
A Sound Dynamic Partial Order Reduction Engine for Java
Pathfinder

Kyle Storey
Brigham Young University

Provo, Utah
kyle.r.storey@gmail.com

Eric Mercer
Brigham Young University

Provo, Utah
egm@cs.byu.edu

Pavel Parizek
Charles University
Prague, Czechia

parizek@d3s.mff.cuni.cz

ABSTRACT
When model checking a multi-threaded program, it is often nec-
essary to enumerate the possible ordering of concurrent events
to evaluate the behavior of the program. However, enumerating
every possible order of events quickly leads to state-space explo-
sion. Dynamic Partial Order Reduction (DPOR) is a method
to dynamically determine a subset of schedules that need to be
evaluated to observe all the relevant behavior of a program. A
sound implementation of DPOR in Java Pathfinder (JPF) can
be tricky without incurring unacceptable amounts of overhead,
because JPF does not support subdividing existing transitions.
Conservatively inserting choice generators to end transitions at
each possible scheduling point causes JPF to save a large amount
of state. We present an extension to JPF, which is an efficient
implementation of DPOR that attempts to minimize spacial com-
plexity. It handles the directing of the search and uses a simple
interface to allow the user to define the set of events to operate on
and to determine which of those events are dependent. It keeps
its own internal representation of all possible scheduling points
without inserting choice generators at each point. It then restarts
portions of the search, if necessary, to insert only the needed choice
generators.

Keywords
Model Checking, Dynamic Partial Order Reduction, Java Pathfinder

1. INTRODUCTION
To discover all of the behavior of a multi-threaded program, an
analysis needs to consider the possible order of concurrent events.
Each possible order, or schedule as it is often called, may cause
variables to take on different values. This may in turn change
control flow, dramatically changing the program’s behavior.

The number of possible schedules of a program grows at a factorial
rate with the number of concurrent events. This means consid-
ering all the possible schedules of even a fairly small number of
concurrent events is often intractable. Fortunately, the relative
order of only some events will affect the behavior of the program.

Dynamic Partial Order Reduction (DPOR), such as the method
presented by Flanagan and Godefroid [Flanagan and Godefroid
2005], dynamically discovers which events must be re-ordered and
drastically reduces the number of schedules that must be analyzed
to prove properties of a program.

JPF implements a form of DPOR using a sharedness mechanism
called a sharedness policy. The sharedness policy observes the
search and determines which objects are shared between threads.
JPF enumerates all non-deterministic thread scheduling choices
using choice generators. When the sharedness policy determines

that an object is shared, JPF can be configured to insert a choice
generator before an access to the object so the search can evaluate
all the possible schedules of these events.

JPF’s default DPOR mechanism can be a convenient way to ob-
serve many program behaviors, but if an analysis needs to observe
schedules of events other than accesses to shared variables, there is
little support for DPOR within JPF. More critically, if an analysis
plans to dynamically discover which events in a program must be
reordered, JPF cannot return to insert choice generators at events
that an analysis does not discover must be reordered until later
in the search. The inability to add thread choices at these depen-
dent events prevents the soundness of analyses because it causes
the search to miss behaviors. This motivates the need for a sys-
tem within JPF that implements DPOR to explore all necessary
schedules over any set of events, that also can support the dynamic
discovery of dependent events. Our work, which we call a DPOR
Engine, addresses these problems. It uses an internal representa-
tion of the potential search space, the DPOR Graph, to implement
DPOR in a way that is more closely connected with Flanagan and
Godefroid’s [Flanagan and Godefroid 2005] work, while taking ad-
vantage of JPFs ability to save state so it does not always have
to restart from the beginning of the program like the original al-
gorithm. The source code for the DporEngine can be found at
http://bitbucket.org/byu-vv/dporengine/src/jpf19.

2. DYNAMIC PARTIAL ORDER REDUCTION
This work attempts to follow closely the work of Flanagan and
Godefroid [Flanagan and Godefroid 2005] in implementing DPOR.
For a detailed description of their DPOR algorithm the authors
would recommend reading their paper, but we will provide an
overview and application of their algorithm in a JPF context here.

