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ABSTRACT
We present Abstract Pathfinder, an extension to the Java Pathfinder
(JPF) verification tool-set that supports data abstraction to reduce
the large data domains of a Java program to small, finite abstract
domains, making the program more amenable to verification. We
use data abstraction to compute an over-approximation of the orig-
inal program in such a way that if a (safety) property is true in
the abstracted program the property is also true in the original pro-
gram. Our approach enhances JPF with an abstract interpreter and
abstract state-matching mechanisms, together with a library of ab-
stractions from which the user can pick which abstractions to use
for a particular application. We discuss the details of our implemen-
tation together with some preliminary experiments with analyzing
multi-threaded Java programs, where Abstract Pathfinder achieves
significant time and memory savings as compared with plain JPF.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Verification
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Java Pathfinder, state space traversal, abstraction

1. INTRODUCTION
Exhaustive state space traversal techniques such as model check-

ing are popular approaches to program verification and bug finding.
Model checking is useful especially for analysing multi-threaded
programs. Tools using this approach check all interleavings of pro-
gram threads for property violations (errors). An example of such
a tool is Java Pathfinder (JPF) [8] which targets Java bytecode pro-
grams.

The core of JPF is a special Java virtual machine that supports
backtracking, state matching, and non-determinism in both data
and scheduling decisions. JPF constructs the program state space
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on-the-fly during the execution of the program in the special virtual
machine. A transition in the state space is a sequence of bytecode
instructions executed by a single thread, where the first instruction
in the sequence represents a non-deterministic choice correspond-
ing to a thread context switch. At every transition boundary, JPF
saves the current JVM state (the program state) in a serialized form
for the purpose of backtracking and state matching. The complete
JVM state includes all heap objects, stacks of all threads and all
static data. Changes of the JVM state are performed inside the in-
terpreter of bytecode instructions, which too is a part of JPF.

Plain JPF contains a concrete interpreter, which models faith-
fully all Java bytecode instructions and keeps concrete values of
program variables. We say that plain JPF performs concrete execu-
tion of instructions during the state space traversal.

The main drawback of JPF with respect to practical usefulness
is that it performs an exhaustive traversal which is prone to state
explosion. Although JPF supports many optimizations, including
partial order reduction and other symmetry reductions, checking of
all thread interleavings with concrete execution is time-consuming
and requires a lot of memory.

A possible solution is to use data abstraction to reduce the large
domains of selected program variables to smaller domains and make
program verification via state space traversal more feasible. Con-
sider the example in Figure 1. It is a simple variant of the clas-
sic producer – consumer problem with a shared object of the Data
class. The safety property of interest is absence of data races.
Plain JPF would explore the program behavior for all possible val-
ues of the variable remaining, i.e. all integer values between 0
and 1000000, and the program state space would therefore be very
large.

One can use the signs abstraction on the variable remaining to
replace the large domain of the Java int type with a small finite
domain { POS, ZERO, NEG }, which only encodes the sign of
variable remaining, while abstracting away the actual value. Con-
sequently, all program states that differ only in the value of the
variable would be collapsed to three different states with the cor-
responding abstract values. The state space explored by JPF with
such an abstraction would therefore be much smaller, reducing the
time needed to verify the given safety property, while all program
behaviors would be still analyzed.

1.1 Contribution
A lot of work has been done in data abstraction (e.g., predicate

abstraction [1,2,6]), but only few approaches target Java. A notable
exception is the Bandera toolset [4]. It performs finite state abstrac-
tion of a given Java program by the means of a source-to-source
transformation based on the specific data abstractions selected (and
defined) by the user.

