
Predicate Abstraction in Java Pathfinder

Jakub Daniel
Charles University in Prague
daniel@d3s.mff.cuni.cz

Pavel Parízek
Charles University in Prague
parizek@d3s.mff.cuni.cz

Corina S. Păsăreanu
Carnegie Mellon/NASA Ames

corina.s.pasareanu@nasa.gov

ABSTRACT
We present our ongoing effort to implement predicate abstraction in Ab-
stract Pathfinder, which is an extension of Java Pathfinder. Our approach
builds upon existing abstraction techniques that have been proposed mainly
for low-level programs in C. We support predicates over variables having
numerical data types. The main challenges that we have addressed in-
clude (1) the design of the predicate language, (2) support for arrays,
(3) finding predicates affected by a given statement, (4) aliasing between
variables, (5) propagating values of predicates over method call bound-
aries, and (6) computing weakest preconditions for complex predicates.
We describe our solution to these challenges and selected details about
the implementation. We also discuss our future plans and research ideas.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Verification

Keywords
Java Pathfinder, state space traversal, predicate abstraction

1. INTRODUCTION
Explicit-state model checking is a popular approach to program verifica-
tion and bug finding. Tools using this approach can check systematically
the behavior of a program for given test inputs and discover property
violations (errors). Examples of such tools include SPIN [6] and Java
Pathfinder (JPF) [7]. The focus of our work here is on JPF, which targets
Java bytecode programs.

The main practical drawback of JPF is that it performs an exhaustive
traversal of a program state space, and this is prone to state explosion.
Although JPF supports many optimizations, checking program behavior
under all possible test inputs with concrete (explicit) execution is time-
consuming and requires a lot of memory.

One solution is to use data abstraction to reduce the large domains of se-
lected program variables to smaller domains and make program verifica-
tion via state space traversal more feasible. Last year we have developed
a first version of Abstract PathFinder [8], a project extension to JPF that
implemented a simple form of data abstraction. In that work, the large
numeric domains of program variables are replaced with smaller abstract
domains, and concrete operations on the domain are replaced with cor-
responding abstract operations. Both the abstract domain and operations
are provided manually by the user.

A popular kind of data abstraction, that allows increased automation, is
predicate abstraction [5]. The technique maps the numeric domains of
program variables to a small abstract domain, as defined by a set of ab-
straction predicates. The abstraction predicates describe conditional re-

lationships between program variables and their values represent the ab-
stract program states over which the state space traversal is performed.
Abstract operations capture the effects of individual program statements
(concrete operations) on the values of abstraction predicates. The abstract
operations are derived automatically with the help of an off-the-shelf de-
cision procedure, e.g. using weakest preconditions. Given a particular
concrete statement s and an abstraction predicate p, the weakest precon-
dition WP(s, p) for p is a logic formula that must be true before s for the
predicate p to hold after the execution of s. Automatic counterexample-
based abstraction refinement [4] can be further used to enrich the set of
abstraction predicates.

We illustrate the state space reduction that can be achieved with predicate
abstraction on the example Java program in Figure 1. Execution of the
while loop can be fully described by several predicates, such as o1.f > 0
and o1.f = o2.f , which yield much smaller state space than the domain
of the primitive type int in Java.

Many techniques and tools involving predicate abstraction have been cre-
ated in the past, but they target mostly low-level programs in C. The most
prominent examples are SLAM [2] and BLAST [3].

1.1 Contribution
In this paper, we present our current project whose goal is to implement
support for predicate abstraction of Java programs in Abstract Pathfinder.
We describe the main challenges and our solutions to them.

This project builds upon the first release of Abstract PathFinder [8].

2. JAVA PATHFINDER
Java Pathfinder (JPF) [7] is a framework for exhaustive state space traver-
sal of Java programs. The core of JPF is implemented as a special Java
virtual machine that supports backtracking, state matching, and non-de-
terministic choices. JPF constructs the program state space on-the-fly
during execution of the given program in the virtual machine. It makes
non-deterministic choices at interesting points during program execution
— (i) data choices in user-defined test drivers and (ii) thread scheduling
choices at bytecode instructions that access or modify global state visible
to multiple threads. A transition in the state space is a sequence of byte-
code instructions executed by a single thread, where the first instruction
in the sequence represents a non-deterministic choice. At every transition
boundary, JPF saves the current JVM state (i.e., the full program state)
in a serialized form for the purpose of backtracking and state matching.
Changes of the JVM state are performed inside the interpreter of bytecode
instructions.