2.1 Overview of DPOR
DPOR is a method for exploring a reduced state space of a concur-
rent system by controlling the schedule of only certain events. We
call these events scheduling points. By scheduling only over this
subset of events, DPOR reduces the number of explored sched-
ules dramatically. DPOR further reduces the number of explored
schedules required by only scheduling over events that are mu-
tually dependent. Intuitively, dependent events are events where
the relative order of their execution affects the behavior of the
program in some meaningful way. For example, scheduling points
typically represent points of non-determinism such as accesses to
shared memory. And two accesses to shared memory will only be
dependent if they access the same memory location and at least
one of them is a write. In order for events to be dependent they
must also be able to execute concurrently and reversing the order
of these events must produce two distinct program states. DPOR
utilizes a dependency relation to determine whether two schedul-
ing points are dependent. For any valid definition of scheduling

http://bitbucket.org/byu-vv/dporengine/src/jpf19


points, and any valid dependency relation over them, the DPOR
algorithm explores a persistent set of transitions from every state,
guaranteeing that safety properties can be completely verified dur-
ing the search.

2.2 Difficulty of implementing DPOR within JPF
To implement a DPOR algorithm in JPF a choice generator must
be inserted at each scheduling point. However, in general, it can
be difficult to determine if a given instruction is a scheduling
point. Consider an analysis which does not consider data race
to be a bug, but instead must determine all the behaviors of a
program due to data race. To do so, it must schedule over all
accesses to shared variables where at least one of the accesses is a
write. This analysis cannot determine a priori if any given variable
is shared or not, so it maintains a set of variables that have been
accessed by more than one thread. Often it is not discovered that
a variable is shared until much later in the search. This means
that any access to any variable could later be discovered to be a
scheduling point. In JPF, transitions are defined to begin and end
when a new choice generator is inserted. Once set, JPF does not
support subdividing these transitions. This means that we cannot
insert choice generators for previous accesses to a shared variable
when it is discovered that those accesses are scheduling points.
So, to keep our analysis sound, we would have to conservatively
insert a new choice generator for every access to any variable. For
each of these choice generators, JPF will consolidate and create
a state object. As the number of variable accesses tends to be
large, this quickly creates unacceptable amounts of overhead.

3. DPOR ENGINE
Our main contribution is the DPOR Engine: a system for easily
including DPOR in a JPF search. Through a few interfaces, the
engine is configurable to operate on any relevant set of events,
and it correctly handles situations where it is not known a priori
that an event is a scheduling point. To circumvent the large over-
head that comes with inserting choice generators at every possible
scheduling point, it maintains its own internal representation of
the potential search space which we call a DPOR Graph. To con-
trol the scheduling of events, the DPOR Engine inserts its own
custom choice generators which each hold an associated node from
the DPOR Graph; allowing the DPOR Engine to connect each
custom choice generator with its position in the search. Each cus-
tom choice generator then delegates decisions on whether there
are more choices to consider and which threads should be run
from that point to the DPOR Engine providing their node from
the DPOR Graph to inform these decisions. The DPOR Engine
also uses the DPOR Graph to determine whether there exists one
or more scheduling points without an associated choice generator.
If there is, it re-executes a portion of the search so that the choice
generators can be included.

3.1 DPOR Graph
The DPOR Graph is the main data structure the DPOR En-
gine uses to direct the scheduling of the search. Figure 1 shows
an example DPOR Graph. It was generated by the DPOR En-
gine from DporGraphExample.java in Figure 2. Topographically, the
DPOR Graph is similar to a JPF state space graph where a choice
generator was inserted at every potential scheduling point. It con-
sists of three types of nodes: Yes, Maybe, and Replay . A Yes node
indicates a point in the search that was confirmed to be a schedul-
ing point where a choice generator was inserted. A Maybe node
indicates that at that point in the search, the analysis could not
determine if the event is a scheduling point or not. For example,
if we want to schedule over accesses to shared variables, a Maybe
node may be inserted when there was an access to a variable but