In this paper, we present Abstract Pathfinder – an extension for



public class ProdConsExample {
public static final int DAILY_LIMIT = 1000000;

public static void main(String[] args) {
Data d = new Data();
new Producer(d).start();
new Consumer(d).start();

}
}

class Producer extends Thread {
public void run() {

int remaining = ProdConsExample.DAILY_LIMIT;
while (remaining > 0) {

synchronized (d) {
d.value = 10;
d.isNew = true;

}
remaining−−;

}
}

}

class Consumer extends Thread {
public void run() {

while (true) {
synchronized (d) {

if (d.isNew) {
d.isNew = false;
System.out.println(d.value);

}
}

}
}

}

Figure 1: Example: producer – consumer

JPF that supports abstraction of numeric data types in Java. The
general goal is the same as in [4], but contrary to the Bandera
toolset, our approach is based on a custom interpreter of bytecode
instructions. In our approach the abstract values are propagated
dynamically, during execution, using JPF’s attribute mechanisms,
thus eliminating the need to type propagation that was necessary in
Bandera (to discover which variables and operations to instrument).
We further remark that the Bandera project is no longer maintained.
We implemented and evaluated several helpful abstractions, includ-
ing signs and intervals. Other abstractions can be added easily by
the user, as we provide a generic and extensible abstraction mech-
anism. In the next section we describe the main ideas behind Ab-
stract Pathfinder, and then we define supported abstractions. Fi-
nally, we describe our implementation, a brief evaluation and we
give conclusions. The source-code for our project is availabe from
Bitbucket. We plan to make it available from the JPF main open-
source repository soon.

2. ABSTRACT MODEL CHECKING WITH
JAVA PATHFINDER

The basic ideas of our approach are (1) to use small abstract
data domains for specific program variables instead of concrete
types defined by the Java language, such as int and float, and (2)
to replace the interpretation of concrete operations involving the
abstracted program variables with a non-standard abstract inter-
pretation of Java bytecode instructions that operate on the abstract
domains, in such a way that the behavior of the abstracted program
is an over-approximation of the behaviors of the original program.

For example, the result of adding two POS values is POS, while
the result of adding a POS and a NEG can be either POS, NEG or
ZERO. We follow the theoretical framework of abstract interpreta-
tion [5].

One element of an abstract domain represents one or more con-
crete values (typically a high number of them). Every value in the
original program (constant or a concrete value of a program vari-
able) is mapped to a subset of the abstract domain. The size of
such subset depends on how much information is available about
the value in a program state.

We say that an operation upon a set of input values is abstract
if at least one of the inputs has an abstract domain. The result of
an abstract operation is always an abstract value. Note that due to
over-approximation, the result of an abstracted operation may be
a set of two or more abstract values, instead of just a single value
(e.g. the result of adding POS and NEG is a set of values). In
such a case, we introduce a non-deterministic choice between all
the possible abstract values because the subsequent behavior of the
program must be explored for all possible results of such operation.

The use of the abstract domains and the abstract interpreter means
that Abstract Pathfinder verifies an abstract program that is an over-
approximation of the original Java program. One state of the ab-
stract program represents many states of the original concrete pro-
gram. State matching during traversal considers the abstract values
instead of the concrete values for variables that have an abstract do-
main. If a given safety property is true for an abstract program then
it is also true for the original program. On the other hand, an error
found in the abstract program may not exist in the original pro-
gram. This happens when the error occurs on a spurious execution
path that is not feasible in a concrete execution of the original pro-
gram. Therefore, the counterexamples reported by abstract model
checking need to be analyzed for feasibility.

The main general benefit of abstract model checking is better
performance and scalability. The abstract domains are typically
defined as much smaller than the ranges of concrete types, so that
state space of the abstract program is much smaller than the state
space of the original program, and therefore Abstract Pathfinder
has to explore much less states to cover all program behaviors than
in the case of the plain JPF and the original program.

3. SUPPORTED ABSTRACTIONS
Abstract Pathfinder provides an extensible library of abstractions

for numeric data types of Java. The current version of the library
contains the following abstractions: signs, evenness, and two vari-
ants of an interval abstraction.

3.1 Signs
The domain of the signs abstraction is the set { POS, ZERO, NEG
}, whose elements express the fact that a value is positive, zero, or
negative, respectively. A value in the original concrete program is
mapped to one element of the abstract domain. Figure 2 shows an
abstraction function for values of the Java type int.

Signs abstract(int v) {
if (v > 0) return POS;
if (v == 0) return ZERO;
if (v < 0) return NEG;

}

Figure 2: Signs — abstraction function

The result of an arithmetic operation over two values such that
at least one is abstract can be any subset of the abstract domain.



