class) in order to ensure that each method of a provided interface 
of C is called with all combinations of method parameter values that can be derived 
from the specification of data values – specifically, a non-deterministic choice from the 
set of possible values is made for each parameter of each called method. Moreover, 
the driver class interacts with the stubs in order to ensure proper sequencing and 
interleaving of method call-related events (invocations and returns) triggered by EC 
with events triggered by C – for example, a callback triggered by C (via a call on a 
required interface) has to be performed by EC at the moment(s) specified in APC. 

A fragment of the artificial environment EStore for the Store component is in 
Figure 7. The behavior of EStore is specified by the inverted frame protocol APinv

Store of 
Store (Figure 5) – therefore, the environment calls methods of the StoreQueryIf 
interface in four parallel threads and, in each thread, the method to be called is 
selected non-deterministically (Verify.getInt(8)) in each iteration of the loop. 
Calls of the get method on the instance of StoreDataValues retrieve the 
specified method parameter values from an internal data structure. 

class StoreDataValues { 
 ... 
 public StoreDataValues() { 
  putLongSet(“Store”, “StoreQueryIf”, 
          “queryProductById”, 1, new long[]{1,2}); 
  putObjectSet(“cocome.PersistenceContext”, “Store”, 
          “StoreQueryIf”, “queryProductById”, 2, 
          new cocome.PersistenceContext[]{null}); 
 } 
 ... 
} 
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Figure 7: Artificial environment for the Store component 

5 Evaluation 
We have implemented the process of AGRJPF verification of a SOFA 2 component 

in the COMBAT toolset [25]. The toolset is built on top of JPF and includes 
standalone tools that implement the individual techniques described in Section 4. The 
flow of control and data among parts of COMBAT and JPF is shown on Figure 8. 
Technically, COMBAT can be used in two modes – either as a standalone tool, or via 
the Cushion tool for development of SOFA 2 applications, which is a part of the 
SOFA 2 framework [14]. 

In order to evaluate applicability of our approach to AGR verification of real-world 
software systems built of SOFA 2 components, we have applied the COMBAT toolset 
on the CoCoME system, which consists of 18 primitive components, each featuring 
tens to hundreds of lines of Java code, and 9 composite components. 

public class StoreEnv { 
  public static void main(String[] args) { 
    StoreDataValues dataValues = new StoreDataValues();
    StoreQueryIf store = new StoreImpl(); 
 
    EnvThread th1 = new EnvThread(store, dataValues); 
    // three more threads are created in the same way 
 
    th1.start(); th2.start(); th3.start(); th4.start();
    th1.join(); th2.join(); th3.join(); th4.join(); 
  } 
} 
 
class EnvThread extends Thread { 
  public void run() { 
    while (true) { 
      switch (Verify.getInt(8)) { 
        case 0: store.queryProductbyId( 
          dataValues.get(..., “queryProductById”, 1), 
          dataValues.get(..., “queryProductById”, 2)); 
        case 1: store.queryStockItem(...); 
        ... 
      } 
    } 
  } 
} 
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Figure 8: The COMBAT toolset 

For illustration, we present results of experiments for two components of the 
CoCoME system – for Store (250 lines of code in Java) in Table 1 and for the 
CashDeskApplication component (500 loc in Java) in Table 2. The frame 
protocol of CashDeskApplication is available at [26]. Unlike Store, the 
CashDeskApplication component has several required interfaces so that APctx 
and APtrig differ. Presenting here the results for these two components was motivated 
by the fact that Store is of a typical complexity among all of the 18 primitive 
components and CashDeskApplication is the most complex one. 