Figure 1: An example DPOR Graph

1 public class DporGraphExample extends Thread {

2 static int i; // sharedness unknown a priori

3 public static void main(String [] args) {

4 new DporGraphExample ().start;

5 i = 2; //runs in main thread

6 }

7 public void run() {

8 i = 1; //runs in new thread

9 }

10 }

Figure 2: DporGraphExample.java

it is unknown whether the variable is shared or not. Both Yes and
Maybe nodes will also contain a set of threads that are runnable
from that point (runnables), and a set of threads that should be
scheduled to run from that point (choices). Initially, the choices
contain only the currently running thread when the node was cre-
ated. The DPOR Engine adds choices to these nodes as necessary.
Replay nodes mark points in the search from which we can replay.
If it is discovered there is a scheduling point without an associated
choice generator we can restart the search from this point so we
can insert a choice generator; reducing the amount of redundant
re-execution. Details on this process will be discussed in Section
3.4. Each DPOR Graph has a Replay node as its root node which
is associated with the root choice generator. A DPOR Graph
also may have additional Replay nodes at places defined by the
DporInstructionMarker.

3.2 Interface
To use the DPOR Engine, two interfaces must be implemented:
DporInstructionMarker, and DporDependenceRelation. Optionally the
DporResettable interface can be implemented to help an analysis
synchronize its local state with the state of the search.

The DporInstructionMarker specifies to the DPOR Engine which
events may be scheduling points. Before each instruction is ex-
ecuted, the DPOR Engine calls the mark method in the DporIn-

structionMarker, as indicated in line 2 of Algorithm 1. The mark

method must determine if the given instruction should be consid-
ered a scheduling point. It does so by returning Yes, No, Maybe,
or Replay . If the DporInstructionMarker returns Yes, the instruction
is a scheduling point. A choice generator is inserted, and a new
Yes node is added to the DPOR Graph as indicated in lines 3
through 5. Lines 7 and 8 show that if the DporInstructionMarker

returns Maybe, the instruction could potentially be a scheduling
point but the analysis is not yet sure. In this case no choice gener-
ator is inserted, and a Maybe node is added to the DPOR Graph.
Instead of returning No, the DporInstructionMarker may return Re-
play for a given instruction that is not a scheduling point. If it
does a choice generator is inserted. Instead of restarting the search



from the beginning to insert choice generators, a smaller section
of the search can be replayed from that point. Lines 10 through
12 describe this behavior. If the DporInstructionMarker returns No,
execution continues as normal.

The DporDependenceRelation specifies to the DPOR Engine which
pairs of scheduling points are dependent. To do so it must imple-
ment the dependent method which given two nodes from the DPOR
Graph must return a boolean indicating if the two scheduling
points associated with those nodes are dependent. Specifically,
the DporDependenceRelation should return true if and only if the
two associated scheduling points are dependent as defined by the
given analysis, they can be co-enabled, and they are concurrent.

To aid in this task, each node contains an object called the De-

pendenceInfo which can store whatever information is necessary
for the analysis to determine if two scheduling points are depen-
dent. For instance, the analysis may place an object that holds
the name of the variable that was accessed at that point, to see
if both scheduling points accessed the same variable, and some
data structure to help determine if the two scheduling points are
concurrent, such as a vector clock. To provide an opportunity for
the analysis to store this info in the node, each time a new node
is created in the DPOR Graph the onCreateNode method is called
providing the new node being created as well as the parent of that
node. At that time, an object can be stored in the parent node
as the creation of a new node marks the end of that transition. A
mutable object can also be stored in the child node so it can be
retrieved when needed and updated during the transition.

It is anticipated that many analyses using the DPOR Engine will
need to keep track of information about the state of the pro-
gram. As the DPOR Engine backtracks and tries new paths,
it can be difficult to keep this information synchronized as the
program state is reset during the model checking process. The
DporResettable interface simplifies this. Similar to how JPF resets
the program state on a backtrack, the DporEngine will reset the
state of an analysis registered as a DporResettable. To do so, an
analysis must implement getImmutableState as well as resetState.
When a new choice generator is created the DPOR Engine calls
getImmutableState on each registered DporResettable and stores
the state object for the corresponding scheduling point and Dpor-

Resettable. Then later, when the search backtracks to that choice
generator, the corresponding object is retrieved for each DporRe-

settable and resetState is called, passing the object received at that
point. The DporResettable can then use the state object to reset
its data to the match the program state.