Plain JPF contains a concrete interpreter, which models faithfully the be-
havior of all Java bytecode instructions and operates upon concrete values
of program variables.

1 package pkg;
2

3 class T {
4 int f;
5

6 T() { this.f = 42; }
7

8 void load(int a) {
9 f = a − 10;

10 }
11 }
12

13 class Example {
14 static T o1 = new T();
15

16 public static void main(String[] args) {
17 int[] data = parseInputs(args);
18 T o2 = new T();
19 if (data.length == 1) o2.load(data[0]);
20 int i = 0;
21 while (o1.f > 0) {
22 i = o1.f;
23 if (o1.f == o2.f) i = −1;
24 −−o1.f;
25 }
26 assert i > 0;
27 }
28 }

Figure 1: Example program

3. PREDICATE ABSTRACTION OF JAVA
PROGRAMS

The main goal is to support important features of Java (objects, classes,
fields, arrays, local variables) and predicates over variables that have nu-
merical data types (byte, short, char, int, long, float, double). We consider
only predicates that represent constraints defined using linear arithmetic
operators and relational operators.

3.1 Overview
We adapt the existing techniques developed for C. Here we provide an
overview of the whole approach. Then, in the rest of Section 3, we de-
scribe selected technical details and our solution to the main challenges.
We use the symbol APF to denote Abstract Pathfinder extended with the
support for predicate abstraction.

An abstract program state consists of the program counter and the value
ν(p) = true | false | unknown of each predicate p available in the cur-
rent runtime scope (method call).

We use a single global container to keep the values of all predicates.
The container is properly maintained during the state space traversal. A
complete snapshot is created when APF makes a new choice, and saved.
When APF backtracks, the corresponding snapshot is taken and the con-
tainer is restored from it. The initial value of each predicate is unknown.

The other important data structure is the stack of symbolic expressions.
We use it to determine abstract operands for bytecode instructions. A
symbolic value on the stack represents the expression whose concrete
value is at the corresponding location in the concrete stack frame.

When processing a bytecode instruction, APF must update the stack of
symbolic expressions and values of affected predicates. All operands of
the given instruction are removed from the stack and then the result (if
there is any) is pushed onto the stack. For example, if the symbolic ex-
pression at the top of the stack is this.f and the current instruction is field
read (getfield) on g, then APF replaces this.f with the expression this.f.g.

1 [s t a t i c]
2 fread (f , sfread (o1 , pkg . Example)) = 42
3

4 [object pkg . T]
5 fread (f , t h i s) > 0
6

7 [method pkg . T. < i n i t >]
8 t h i s . f = 42
9

10 [method pkg . Example . main]
11 class (pkg . Example) . o1 . f > 0
12 class (pkg . Example) . o1 . f = i
13 class (pkg . Example) . o1 . f < i
14 class (pkg . Example) . o1 . f = o2 . f
15 alength (arrlen , data) = 1
16 aread (arr , data , 0) = 35

Figure 2: Predicates for the example program

Only the assignment instructions (istore, putfield, . . .) really modify val-
ues of predicates. This is done is several steps:

1. APF finds all predicates that are possibly affected by the given as-
signment instruction (Section 3.3),

2. new values of the affected predicates are computed using the stan-
dard approach based on weakest preconditions and calls of the
SMT solver (Sections 3.4 and 3.5), and

3. then the values of all the affected predicates are updated atomically
to prevent inconsistencies.

The main challenge is to find all aliased variables (expressions) that may
refer to operands of the given bytecode instruction.

A special case are the method call and return instructions. APF must cor-
rectly propagate values of predicates between the caller scope and callee
scope (over the method call boundaries). More specifically, when exe-
cuting a call to the method m, values of predicates over this and formal
parameters of m in the callee must be set according to values of predi-
cates over the actual arguments in the caller, and the stack of symbolic
expressions for the callee scope must be properly initialized. Similarly,
when processing a return instruction, values of predicates over the re-
turned value and formal parameters of reference types must be propagated
back to the caller. We give more details in Section 3.7.

