
Checking Just Pairs of Threads for Efficient and Scalable
Incremental Verification of Multithreaded Programs

Pavel Parízek
Charles University

Prague, Czech Republic
parizek@d3s.mff.cuni.cz

Filip Kliber
Charles University

Prague, Czech Republic
kliber@d3s.mff.cuni.cz

ABSTRACT
Many techniques of automated verification target multithreaded programs,
because subtle interactions between threads may trigger concurrency er-
rors such as deadlocks and data races. However, techniques and tools
involving systematic exploration of the whole space of possible thread in-
terleavings do not scale to large software systems, despite various clever
algorithmic optimizations. A viable approach is to use incremental veri-
fication techniques that, in each run, focus just on the recently modified
code and the relatively small number of affected execution traces, and
therefore can provide results (bug reports) very quickly.

In this paper we present a new algorithm for incremental verification of
multithreaded programs based on the pairwise approach, whose key idea
is systematic exploration of all possible thread interleavings just for spe-
cific relevant pairs of threads.

We implemented the algorithm with Java Pathfinder as the backend ver-
ification tool, and evaluated it on several multithreaded Java programs.
Results show that our incremental algorithm (1) can find errors very fast,
(2) greatly reduces time needed for complete safety verification, and (3) it
can find the same errors as full verification of the whole state space.

1. INTRODUCTION
An important subject of automated verification and bug detection tech-
niques are multithreaded programs, especially because subtle interactions
between threads may trigger concurrency errors such as deadlocks and
data races during the program execution. Techniques most suitable for
precise detection of possible concurrency errors involve systematic explo-
ration of the whole space of all possible thread interleavings that may oc-
cur at runtime. However, exhaustive systematic verification does not scale
to large real-world multithreaded software systems due to state space ex-
plosion [2]. The main cause of limited scalability is the huge number of
thread interleavings that have to be analyzed even for rather small multi-
threaded programs. State-of-the-art techniques and tools partially address
this challenge by using many clever algorithmic improvements, optimiza-
tions and heuristics, but scalability of verification to large and complex
software systems remains to be an issue.

One viable approach is to use incremental verification techniques that,
in each run, analyze just the recently modified source code and the corre-
sponding small subset of affected thread interleavings. The main practical
benefit of such incremental procedures is that they can be run very often
— for example, after each commit to a source code repository — and they
provide the list of detected bugs very quickly, allowing developers to fix
the reported bugs while they have the respective code in fresh memory.
Several research groups already published some work in this direction [1,
7, 11], targeting also efficient incremental search for concurrency errors.

Overview. In this paper, we propose an algorithm for incremental verifi-
cation of multithreaded programs that is based on systematic exploration
of possible thread interleavings just for specific pairs of threads. We call

it the pairwise approach. The key idea behind our pairwise approach is
that, when developers edit the code of a specific program thread, it is suf-
ficient to check all possible interleavings just for the modified code and in
a pairwise manner with respect to other threads — that means checking
the interleavings for each relevant pair of threads separately. Every run
of our verification algorithm focuses just on the most recent source code
modification, that means on detecting possible concurrency errors that
involve the modified code, assuming the previous version of the input
program was already verified and is free of concurrency errors.

For the purpose of explaining our approach, we consider only those source
code modifications that involve program statements that represent possi-
ble interaction between threads — this includes, for example, reading
or writing a field of a shared heap object, lock acquire statement, lock
release, and so on. We use the phrase thread interaction statements to
denote such statements.

A run of the incremental verification procedure based on our pairwise ap-
proach would be triggered when the developer inserts or deletes a thread
interaction statement to/from the program source code. First, the veri-
fication procedure identifies all static program threads that may execute
the modified code fragment. We denote this set of threads by the term
modified threads. Subsequently, the procedure checks all possible inter-
leavings for every pair of threads, where at least one element of a pair
belongs to the set of modified threads. In this way, our verification proce-
dure checks all possible interactions of the modified source code fragment
(affected block of program statements) in the respective threads with the
current version of the source code in all other threads, and performs the
checks in a pairwise manner.

For illustration, consider the program in Figure 1, which involves three
static threads (T1, T2, and T3). Two dynamic instances of T2 are created
at runtime, while just one instance is created for each of the other threads
T1 and T3. When the developer adds a call of print(o.f) into the code of
T2, which is underlined in the source code listing, then our incremental
verification algorithm checks the following pairs of threads: (T2 T1), (T2
T2), (T2 T3). The pair (T2 T2) has to be analyzed because the program
involves two dynamic instances of thread T2.