3.3 DPOR Algorithm using a DPOR Graph
As JPF executes each program step, the DPOR Engine passes the
instruction that will be executed next to the DporInstructionMarker

and collects the result. Then the DPOR Graph is updated and
choice generators are inserted as described. The DPOR Engine
keeps track of the node that was created for use in the DPOR
Algorithm. It is represented by N as seen in Algorithm 1 line
4. If the DporInstructionMarker returned Yes or Maybe the DPOR
algorithm is executed as seen on lines 6 and 9. Starting with the
parent node of the newly created Yes or Maybe node, the DPOR
Engine traverses up the graph through the ancestor nodes of the
new node, searching for the most recent node which the DporDe-

pendenceRelation reports is dependent with the new node. If that
node is found, the DPOR Engine will add choices to the ancestor
to schedule over those events. The process of searching for the
most recent dependent node is described in lines 17 through 24 of
Algorithm 1. Lines 26 through 32 describe the process of schedul-

ing over the dependent events. To do so, it starts by attempting
to add the current thread for the new node to the choices of the
ancestor node. If the current thread is not in the runnables, the
DPOR Engine conservatively adds all the runnables for the an-
cestor node to the ancestors choices. These steps implement the
DPOR algorithm as described by Flanagan and Godefroid [Flana-
gan and Godefroid 2005].

However, if the ancestor node that was found to be dependent
with the new node is a Maybe node, this indicates that the instruc-
tion connected with that ancestor node was indeed a scheduling
point and the DPOR Engine must arrange for a portion of the
search to be replayed so a choice generator can be inserted.

For illustration, consider Figures 1 and 2. Figure 1 shows the final
state of the DPOR Graph, but consider a previous state of the
graph where only the nodes with IDs 0 and 1 have been created.
When the graph was in this state, JPF was about to execute
a write on line 8 of DporGraphExample.java. The DPOR Engine
looked ahead at this instruction and passed it to the DporInstruc-

tionMarker which in this case returned Yes. The DPOR Engine
then created the node with ID 2 as seen in Figure 1. It inserted
a new choice generator at that point and then began executing
the DPOR Algorithm. It searched through the ancestors of the
new node beginning with Node 1. It passed Nodes 1 and 2 to
the DporDependenceRelation. In this case, the relation returned
true, indicating that the nodes are dependent. The DPOR En-
gine then added choices to schedule over these two nodes. To do
so, it checked if thread 1 could be run from the scheduling point
associated with Node 1. In this case it could, so thread 1 was
added to the choices of Node 1. Node 1 also is a Maybe node
so the DPOR Engine needed to arrange to replay this section to
insert the necessary choice generators. We describe this process
in Section 3.4.

3.4 The Replay Algorithm
If it is discovered that a Maybe node was indeed a scheduling
point, the DPOR Engine will traverse up the DPOR Graph be-
ginning at the parent of the Maybe node. When it reaches a Re-
play node (which can be at one of the additional places requested
by the DporInstructionMarker, or the replay that is the root of each
graph) a flag will be set in the Replay node indicating that the
search must replay from that point. When JPF backtracks to a
choice generator associated with a Replay node, the DPOR En-
gine checks if the flag was set. The replay-flag being set indicates
that some scheduling point later in the search from that point did
not receive a choice generator and must be replayed. However, if
the Replay node has an ancestor Replay node that also must re-
play a larger portion of search, replaying this smaller section will
be redundant. To avoid these redundancies, the DPOR Engine
again searches up the DPOR Graph. If it finds a Replay node
with its flag set, it will return to JPF indicating that the Replay
node at the current search point has no more choices and JPF will
continue to backtrack. If none of the current Replay node’s ances-
tors have the replay-flag set, the DPOR Engine returns a choice
for the initial thread again, effectively restarting the search from
that point.