Non-deterministic choices are created by APF only at branching instruc-
tions (if, switch) and comparison instructions (e.g., dcmp), if (i) the pred-
icate corresponding to the branching condition has the value unknown
and (ii) the precise deterministic value cannot be inferred with the SMT
solver based on the current values of available predicates. APF does not
make a choice right at assignment statement, where the given predicate
gets the value unknown, but leaves this up to the nearest branching in-
struction that depends on the predicate value.

3.2 Predicate Language
We designed a predicate language that supports linear arithmetic, local
variables, fields (both instance and static), accessing array elements, and
reading the length of a given array. It is based on the quantifier-free subset
of the first-order logic with the theory of arrays and linear arithmetic.

Figure 2 shows predicates (defined for the example program) that illus-
trate some of the key features of the predicate language. Each predicate
belongs to a single context — static (line 1), object (line 4), or method
(lines 7 and 10). Contexts represent different runtime scopes. Predicates

defined in the static context can refer only to static fields and numeric
constants, predicates defined in the object context can refer also to in-
stance fields (accessed via this), and the predicates in method contexts
refer also to local variables of specific methods (including parameters).

The language defines functions for expressing accesses to:

• fields of object instances (the function fread),

• static fields of classes (the function sfread), and

• array elements (aread).

These custom functions are internally modeled by the function select
defined by the array theory. We also defined a special function alength
(line 15), which represents the length of a given array.

As a syntactic sugar, our predicate language supports also the Java-like
notation for expressing accesses to fields and array elements. Figure 2
demonstrates usage of this notation for field accesses at lines 8 and 11-
14. When using the dot-notation, it is necessary to mark class identifiers
(which include the package names) with the term class, so that APF can
distinguish accesses to static fields of classes from accesses to instance
fields.

A given predicate can refer to multiple heap objects (including arrays)
and their fields. In particular, we support predicates over multiple dynam-
ically created instances of a given class, as illustrated by the predicate at
the line 14 of Figure 2.

Predicates defined in the object and method contexts are evaluated within
the current runtime method call scope — the receiver object pointed to by
this and local variables in the current method’s stack frame. Note that a
predicate defined in the object context for the class T is evaluated during
every method call on every instance of the class T , but each time upon
the corresponding object (method call receiver).

3.3 Finding Affected Predicates
In this section we describe our approach to identifying predicates that are
possibly affected by an assignment instruction. Consider the assignment
v := e, where v can be any access expression (local variable, instance
field, static field, or an array element) and e can be any arithmetic expres-
sion over program variables. The task of identifying affected predicates
is difficult because of (i) aliasing between different access expressions
and (ii) possibly unknown precise values of index expressions for array
element accesses.

Symbolic expressions sv and se corresponding to v and e, respectively,
are used for reasoning about the effects of the assignment instruction. The
symbolic expressions represent (possibly multiple) concrete heap objects
and values of primitive numeric data types. If a symbolic expression is an
array element access, then it represents all elements of the given concrete
array object due to analysis imprecision explained below.

The resulting set U of possibly affected predicates must contain all pred-
icates that may refer to objects and values represented by sv . We discuss
several cases. First, the set U must contain all predicates directly refer-
ring to sv . If sv is a field access expression on a heap object, then for each
prefix of sv the set U must include all predicates over access expressions
aliased with the prefix in the current program state. If sv is an array el-
ement access, then the set U must contain all predicates that refer to the
target array variable and all variables possibly aliased with it. Specifi-
cally, it must contain every predicate that refers to some array element
through the respective array variables. For example, in the case of the as-
signment a[i] := e, where i is an arbitrary expression, APF may not know

the precise value of i based on the current values of available predicates,
and therefore it must consider predicates over all elements of the array
variable a (and the aliases of a) as possibly affected by this assignment.

APF uses another global data structure — the symbol table — to identify
aliased symbolic expressions and compute the set U for a given assign-
ment instruction. The symbol table consists of two components: (1) a
graph of all objects and values (static fields of classes, heap objects, ar-
rays, values of primitive numeric types) that exist in the program state,
and (2) a map from program variable names to graph nodes. The graph
contains special nodes that represent local variables and static fields of
classes. Edges in the graph associate objects with their fields and ar-
rays with their elements. The map identifies nodes corresponding to local
variable names and class names.