In each experiment, we measured the following characteristics: the time needed to 
compute a particular assumption protocol, the memory needed to compute an 
assumption protocol, the number of Java code lines of the generated artificial 
environment, the time needed for checking with JPF, the memory needed for checking 
with JPF, and the number of unique states traversed by JPF (equal to the number of 
non-deterministic choices). The entry “> 2048 MB” means a run-out of available 
memory (2 GB). Intentionally, the Java code of both components did not violate the 
checked properties in order to enforce traversal of the whole state space of the 
runnable Java program during AGRJPF verification (unless a run-out of memory 
occurred). The results of experiments show that the whole process of AGRJPF 
verification based on APtrig has the lowest time and memory requirements. 
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As to comparison of the assumption protocols APinv, APctx, and APtrig, while all of 
them can differ in general, our experience shows that typically either APinv = APctx, or 
APctx = APtrig (as in case of Store), or even all of them equal. Specifically, APinv = 
APctx if the component is used in all the ways allowed by its frame protocol, while 
APctx = APtrig if the component has no required interfaces. Nevertheless, AGRJPF 
verification is the most efficient in case of Etrig, since (i) the process of construction of 
APtrig has low time and space complexity, and (ii) the state space of the runnable Java 
program composed of the component and its artificial environment is the smallest in 
this case. 

 
 APinv APctx APtrig 
Time to compute AP 0 s 2.5 s 0.2 s 
Memory to compute AP 103 MB 386 MB 107 MB 
Java LOC of artificial env. 213 173 166 
Time needed by JPF n/a 3987 s 3987 s 
Memory needed by JPF > 2048 MB 693 MB 693 MB 
Unique JPF states  n/a 5980056 5980056 

Table 1: Results of experiments for the Store component 
Overall, the results of verification experiments with the CoCoME system show that 

AGRJPF verification with COMBAT is really feasible for non-trivial software systems 
built of SOFA 2 components. From the point of view of a user, a benefit is the 
complete integration of the verification process into the SOFA 2 framework and, in 
particular, into its development tools. Even though verification with COMBAT may 
still be prone to state explosion in case of a highly complex component or an 
environment triggering highly parallel activities, our experience with verification of 
non-trivial components in the CoCoME system shows that the method is practically 
applicable. 

 APinv APctx APtrig 
Time to compute AP 0 s n/a 0.5 s 
Memory to compute AP 126 MB > 2048 MB 109 MB 
Java LOC of artificial env. 2225 n/a 335 
Time needed by JPF n/a n/a 320 s 
Memory needed by JPF > 2048 MB n/a 336 MB 
Unique JPF states  n/a n/a 233271 

Table 2: Results of experiments for the CashDeskApplication component 

6 Related Work 
Although software verification via model checking is a very active research area, 

the only other approach to AGR verification of code of components we are aware of is 
the one proposed in [12]. Similar to our solution, it uses JPF for checking whether a 
Java component obeys its behavior specification defined via LTS. The key differences 
are the following: (i) environment assumptions in LTS are constructed automatically 
via iterative learning and (ii) artificial environment is constructed by hand from the 
assumptions. Nevertheless, tools like Bandera Environment Generator (BEG) [8], 
which is a part of the Bandera toolset [27], can be used to generate the environment in 
an automated way. 
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There are, also, several approaches and tools aiming at generating artificial 
environment for components defined as collections of Java classes – most notably BEG 
and the method proposed in [28]. BEG is a tool for automated generation of an 
artificial environment for a collection of Java classes. As an input, it accepts an 
environment assumption in the form of regular expressions over the alphabet of 
method names with parameter values (allowing parallel activities at the highest 
syntactical level only). BEG supports extraction of the environment assumption from 
the implementation of an actual environment via static analysis – if no actual 
environment is available, then the environment assumption has to be provided by the 
user. In [28], the authors propose a technique for modular verification using JPF. The 
key idea is that, given a component C (collection of Java classes) subject to checking, 
stubs for all other components connected to C are generated in an automated way 
from assumptions specified as context-free grammars. The grammars determine valid 
interaction among C and the other components in terms of method call sequences – 
unlike behavior protocols and LTS, the power of context-free grammars allows 
specifying nested method calls without over-approximation. The generated stubs also 
check whether C interacts with the other components correctly. The key drawback of 
this method is that the grammars have to be provided by the user – no automated 
construction of them is supported by this technique. 

There exist also approaches to compositional model checking of distributed Java 
applications with JPF, in which individual components (collections of Java classes) 
communicate over a network [29][30]. In this case, the environment of a component is 
represented by other components (not running in the scope of JPF) and the network 
infrastructure. All of these approaches are based on stubs implementing the Java 
network API and capturing the state of the network during verification – in particular, 
the stubs avoid repeating of network operations which would be triggered by 
backtracking. 