Continuing the previous illustration from Section 3.3, when the
DPOR Engine discovers it needs to schedule a replay for Node 1, it
traverses up the ancestors of Node 1 to find the most recent replay
node. In this case immediately finds the root node, Node 0. The
DPOR Engine sets a flag in Node 0 so that when JPF backtracks
to that point it will replay this section. The left branch of Node
0 in Figure 1 shows the results of this replay. Note that on the



Algorithm 1 DPOR using DPOR Graph

1: procedure ExecuteInstruction(I)
2: M = InstructionMarker.mark(I)
3: if M = Yes then
4: N = DporGraph.addNode(Yes)
5: InsertChoiceGenerator(N)
6: ExecuteDpor(N)
7: else if M = Maybe then
8: N = DporGraph.addNode(Maybe)
9: ExecuteDpor(N)

10: else if M = Replay then
11: N = DporGraph.addNode(Replay)
12: InsertChoiceGenerator(N)
13: end if
14: end procedure
15: procedure ExecuteDpor(N)
16: P = N ;
17: while P .hasParent do
18: P = P .getParent
19: d = DependenceRelation.dependent(P ,N)
20: if P .type 6= Replay ∧ d then
21: AddScheduleFor(P ,N)
22: break
23: end if
24: end while
25: end procedure
26: procedure AddScheduleFor(P ,N)
27: T = N .getCurrentThread
28: if T ∈ P .getRunableThreads then
29: P .addChoice(T )
30: else
31: P .addAllRunnableThreads
32: end if
33: if P .type = Maybe then
34: ArrangeReplay(P )
35: end if
36: end procedure

Algorithm 2 Replay Algorithm

1: procedure ArrangeReplay(P )
2: R = P ;
3: while R.hasParent do
4: R = R.getParent
5: if R.type = Replay then
6: R.replayFlag = TRUE
7: break
8: end if
9: end while

10: end procedure
11: procedure MustReplay(R)
12: if R.replayFlag = FALSE then
13: return FALSE
14: end if
15: S = R;
16: while S.hasParent do
17: S = S.getParent
18: if S.type = Replay ∧ S.replayFlag = TRUE then
19: return FALSE
20: end if
21: end while
22: return TRUE
23: end procedure

replay, the DporInstructionMarker now marks the write on line 5 as
Yes. This is because it now knows that i is a shared variable. This
allows the DPOR Engine to insert the necessary choice generators
and schedule over those scheduling points. You can see that Node
3 and Node 1 both correspond to line 5 of the program but on
the replay Node 3 has two children indicating that two schedules
were executed.

4. RESULTS
We have implemented a few examples that utilize the DPOR En-
gine to test its functionality and compare empirically the trade
offs of using the system. We implemented the following examples:
DataRaceBehavior (DRB) which dynamically discovers sharing
and enumerates over shared variables utilizing the Maybe and
replay features; EveryAccess (EA) which implements the Instruc-
tionMarker to return Yes if the instruction is a field access. This
is the naive approach of inserting a choice generator for every po-
tential scheduling point; and the default JPF DPOR mechanism
(JPF) which runs the benchmark using JPF’s GlobalSharednessPol-

icy and HjSyncPolicy, a minimal SyncPolicy. It was fairly simple to
implement each of these examples. The most difficult was the full
featured DRB and it was implemented in just 79 lines of code.

We took the average time it took to model check each benchmark
in milliseconds averaging over 5 runs. We also indicate whether,
by our evaluation, it enumerated all the behavior of the program.
The DPOR Engine can be configured to emit the DPOR Graph
as a dot file whenever a thread terminates. For DRB and EA
we include the number of graphs emitted as it gives a measure of
how many schedules were enumerated. See Table 1 for the results
of our tests. All of the source of the benchmarks shown can be
found in the repository.