The whole symbol table associates symbolic access expressions with con-
crete heap objects and values of primitive numeric types. APF performs
systematic traversal of the graph to get

• all concrete objects and values pointed to by a given access expres-
sion in the current scope, and

• all access expressions pointing to a given object or value (i.e., a set
of aliased expressions).

When searching for aliases to a given access expression, APF explores
only those paths in the graph whose length is bounded by the size of the
longest access expression used in the available predicates. This way, we
avoid infinite traversal over cyclic data structures, and at the same time
we cannot miss any possibly aliased symbolic access expression refered
to by some predicate.

When APF processes an assignment instruction, it updates the symbol
table as follows. If every prefix of the expression sv represents only a
single object, the previous value of sv is replaced with the set of possible
values of se. If the expression sv has a prefix that represents multiple
objects, then all possible values represented by se are added into the set
of values already represented by sv . For example, in the case of the
assignment a.b.c.d := e, where the prefix a.b.c represents two heap objects
{o1, o2}, the symbolic expression a.b.c.d has multiple values {x1, x2},
and the symbolic expression e has the value p3, then the new updated
value of a.b.c.d would be {x1, x2, p3}. Note that this must be done also
for every alias of sv .

If the symbolic expression sv represents an array element, then the graph
nodes and edges corresponding to all elements of the given array variable
must be updated with the new values. For example, suppose that APF is
processing an assignment a[i] = e, where a[0] → x, a[1] → y and e → z,
then the updated mapping would be a[0]→ {x, z}, a[1]→ {y, z}.

3.4 Weakest Preconditions
We use the standard approach based on weakest preconditions to capture
the effects of assignment statements on the values of predicates. Table 1
shows the weakest preconditions for simple predicates. The symbol v
represents a local variable and u represents an arbitrary expression. A
symbol of the form Fx denotes any atomic predicate over the expression
x that is not covered by other lines of the table for a given statement.

For complex predicates with nested expressions that involve functions
such as fread , weakest preconditions are derived by a recursive rewrit-
ing process. In each step, a particular expression in the given predicate
is rewritten according to the template provided in Table 1. Consider for
example the assignment o.f := e and a complex predicate fread(f, o) +
aread(arr, a, fread(f, p)) > 5. Both fread expressions would be rewrit-

Statement s Predicate p WP(s, p)
v = v’ Fv p[v′/v]
v = e v relop u e relop u
o.f = e fread(f, o′) relop u fread(fwrite(f, o, e), o′) relop u

o = new C
o = v false
fread(f, o) relop u false

a[i] = e aread(arr, a′, i′) relop u aread(awrite(arr, a, i, e), a′, i′) relop u

a = newarray[e]
a = v false
aread(arr, a′, i) relop u aread(awrite(arr, a, fresh), a′, i) relop u
alength(arrlen, a′) relop u alength(store(arrlen, a, e), a′) relop u

Table 1: Weakest preconditions

ten according to line 3 of the table, yielding the weakest precondition
fread(fwrite(f, o, e), o)+ aread(arr, a, fread(fwrite(f, o, e), p)) > 5.

The weakest preconditions also reflect possible aliasing between vari-
ables. For example, consider the statement a[i] := e and the predicate
aread(arr, a′, i′) relop u at line 6 of Table 1. Truth value of the corre-
sponding weakest precondition depends on the values of equality pred-
icates a = a′ and i = i′ over the access expressions. Such equality
predicates capture aliasing.

We also use the symbol fresh in the weakest preconditions. This symbol
represents a newly allocated object that is different from all the existing
heap objects.

3.5 Using the SMT solver
APF runs the SMT solver on logic formulas with the structure

∧
l(D)⇒

WP(s, p), where l(D) represents literals based on relevant predicates in
the current abstract program state just before execution of the statement
s. The set D is a transitive closure of predicates that (i) are available
in the current runtime scope and (ii) share some access expression with
WP(s, p) or with some other predicate already in D. We consider each
predicate in the set D as possibly relevant for computation of the new
value of the given predicate p. For each predicate d ∈ D the set l(D)
contains either d or ¬d depending on the value of d in the current abstract
program state. If some predicate d ∈ D has the value unknown, then we
add true (i.e., nothing) into the sub-formula

∧
l(D).