A lot of research has also been done in automated construction of environment 
assumptions in finite state machine-based formalisms. For example, the method 
proposed in [9] aims at construction of the weakest environment assumption for a 
component modeled in LTS. The assumption is constructed in two steps: (1) the 
component is model-checked with an unrestricted environment modeled also in LTS, 
and (2) the model of environment in LTS is modified such that no error states are 
reachable in the component when it is model-checked with the resulting assumption. 

Recently, several approaches to automated construction of environment 
assumptions via iterative learning (refinement) were proposed [31][32]. The basic 
idea of all these approaches is to iteratively refine an initial assumption on the basis of 
counterexamples reported by the model checker serving as a teacher – the goal is to 
derive an environment assumption guaranteeing that the component subject to 
checking satisfies the required properties. The initial assumption may be empty, or it 
may characterize the behavior of an actual environment. At each step of the iteration, 
the whole process of AGR verification is performed with the current assumption, and 
if some of the checks are not successful, then the assumption is refined with respect to 
the counterexample. The iteration terminates when the model checker (teacher) 
reports no error or when it is found that the component does not satisfy the required 
properties in the specific environment. The actual approaches based on iterative 
refinement of assumptions differ in the model checking technique used and in the 
anticipated styles of communication between the component and its environment. For 
example, the approach proposed in [31] aims at communication via method calls and 
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uses the LTSA model checker [33], while [32] focuses on communication via shared 
variables (accesses to shared memory) and uses symbolic model checking. 

The main advantage of our approach to automated construction of environment 
assumptions over those mentioned above is that it uses an algorithm which does not 
involve use of a model checker for constructing an environment assumption. 
Specifically, APinv and APtrig are computed by an efficient syntactical algorithm, while 
construction of an environment assumption via iterative learning involves several 
calls to a model checker and therefore is more prone to state explosion. 

In our view, the efficiency of our AGRJPF verification is gained by (i) employing 
syntactical algorithm for constructing environment assumption (which works for 
behavior specification formalisms with syntax based on process algebra expressions) 
and (ii) making dependency requirements in code explicit (required interfaces). The 
latter is the feature of software component models like SOFA 2 and Fractal [34]. In 
comparison, the approaches of [12] and [31] aim at collections of Java classes 
(without explicit requirements specification) and use LTS for defining behavior 
specifications and environment assumptions (so that syntactical manipulation cannot 
be applied). 

7 Conclusion 
In this paper, we presented our approach to AGRJPF verification of SOFA 2 

components – we focus on Java components with provided and required interfaces and 
we use the formalism of behavior protocols for definition of component behavior 
specifications and environment assumptions. The process of AGRJPF verification of a 
SOFA 2 component consists of three steps – construction of an environment 
assumption (assumption protocol and specification of data values), automated 
generation of an artificial environment for the component from the environment 
assumption, and JPF model checking of the runnable Java program composed of the 
component and its artificial environment. 

We have implemented the approach in the COMBAT toolset and successfully 
applied it to the CoCoME system, which is a non-trivial software system in SOFA 2. 
Results of experiments with selected components from the CoCoME system show that 
our approach is feasible in practice. 

The main advantage of our approach over the other ones with similar goals is that it 
uses syntactical algorithm for constructing an environment assumption, which is more 
efficient than constructing it via iterative learning, inherently involving calls to a 
model checker. A limitation of our approach is that it requires (i) a behavior 
specification in the form of a process algebra-like expressions and (ii) components 
with explicit provided and required interfaces. Nevertheless, it can be easily ported to 
similar component models like Fractal and OSGi [35], if a finite-state process algebra-
like behavior specification is provided. 

In future, we plan to develop an automated technique for extracting specification of 
data values (method parameters and return values) from the code of an actual 
environment, or from JUnit tests. Another option, which we may also pursue in the 
long-term, is to use symbolic execution in JPF [36] for calculating the sets of data 
values. 
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