1 T1 : o . f = x ; t2a = start T2 ; t2b = start T2
2 T2 : evaluate (o) ; print(o.f)
3 T3 : y = p . g ; z = r . h ; w = y + z

Figure 1: Example program

We also want to emphasize that, even though our verification algorithm
checks all interleavings just for each pair of threads separately, it reports
all concurrency errors that involve the modified code — and, in particular,
even all errors in synchronization patterns that involve more than two
concurrent threads. Details are provided in Section 3.2.

Contribution. The main contributions presented in this paper include:

• Algorithm for incremental verification of multithreaded programs
based on systematic exploration of all possible interleavings just
for specific pairs of threads.

• Experimental evaluation of the prototype implementation of our al-
gorithm in Java Pathfinder [20] on 9 multithreaded Java programs.

Results of experiments show that runs of the incremental verification pro-
cedure finish very quickly for every subject program and every source
code modification that we considered in our evaluation. For the most
complex program in our benchmark set, the verification procedure fin-
ished on average in 16 seconds (when considering just experiments fo-
cused on fast search for concurrency errors), respectively in 18 seconds
(experiments focused on checking safety). In addition, our incremental
verification algorithm can find the same errors as if the full verification
of the whole program state space is run every time. Since these results
are promising, in the future we plan to perform additional experiments on
even larger programs. Besides that, we will make the definitions of the
core verification algorithm and proofs of soundness more formal.

In the next section, we define important terminology and notation used
within the rest of this paper. We describe the proposed incremental ver-
ification algorithm based on checking interleavings for specific pairs of
threads, and briefly discuss important properties of the algorithm, in Sec-
tion 3. Then we show the results of our experiments in Section 4 and
provide overview of related work in Section 5. Additional information
that does not fit into this paper (regarding properties of the algorithm,
evaluation, and related work) is available in a technical report [15].

2. NOTATION AND TERMINOLOGY
We define thread interaction statements more precisely as follows. It is
any program statement that accesses (reads or updates) a memory location
reachable from multiple threads. The memory location can be an object
field, an array element, or a lock status variable, for example.

An atomic transition in the state space is defined as a sequence of state-
ments that (i) begins with a thread interaction statement and (ii) then con-
tains any number of thread-local statements, with effects not visible to
other threads. All statements in a transition are executed by the same
thread. A program code location is a scheduling-relevant point, if the
next instruction to be executed represents a thread-interaction statement.

We use the term modified code fragment to denote a piece of source code
that includes at least one added or deleted thread interaction statement,
together with the affected nearby code within the same procedure. More
precisely, we define the modified code fragment as a list lmod of adjacent
program statements within a single procedure. Note also that the whole
sequence lmod always belongs to the code of single program thread T . To
simplify presentation, here we assume that the developer edited (added
or removed) just a single thread interaction statement st in each step of
iterative program development, because every modified thread interaction
statement must be processed separately.

3. PAIRWISE APPROACH TO EXPLORATION
OF THREAD INTERLEAVINGS

For the purpose of explaining our approach, we assume that the input
for a run of the verification procedure consists of a modified code frag-
ment, which is specified by a pair of program code locations that represent
boundaries of the respective sequence lmod of program statements. We
use the symbol Tmod to denote the static modified thread (in the program
source code) that contains the modified code fragment lmod.

If the given input program involves multiple dynamic instances of the
static thread Tmod, our verification algorithm considers every two dy-

namic instances of Tmod as distinct dynamic threads for the purpose of
creating pairs of threads subject to verification.

3.1 Main Algorithm
When given the modified code fragment lmod and the static modified
thread Tmod as input, our core verification algorithm explores all possible
interleavings that involve lmod for all pairs (Ti, Tj) of dynamic threads,
where Ti is a dynamic instance of Tmod and Tj is a dynamic instance of
some static thread from the set T of all program threads. The key feature
of the verification algorithm is that it processes each pair of threads sepa-
rately, one at a time. Figure 2 captures the most important aspects of our
verification algorithm, which we explain below in this section.