The new value of the predicate p after execution of s is

• true if the formula
∧
l(D)⇒WP(s, p) is valid,

• false if the formula
∧
l(D)⇒WP(s,¬p) is valid, and

• unknown otherwise, when the SMT solver does not give a precise
answer for the input formula.

The input to each call of the SMT solver contains also supporting auxil-
iary clauses, which express the semantics of Java and ensure the unique
value of the symbol fresh . For example, there is an auxiliary clause
alength(arrlen, a) ≥ 0 for each variable a of an array type. We use
the auxiliary clause fresh 6= e for every symbolic access expression e of
a reference type.

3.6 Branching Instructions
When the program execution reaches a branching instruction (if, switch),
APF must evaluate the associated condition c. If there exists a predicate
representing c, then APF can use its current value. Otherwise, it has to
evaluate the condition c using the SMT solver. The value of c may be
unknown. In that case APF makes a non-deterministic choice at the
branching instruction to enable subsequent exploration of both branches
— one with c having the value true and the other for the value false.

In each branch of the instruction with the condition c, APF uses knowl-
edge of the selected precise value of c to improve precision of the pred-
icate abstraction. Either the value of the predicate representing c is up-
dated if it exists, or a new predicate representing c with the selected value
is added into the global container.

Values of other predicates are refined in a similar way. For each predicate
p that has the value unknown, APF creates the set DP of predicates that
have a precise value and share some access expression with p. If the set
Dp is not empty, then the value of p is recomputed using the SMT solver.
The new value of p is true if the formula l(Dp) ⇒ p is valid according
to the SMT solver, and false if the formula l(Dp) ⇒ ¬p is valid. This
refinement process stops upon reaching the fixpoint over the values of all
predicates.

i f (a < 0) { / / a < 0 unknown, a < 1 unknown
. . . / / a < 0 true, a < 1 true

} e lse {
. . . / / a < 0 false, a < 1 unknown

}

Figure 3: Refinement of predicate values

Figure 3 illustrates the refinement on a simple example. Note that the
predicate a < 1 gets the value true in the if-branch because the condition
predicate a < 0 also has the value true in that branch.

3.7 Method Call Boundaries
Here we describe in more detail (1) how APF propagates the values of
predicates over method call boundaries, and (2) necessary updates of im-
portant data structures (e.g., the symbol table).

Call parameters. At method invocation, values of predicates about for-
mal parameters in the callee scope are derived from values of predicates
about arguments in the caller scope in a way that resembles processing
of assignment statements. For each pair (vi, ei) of the local variable vi
representing a formal parameter and the expression ei representing the
corresponding actual argument in the caller, APF evaluates the assign-
ment vi := ei with respect to current values of predicates referring to ei,
and then sets the values of all predicates referring to vi. It uses the stan-
dard mechanism based on weakest preconditions and calls to the SMT
solver.

Note, however, that this approach can determine precise values just for
predicates that refer only to formal parameters (v1, . . . , vn), actual argu-
ments (e1, . . . , en), and other entities visible both in the caller scope and
the callee scope — this includes static fields, integer constants, and the
method call receiver. Predicates referring also to object fields via this and
to local variables other than formal parameters in the callee will typically
get the value unknown.

Return value. Values of predicates over the returned expression are prop-

agated from the callee scope to the caller scope also in a way that re-
sembles assignment. We define the special expressions ret1, ret2, . . . that
represent values returned from different method calls on the stack of sym-
bolic expressions in the caller.

For a method that returns some value, a user can define predicates over the
special symbol return in the corresponding method context. The symbol
represents the expression that will be returned from the method. Values
of predicates referring to this symbol are computed by APF just before it
executes the return instruction.

Output parameters. When processing the return instruction, APF must
also propagate values of predicates over formal parameters of a reference
type back to the caller, and update values of predicates referring to corre-
sponding actual arguments. Such formal parameters point to objects that
are visible both from callee and caller, and fields of those objects can be
modified in the callee.