Figure 3 shows the abstraction of the operation + in the form of a
Java-like pseudocode. Each instance of the class Signs represents a
certain subset of the abstract domain. The procedures couldBeNeg,
couldBeZero and couldBePos are used to check whether an operand
contains the respective element of the abstract domain. The proce-
dure constructResult creates an object of the class Signs that rep-
resents the result of the operation. If the value of the variable neg
is true then the result must contain the abstract element NEG, and
similarly for elements ZERO and POS. For example, the result of
the operation over the abstract values POS and NEG can be any
element of the abstract domain.

Signs plus(Signs right) {
boolean pos = false, neg = false, zero = false;
if couldBeNeg(this) {

if couldBeNeg(right) neg = true;
if couldBeZero(right) neg = true;
if couldBePos(right) neg = zero = pos = true;

}
if couldBeZero(this) {

if couldBeNeg(right) neg = true;
if couldBeZero(right) zero = true;
if couldBePos(right) pos = true;

}
if couldBePos(this) {

if couldBeNeg(right) neg = zero = pos = true;
if couldBeZero(right) pos = true;
if couldBePos(right) pos = true;

}
return constructResult(neg, zero, pos);

}

Figure 3: Signs — abstract operation +

Abstractions of other arithmetic operations supported by Java are
defined in a similar way.

3.2 Evenness
The domain of the evenness abstraction is the set {ODD, EVEN },

whose elements represent odd and even values, respectively. This
abstraction can be used only for integer values (constants and pro-
gram variables of Java types such as int and long), as the concepts
of oddity and evenness do not make sense for floating-point values
with non-zero decimal part.

3.3 Intervals
We support two variants of the interval abstraction. Both are

parameterized with two user-defined values MIN and MAX.
The basic interval abstraction is defined as follows. The abstract

domain for given two integer or floating-point values MIN and MAX
is the set { LESS, INSIDE, GREATER }, whose elements express
the fact that a value is less than MIN, between MIN and MAX, or
greater than MAX, respectively. This abstraction can be used both
for integer values and floating-point values (i.e., for constants and
program variables of all primitive numeric types of Java, including
long and double).

The second variant of the interval abstraction is more precise as it
preserves concrete values in the interval [ MIN, MAX ]. The abstract
domain for two integer values MIN and MAX is the set { LESS,
MIN, MIN+1, . . . , MAX-1, MAX, GREATER }. Note, however, that
this abstraction is intended for use with small intervals.

Other abstractions can be defined similarly.

4. IMPLEMENTATION

We implemented Abstract Pathfinder as a JPF project extension.
The project has the following components:

• Generic Abstraction and AbstractionBoolean classes. All the
data abstractions are sub-classes of the Abstraction class.

• Library of abstractions.

• Abstract interpreter for all the numeric bytecodes. JPF’s at-
tribute mechanism is used for storing and propagating ab-
stract values. It includes an AbstractInstructionFactory.

• FocusAbstractChoiceGenerator for implementing non-deter-
ministic choice among multiple abstract values.

• AbstractionSerializer for abstract state matching.

• AbstractListener for printing the results.

We describe some of these components in more detail below.

4.1 The Abstraction class
Every abstraction must be implemented as a subclass of the Ab-

straction class that is used in the abstract interpreter of bytecode
instructions (see Figure 4). The generic Abstraction class contains
skeleton implementations of abstraction functions and helper meth-
ods for construction and processing of sets of abstract values, and
it also defines several methods for which each particular abstrac-
tion must provide a custom implementation; the AbstractBoolean
class contains a generic abstraction for boolean values. Abstract
Pathfinder allows the user to pick specific abstractions from the li-
brary that are then used for a particular application. A new abstrac-
tion can be easily added to the library by extending the constructor
of the AbstractInstructionFactory class with the abstraction’s initial-
ization code.

4.2 The Abstract Interpreter
The abstract interpreter redefines mostly bytecode instructions

that perform arithmetic operations for all the primitive types. It op-
erates upon the abstract values if they are available, and falls back
to standard concrete interpretations otherwise. Abstract values are
stored in attributes for local variables, stack operands, and object
fields, and propagated between instructions via attributes. If some
program variable has an abstract value then its concrete value is set
to 0.