1 for Ti ∈ getDynamicInstances (Tmod) do
2 for Tj ∈ getDynamicInstances (T) do
3 exploreInterleavingsForThreadPair (T , Ti, Tj)
4 end for
5 end for
6

7 procedure onThreadSchedulingChoice (Tcur, Ti, Tj)
8 pi = getThreadCurrentPC (Ti)
9 if Tcur == Tj then

10 if pi == lmod.entry then return {Ti, Tj}
11 end if
12 if Tcur == Ti then
13 if pi ∈ lmod then return {Ti, Tj}
14 end if
15 return {Tcur}
16 end proc

Figure 2: Important parts of the main algorithm that explores all
interleavings for a pair of threads

The set Ii,j of thread interleavings explored for a given pair of dynamic
threads, (Ti, Tj), where Ti is a dynamic instance of Tmod, is defined as
follows. For every scheduling-relevant point pj in the code of Tj , the
set Ii,j contains an interleaving in which the first statement in the se-
quence lmod is scheduled to be executed at pj . Thread Ti executes the
code fragment lmod in that particular interleaving. In addition, for each
specific point pj and for the specific thread interleaving, in which execu-
tion of statements in lmod immediately follows the point pj , the set Ii,j
also contains a thread interleaving for every scheduling-relevant point pi
in lmod where thread Tj is scheduled to run at pi within that particular
interleaving. This definition of the set Ii,j covers also the case when pro-
gram execution begins with the statements in the sequence lmod, because
all thread start events are scheduling-relevant points too. All the possi-
ble interleavings of the modified code fragment lmod with the existing
code of thread Tj are captured in this way. The body of the event handler
onThreadSchedulingChoice in Figure 2, invoked within the scope of
the procedure exploreInterleavingsForThreadPair, captures the defi-
nition of Ii,j in an imperative style. Here, the symbol Tcur represents the
current (running) thread in the program state when a scheduling choice
was reached on the currently explored state space path. This event han-
dler procedure is called for each program state where a thread scheduling
choice needs to be created; it returns the set of all threads to be explored
from that state. The backend verification tool, which is actually used to
systematically explore possible interleavings for the given pair of threads,
has to create all the required thread scheduling choices in the program
state space, in order to ensure that all thread interleavings in the set Ii,j
are truly explored.

Note that the set Ii,j , defined above, has to include just those interleav-
ings where thread preemption is enabled from the state in which the next
instruction to be executed by thread Ti is the first instruction of the se-
quence lmod. Therefore, all preemptive non-deterministic thread schedul-
ing choices may be disabled on the particular analyzed execution trace in
the program state space, until Ti reaches the beginning of lmod.

Exploring relevant interleavings of multiple threads. In order to en-
able sound detection of all error states (e.g., deadlocks) that involve N >
2 threads, we extended our core verification algorithm (described above)
such that it uses a dynamic happens-before ordering relation [8] computed
over the execution trace prefix up to the first instruction (exclusively) of
the modified code fragment lmod. Given an execution trace prefix w, our
algorithm determines the list E of relevant events (such as lock acquire,
lock release, and thread join) in the prefix w, where each event in the
list satisfies these two conditions: (1) it is associated with a thread other
than Ti or Tj , and (2) it is not guaranteed to happen strictly before the
first instruction of lmod is reached by Ti. For every event e ∈ E, the
algorithm has to consider both cases with respect to thread scheduling; it
explores (i) the interleaving in which the instruction corresponding to e is
executed before the first instruction of lmod and (ii) also the complemen-
tary interleaving where the event e occurs after the end of lmod, all that
while preserving the program code order for all events associated with
the same dynamic thread instance. The set Ii,j is expanded to contain the
additional interleavings that involve events in the list E.

3.2 Properties of the Algorithm
In this section, we discuss important properties of our verification proce-
dure, including soundness and coverage, all that especially with respect
to the ability of detecting concurrency errors.

Even though our verification algorithm explores all possible interleavings
just for pairs of threads, it detects also concurrency errors that involve the
modified code fragment and N > 2 threads. We show that, for each er-
ror in a given program, our algorithm explores at least one execution trace
(interleaving of threads) leading to the corresponding error state. Our dis-
cussion focuses on three main kinds of concurrency errors — deadlocks,
atomicity violations and ordering violations. We begin with deadlocks.

Deadlocks over N threads. Here we leverage the assumption that the
whole program state space did not contain any deadlock before the mod-
ifications represented by lmod in the code of Ti were made by develop-
ers. Execution of the modified code fragment lmod by Ti is a necessary
precondition for reaching a deadlock introduced through statements in
lmod. Therefore, we consider an arbitrary thread interleaving that reaches
a deadlock state involving the set TD of N threads, where TD contains
at least the pair (Ti, Tj) of threads for some Tj . We use the symbol πD

to denote this execution trace. Next, we explain how it is guaranteed that
our verification algorithm explores the trace πD , discovering the respec-
tive deadlock state along the way.