However, the propagation must be done only for variables representing
formal parameters that were not overwritten in the callee method. In all
other cases, predicates referring to the actual argument in the caller will
get the value unknown.

Internal data structures. The symbol table is updated at each method
call boundary to reflect the new scope. A copy of the graph that is a
part of the symbol table exists in each scope. It contains pointers to and
from local variables, which is an information specific to a given scope
(currently executing method).

Therefore, APF must do the following at a method invocation:

• efficiently create a new copy of the graph,

• drop nodes specific to the caller scope,

• create nodes that will represent local variables of the new callee
scope, and

• replace names of local variables (including formal parameters in
the callee scope and this).

The graph is in fact a global structure, to which only the local variable
bindings are added in each scope.

After the return from a method, the copy of the graph associated with
the caller scope, which contains the correct information regarding local
variables of the caller, will be used again.

4. IMPLEMENTATION
We implemented support for predicate abstraction in a new version of
Abstract Pathfinder (APF) [8]. It uses (i) a non-standard interpreter of
bytecode instructions and (ii) the attribute system to maintain symbolic
expressions associated with the concrete values. Other information used
by the predicate abstraction is in the custom global data structures (e.g.,
the symbol table). We also reused some of the components introduced in
the first version of Abstract Pathfinder and made only small changes to
the system architecture.

We impose certain restrictions on the input Java programs. The right
hand side of an assignment statement cannot have any side effects. Such
assignments would break our current implementation based on symbolic
access expressions. For example, the statement b := (a + 4) + (++a) would
not be processed correctly because it contains store operation (++a) on
the right hand side. We recommend to replace them with equivalent se-
quences of statements that use temporary variables, and to define neces-

sary predicates over the temporary variables. The statement b := (a + 4) +
(++a) can be replaced with the sequence t1 = a + 4 ; a = a + 1 ; b = t1 + a.

Debugging symbols must be present in Java class files that make the in-
put program to allow proper functioning of APF. However, note that the
debugging symbols are required only for the program-specific classes —
not for the Java standard libraries.

5. FUTURE WORK
Our immediate priority is to implement state matching and serialization
over predicate values. A simple option might be to compare boolean vec-
tors of current values of all relevant predicates. We will also try an ap-
proach similar to abstract state matching with subsumption for symbolic
execution [1] — create formulas based on the current values of relevant
predicates and ask the SMT solver if the implication between the formu-
las holds. In addition, we will modify the serializer such that it ignores
concrete values of program variables that are referenced in some predi-
cates.

The list of possible extensions and research projects based on APF in-
cludes dynamic inference of predicates needed to verify properties, coun-
terexample-based abstraction refinement (CEGAR), and usage of the sym-
bolic execution machinery implemented in the Symbolic Pathfinder [9].

6. ACKNOWLEDGMENTS
This work was partially supported by the Grant Agency of the Czech
Republic project P202/11/0312. This work was also partially supported
by the Google Summer of Code program in the year 2013.

7. REFERENCES
[1] S. Anand, C.S. Pasareanu, and W. Visser. Symbolic Execution with

Abstraction. Journal of Software Tools for Technology Transfer,
11(1), 2009.

[2] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic
Predicate Abstraction of C Programs. In Proceedings of PLDI 2001,
ACM.

[3] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. The Software
Model Checker BLAST: Applications to Software Engineering,
Journal of Software Tools for Technology Transfer, 9(5-6), 2007.

[4] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In Proceedings of
CAV 2000, LNCS, vol. 1855.

[5] S. Graf and H. Saidi. Construction of Abstract State Graphs with
PVS. In Proceedings of CAV 1997, LNCS, vol. 1254.

[6] G.J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering, 23(5), 1997.

[7] Java Pathfinder: framework for verification of Java programs.
http://babelfish.arc.nasa.gov/trac/jpf/.

[8] A. Khyzha, P. Parizek, and C.S. Pasareanu. Abstract Pathfinder.
ACM SIGSOFT Software Engineering Notes, 37(6), 2012.

[9] C.S. Pasareanu and N. Rungta. Symbolic PathFinder: Symbolic
Execution of Java Bytecode. In Proceedings of ASE 2010, ACM.