In some cases, using the DPOR Engine creates more work and
overhead then it gives benefit. For instance in MaybeExample
note that DRB produced 8 graphs where EA produced only 5.
This is because the example returned Maybe on an event that
turned out to be a scheduling point. This resulted in a replay
which caused some redundant execution. However, as the num-
ber of scheduling points increases the benefit of utilizing all of the
DPOR Engine’s features becomes apparent. As with DporEngi-
neExample where where DRB clearly outperforms EA and JPF.

5. RELATED WORK
DPOR was first introduced in [Flanagan and Godefroid 2005] as
a way to use runtime information to refine partial order reduction
techniques based on persistent sets. Several alternative implemen-
tations of DPOR have been implemented in JPF before [Noonan
et al. 2014, Shafiei and Mehlitz 2014, Rizzi et al. 2014, Brat and
Visser 2001], but they are tied to specific use cases and do not
generalize to any dependency relation. Ongoing work on DPOR
algorithms may benefit from a framework like the DPOR En-
gine [Isabel 2019, Chalupa et al. 2017, Abdulla et al. 2014, Zhang
et al. 2015, Albert et al. 2019]. Many of these projects use SYCO,
a tool like JPF for the ABS concurrent objects language [Albert
et al. 2016]. Like SYCO, JPF with the DPOR Engine allows for
research and development of new partial order reduction tech-
niques, but targeted at Java programs.

6. FUTURE WORK
1 Currently the DPOR Engine depends on the InstructionMarker
to retain enough information about the search to correctly label
1Between the time of peer-review and publication this work has
been completed. It can be found at http://bitbucket.org/
byu-vv/dporengine/src/sdpor.

http://bitbucket.org/byu-vv/dporengine/src/sdpor
http://bitbucket.org/byu-vv/dporengine/src/sdpor


Table 1: Results of tests comparing different DPOR Approaches

DRB DRB DRB EA EA EA JPF JPF
Benchmark Time (ms) Graphs All Behavior Time (ms) Graphs All Behavior Time (ms) All Behavior

MoreSimple 4642 7 Yes 4601 7 Yes 4589 No
LessSimple 5126 17 Yes 4887 19 Yes 4589 No
MaybeExample 4772 8 Yes 4574 5 Yes 4388 No
DporEngineExample 6527 62 Yes 7446 125 Yes >300000 Yes

instructions on the replay. Specifically, it is expected that the
InstructionMarker return Yes to any instructions that in a previ-
ous run the InstructionMarker returned Maybe that were indeed
scheduling points. If it continues to return Maybe for instructions
that are scheduling points, the DPOR Engine will simply continue
to replay those sections and the search will never finish. We intend
to remove this burden from the user by keeping track of where the
analysis is in the program using the DPOR Graph. To do this, we
need to develop a way to accurately determine if the instruction
that is being executed on the replay is the same instruction that
created a given node in the DPOR Graph. This way, the DPOR
Engine can determine which instructions are scheduling points on
the replay without having to consult the InstructionMarker. This
would have the added benefit of reducing the amount of redun-
dant executions on the replay. In many cases during the replay
the DPOR Engine would not have to re-execute the first thread
chosen at a scheduling point and could skip to subsequent choices.

Additionally, the DPOR Engine is only sound if state matching
is disabled in JPF. Yang et. al.[Yang et al. 2008] presented a
method to adjust DPOR to support state matching. Their so-
lution involves keeping deltas to keep track of state, but as JPF
already handles state saving and resetting we propose adjusting
the state match conditions and the DPOR Engine to implement
a stateful DPOR as described by Yang et. al.[Yang et al. 2008].

7. CONCLUSION
We present an extension to JPF which simplifies the inclusion
of Sound DPOR in the search. It is an implementation of known
DPOR algorithms with some extension to overcome limitations in
JPF. DPOR is most beneficial when an analysis also dynamically
detects dependency of events. Because JPF does not support
breaking transitions when set, a necessary feature when imple-
menting DPOR when events cannot be known to be scheduling
points a priori, a naive approach would need to insert choice gen-
erators at every possible event dependency of events leading to
a large amount of overhead from JPF storing state. The DPOR
Engine circumvents this large overhead by maintaining a DPOR
Graph: a structure that is a projection of the JPF state space
that is used to determine which portions of the program must
be replayed to break transitions. The DPOR Engine allows the
user to ignore the details of directing the search to more quickly
implement their analysis.