The trace πD has the following three parts: (1) actions guaranteed to hap-
pen strictly before execution of the first action in the sequence lmod, then
(2) some interleaving of the sequence of all actions in lmod executed by
Ti with actions of Tj and threads in the set TD \{Ti, Tj}, which can hap-
pen concurrently with lmod, and finally (3) actions guaranteed to happen
strictly after execution of the last action in the sequence lmod. In order to
detect the deadlock state reached by πD , our verification algorithm needs
to explore a thread interleaving π′

D that may differ from πD only in the
sub-sequence of independent actions within the middle part. We exploit
the fact that lmod contains just a single thread interaction statement st .
Therefore, all other statements in lmod can be moved next to st in π′

D ,
using the concept of left movers and right movers [10]. Given the set E
of actions by threads in the set TD \ {Ti}, such that actions in E may
happen concurrently with lmod, the interleaving π′

D satisfies the property
that each action in the set E is located either before the first statement of
lmod or after the last statement of lmod. This trace π′

D is explored by our
verification algorithm for some pair (Ti, Tj) of threads, and it reaches the
same deadlock error state as the execution trace πD .

Atomicity violations. In the case of atomicity violations, the problem is
much simpler than for deadlocks. Given an atomicity violation (a data

race) that involves a set TAV of N threads, it can be observed when any
two threads in TAV access a shared memory location without proper syn-
chronization. Our verification algorithm detects such data race by explor-
ing all possible interleavings of every pair of threads in the set TAV .

Ordering violations. Finally, if some statements from the sequence lmod

representing the input modified code fragment are involved in an ordering
violation error, then the wrong order of actions must be observed for some
interleaving of the modified fragment lmod executed by thread Tmod with
some other thread Tj , i.e. for the pair (Tmod, Tj) of threads, and with
concurrent actions by other program threads. We assume there was no
ordering violation error before changes represented by lmod were made.

Coverage of all thread interleavings. Another desired property of our
incremental verification algorithm is the ability to cover, for the most
recent version of an input program, the set of all thread interleavings that
reach a concurrency error state and would be explored by full verification
of the whole program state space at once.

We use an inductive approach over incremental modifications of program
code to show that it is sufficient to perform systematic exploration of pos-
sible interleavings just for pairs of threads and incremental modifications
during the software development process. More specifically, we show
that every possibly relevant thread interleaving (i.e., that needs to be ex-
plored in order to find all errors) in the whole state space of the final (most
recent) program version is covered by the pairwise approach to incremen-
tal verification for some modified code fragment at a particular step of the
incremental program development.

As the base case, we assume that every relevant thread interleaving for the
already existing code, that means before the modification represented by
lmod, is covered by our verification algorithm in some previous iteration.

Then we need to show that, for an input modified code fragment lmod,
our verification algorithm explores all thread interleavings that (1) con-
tain statements from the sequence lmod and (2) may reach an error state.
Without loss of generality, we pick an arbitrary interleaving π that in-
volves the modified code lmod. The interleaving π can be decomposed
into three segments: the prefix πpf , the middle segment πmod containing
all of the modified code (lmod) together with the set E of relevant actions
by other threads (not guaranteed to be executed before the first instruction
of lmod or after the last instruction of lmod), and the suffix πsf .

From the base case assumption of inductive reasoning, we know that an
execution trace created by concatenation of πpf with πE and πsf , where
πE corresponds to a subsequence of πmod that contains only elements
of the set E, is covered by a previous run of our verification algorithm.
The current run of the algorithm for the input fragment lmod explores
various interleavings of actions in lmod executed by Tmod with actions
in E. Note that, in each of those interleavings, some actions from the set
E are executed by a thread Tj that makes a pair with Tmod. The middle
segment πmod of π corresponds to an interleaving π′

mod that is defined
as a concatenation of three parts, specifically (i) a sequence of actions
in the set E1, (ii) actions in lmod, and (iii) actions in the set E2, where
E1 ∪ E2 = E. Since lmod contains just a single thread interaction state-
ment st, the interleaving π′

mod can be soundly transformed by changing
the order of all other statements from lmod in a way that matches πmod.
Consequently, also the interleaving π is covered by our algorithm.