Figure 5 shows the implementation of an abstract interpreter for
the IADD bytecode instruction that adds two integer values. Its de-
scription follows.

At first, it attempts to retrieve the abstract values of operands
from the attributes, and passes them to the respective method of the
Abstraction class which performs the actual addition. If the abstract
value is not defined for any of the two concrete operands, the stan-
dard interpreter is called as a fall back. Finally, the concrete result
value 0 is set and the abstract result value is stored as an attribute
of the concrete result.

If the result of the arithmetic operation is a set of abstract values
(i.e., not a single token), a non-deterministic choice over the val-
ues in the result set is created. For this purpose, we introduced a
new type of a choice generator that we call focus choice generator.
Subsequent behavior of the program is checked for all abstract val-
ues in the result set one by one. In each branch, one of the abstract
values is stored in the attribute as the actual result of the opera-
tion. We note that we made our abstractions as precise as possible,
e.g. adding POS and NEG results in a non-deterministic choice be-
tween POS, NEG and ZERO, while incrementing NEG results only



import java.util.Set;

public class Abstraction {
...
public Set<Abstraction> get_tokens() {

throw new RuntimeException("not implemented");
}

// returns number of tokens in abstract domain
public int get_num_tokens() {

throw new RuntimeException("not implemented");
}

boolean isTop = false;

public boolean isTop() {
return isTop;

}

// abstract_map methods need to be provided
// by specific abstraction classes
public Abstraction abstract_map(int v) {

throw new RuntimeException("not implemented");
}
...

public Abstraction abstract_map(long v) {
throw new RuntimeException("not implemented");

}
...

// abstract numeric operations
public static Abstraction _add(int v1, Abstraction abs_v1,

int v2, Abstraction abs_v2) {
Abstraction result = null;
if (abs_v1 != null) {

if (abs_v2 != null)
result = abs_v1._plus(abs_v2);

else
result = abs_v1._plus(v2);

} else if (abs_v2 != null)
result = abs_v2._plus(v1);

return result;
}
public static Abstraction _mul(int v1, Abstraction abs_v1,

int v2, Abstraction abs_v2) {
...

}
...
// abstract comparison operations
public AbstractBoolean _lt(Abstraction right) {

throw new RuntimeException("lt not implemented");
}
...

}

Figure 4: Generic Abstraction class

in a non-deterministic choice between NEG and ZERO (since POS
is not possible).

Note that both abstract values and concrete values are passed to
the addition method of the Abstraction class. This is important for
the case when an abstract value is defined only for one operand.
The abstract value of the other (concrete) operand is computed in-
side the addition method.

Use of a custom instruction factory means that Abstract Pathfinder
is not compatible with other JPF extensions that also use custom
bytecode interpreter (factories).

Variables and constant values to be abstracted are marked in the

public class IADD extends gov.nasa.jpf.jvm.bytecode.IADD {
public Instruction execute(

SystemState ss, KernelState ks, ThreadInfo th) {

StackFrame sf = th.getTopFrame();

// retrieve abstract operands stored in the attributes
Abstraction abs_v1 = (Abstraction) sf.getOperandAttr(0);
Abstraction abs_v2 = (Abstraction) sf.getOperandAttr(1);

Abstraction result;

if (abs_v1 == null && abs_v2 == null) {
// fall back to a concrete interpretation
return super.execute(ss, ks, th);

}
else {

int v1 = th.peek(0);
int v2 = th.peek(1);

result = Abstraction.add(v1, abs_v1, v2, abs_v2);

if (!result.isSingleToken()) {
// result is a set of abstract values
ChoiceGenerator cg;
if (!th.isFirstStepInsn()) {

// first time seen −> create choice generator
int size = result.getNumberOfTokens();
cg = new FocusAbstractChoiceGenerator(size);
ss.setNextChoiceGenerator(cg);
return this;