8. REFERENCES
[Abdulla et al. 2014] Parosh Abdulla, Stavros Aronis, Bengt

Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic
partial order reduction. In ACM SIGPLAN Notices,
Vol. 49. ACM, 373–384.

[Albert et al. 2019] Elvira Albert, Maria Garcia de la Banda,
Miguel Gómez-Zamalloa, Miguel Isabel, and Peter J
Stuckey. 2019. Optimal context-sensitive dynamic partial
order reduction with observers. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 352–362.

[Albert et al. 2016] Elvira Albert, Miguel Gómez-Zamalloa, and
Miguel Isabel. 2016. SYCO: a systematic testing tool for
concurrent objects. In Proceedings of the 25th International
Conference on Compiler Construction. ACM, 269–270.

[Brat and Visser 2001] Guillaume Brat and Willem Visser. 2001.
Combining static analysis and model checking for software
analysis. In Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE
2001). IEEE, 262–269.

[Chalupa et al. 2017] Marek Chalupa, Krishnendu Chatterjee,
Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya.
2017. Data-centric Dynamic Partial Order Reduction. Proc.
ACM Program. Lang. 2, POPL, Article 31 (Dec. 2017),
30 pages. https://doi.org/10.1145/3158119

[Flanagan and Godefroid 2005] Cormac Flanagan and Patrice
Godefroid. 2005. Dynamic Partial-order Reduction for
Model Checking Software. In Proceedings of the 32Nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’05). ACM, New York,
NY, USA, 110–121.
https://doi.org/10.1145/1040305.1040315

[Isabel 2019] Miguel Isabel. 2019. Conditional Dynamic Partial
Order Reduction and Optimality Results. In Proceedings of
the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2019). ACM, New
York, NY, USA, 433–437.
https://doi.org/10.1145/3293882.3338987

[Noonan et al. 2014] Eric Noonan, Eric Mercer, and Neha
Rungta. 2014. Vector-clock Based Partial Order Reduction
for JPF. SIGSOFT Softw. Eng. Notes 39, 1 (Feb. 2014),
1–5. https://doi.org/10.1145/2557833.2560581

[Rizzi et al. 2014] Eric F. Rizzi, Mathew B. Dwyer, and
Sebastian Elbaum. 2014. Safely Reducing the Cost of Unit
Level Symbolic Execution Through Read/Write Analysis.
SIGSOFT Softw. Eng. Notes 39, 1 (Feb. 2014), 1–5.
https://doi.org/10.1145/2557833.2560580

[Shafiei and Mehlitz 2014] Nastaran Shafiei and Peter Mehlitz.
2014. Extending JPF to Verify Distributed Systems.
SIGSOFT Softw. Eng. Notes 39, 1 (Feb. 2014), 1–5.
https://doi.org/10.1145/2557833.2560577

[Yang et al. 2008] Yu Yang, Xiaofang Chen, Ganesh
Gopalakrishnan, and Robert M. Kirby. 2008. Efficient
Stateful Dynamic Partial Order Reduction. In Model
Checking Software, Klaus Havelund, Rupak Majumdar, and
Jens Palsberg (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 288–305.

[Zhang et al. 2015] Naling Zhang, Markus Kusano, and Chao
Wang. 2015. Dynamic partial order reduction for relaxed
memory models. In ACM SIGPLAN Notices, Vol. 50. ACM,
250–259.

https://doi.org/10.1145/3158119
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/3293882.3338987
https://doi.org/10.1145/2557833.2560581
https://doi.org/10.1145/2557833.2560580
https://doi.org/10.1145/2557833.2560577

	Introduction
	Dynamic Partial Order Reduction
	Overview of DPOR
	Difficulty of implementing DPOR within JPF

	DPOR Engine
	DPOR Graph
	Interface
	DPOR Algorithm using a DPOR Graph
	The Replay Algorithm

	Results
	Related Work
	Future Work
	Conclusion
	References