} else {
// make the next choice −> return the result
cg = ss.getChoiceGenerator();
assert (cg instanceof FocusAbstractChoiceGenerator);
int key = (Integer) cg.getNextChoice();
result = result.getToken(key);

}
}

// set the concrete result value to 0
th.pop();
th.pop();
th.push(0, false);

// set the abstract result
sf = th.getTopFrame();
sf.setOperandAttr(result);

return getNext(th);
}

}
}

Figure 5: Abstract interpreter for IADD

program code which therefore has to be modified before the use of
Abstract Pathfinder. For example, an initialization expression int x
= 10 is replaced with int x = Debug.makeAbstractInteger(10). In the
future, we will add support for defining abstracted variables in the
.jpf configuration files.

4.3 Abstract State Matching
JPF uses a "serializer" to save the current JVM state into a com-

pact form for the purpose of state matching. However, the serial-
izer used in plain JPF takes into account only concrete values of
program variables. To perform abstract state matching, we have
implemented a custom serializer that processes also attributes that
represent abstract values in addition to concrete values, and there-



fore enables proper consideration of abstract values in state match-
ing.

int x,y,z;
x = 1; y = −1; z = 0;

// non−deterministic choice
boolean b = Verify.getBoolean();

if (b) {
v = x + z;

}
else {

b = true;
v = y + z;

}

L1: // transition break and state matching

println("v = " + v);

Figure 6: State matching with abstract values

The program fragment in Figure 6 illustrates the need for a cus-
tom serializer that properly considers abstract values. Let x, y, and
z be program variables for which Abstract Pathfinder uses the signs
abstraction. Both branches of the if-else statement are explored be-
cause of the non-deterministic choice. The abstract value of v is
POS at the end of the if branch and NEG at the end of the else
branch. The concrete value of v, as set by the abstract interpreter of
bytecode instructions, is 0 at the end of any branch. The concrete
value of b is true at the end of any branch.

If the serializer from plain JPF is used then the println statement
would be reached only once. Concrete values of all program vari-
ables are the same after both branches of the if-else statement, and
therefore the state space search procedure would see an already
visited state upon reaching the location L1 for the second time and
backtrack prematurely.

However, the correct behavior is to reach the println statement
twice, because the abstract value of v at the end of the if branch is
different from the abstract value at the end of the else branch. If
the custom serializer that processes abstract values is used, then the
search procedure correctly sees a new state upon reaching L1 for
the second time and continues exploration further.

5. EVALUATION
We performed experiments on small examples, including the pro-

ducer – consumer example, to find how much the use of abstraction
reduces the number of states that JPF must explore and its running
time. We set the limit on memory usage to 512 MB.

Time Memory States
plain JPF > 45 s > 512 MB > 141680
Abstract Pathfinder 1 s 15 MB 155

Table 1: Experiments with producer – consumer

Results in Table 1 show that Abstract Pathfinder achieves signif-
icant time and memory savings compared to plain JPF (when using
the Signs abstraction). Abstract Pathfinder explores the whole state
space of the abstract program in one second, while plain JPF runs
out of available memory after 45 seconds and processes much more
states up to that point.

6. CONCLUSION
We described here Abstract Pathfinder, a new tool for perform-

ing data abstraction for Java programs. We gave the main aspects
of its implementation, and provided an overview of the currently
supported abstractions. Results of our preliminary experiments are
very promising, but much work still has to be done to make Ab-
stract Pathfinder even more useful.

The current version of Abstract Pathfinder allows to use only a
single particular abstraction from the library. Our first priority is
to add support for simultaneous usage of multiple abstractions. We
plan to achieve this by implementing a container abstraction that
will associate two or more abstract values with a concrete value.

In the future, we would like to extend the current abstractions
such that they can model tricky aspects of numerical data types,
such as integer overflows, infinite values, and precision of floating-
point values (rounding). We also plan to support other kinds of
abstractions, most notably predicate abstraction. We believe that
JPF’s symbolic execution framework, a.k.a. Symbolic PathFinder
[7], could be leveraged to build such abstractions automatically. Fi-
nally we would also like to extend the tool beyond primitive types,
to handle arrays and data structures, in a way similar to shape anal-
ysis [3].
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