4. EXPERIMENTAL EVALUATION
We have implemented our verification algorithm based on the pairwise
approach in the Java Pathfinder (JPF) framework [20]. In our prototype
implementation, we replaced the default JPF module for creating thread
scheduling choices with our own component that precisely follows the al-
gorithm described in Section 3.1 (exploring all interleavings just for pairs

of threads), including the extension that uses a dynamic happens-before
ordering relation. We also created a listener module that observes the
process of state space traversal to determine whether the current program
location on the currently analyzed execution trace is within the sequence
of statements that represents the modified code fragment.

The complete source code, together with benchmark programs, scripts
and configuration files needed to run all the experiments, is available at
https://github.com/d3sformal/incverif-pairwise.

Our main goal for the experimental evaluation was to show (1) that in-
cremental verification based on the pairwise approach finds bugs in the
modified code very quickly, and (2) that it detects exactly the same set of
errors in subject programs as full verification of the whole state space. We
also wanted to show that running the incremental verification procedure
after every source code modification within the process of incremental
software development is more efficient than running full verification each
time — despite that possible interleavings are explored for many distinct
pairs of threads in each run of the incremental procedure.

Benchmarks. The set of subject programs that we used for evaluation
includes 9 multithreaded Java programs from widely known benchmark
collections. More specifically, the set contains five programs from the
CTC repository [19] (Alarm Clock, Prod-Cons, RAX Extended, Rep
Workers and SOR), two programs from the pjbench suite [21] (Cache4j
and Elevator), QSort MT from the Inspect suite [18], and plain Java ver-
sion of the PapaBench real-time benchmark [14].

Methodology and Setup of Experiments. In order to evaluate the per-
formance of our incremental verification algorithm in the setting where
it is run for each modified source code fragment, we needed to simulate
incremental development of subject programs. The methodology that we
actually used was inspired by Conway et al. [3]. We describe the main
steps of the procedure that we applied to each subject program.

As the first step, all thread interaction statements in the program code
are identified by static analysis. Then, for every thread interaction state-
ment, the respective modified code fragment (that includes the affected
nearby code) is determined using traversal of the list of program state-
ments. A set CF of code fragments for the program is created in this way.

For each code fragment F in the set CF collected for the program, we
performed multiple experiments with different configurations. One group
of experiments was configured to simulate the scenario in which the frag-
ment F was added into the program source code by the developer, and the
other group of experiments simulates the scenario where the fragment F
was deleted. Then, for each of those groups, we performed experiments
focused on fast search for concurrency errors (bug finding) and exper-
iments focused on verifying safety. Our rationale behind this setup of
experiments is the following. When some piece of code (the fragment F)
is added or deleted by the developer, typically several iterations of fixing
bugs take place, followed by the check for safety performed at the end,
before the developer moves on to the next incremental change. Therefore,
we cover both scenarios in our experimental evaluation. In order to com-
pare incremental verification with full verification of the whole program
state space, we also ran full verification with the default configuration of
JPF for all scenarios. For the purpose of evaluating the ability to find
concurrency errors quickly, we injected synthetic errors into Prod-Cons,
Cache4j, Elevator and jPapaBench. All other benchmarks already con-
tained some errors in their code.

We configured JPF to search for deadlocks, race conditions and uncaught
exceptions (including violated assertions). In the case of incremental ver-
ification, we used the time limit of 60 seconds for each run of JPF within
the scope of experiments focused on bug-finding, and the limit of 10 min-

utes for experiments focused on safety verification. In the case of full
verification, we used the time limit of 1 hour as a practical upper bound.
The memory limit was set to 16 GB.

Results and Discussion. Table 1 contains the aggregate results of all our
experiments focused on fast search for concurrency errors. The second
column, labeled as |CF|, shows the number of code fragments considered
for each program. For both pairwise incremental verification and full ver-
ification, we report the average running time and standard deviation over
all code fragments. The running time for a particular code fragment is
computed as the sum of the running times of JPF for all pairs of threads.
Note that, when computing the overall running times for incremental ver-
ification, we ignored the runs of JPF that did not finish within the time
limit — the percentage of timed-out JPF runs is reported separately. Sim-
ilarly, we report the percentage of JPF runs in the full verification mode
that failed (i.e., run out of the memory or time limit).

Table 2 contains the results of experiments focused on checking safety.
The meaning of all columns and metrics is the same as for the other table.

Results of experiments focused on evaluating the ability to find errors fast,
provided in Table 1, show that each run of our incremental verification
procedure finishes very quickly for all benchmarks and for every modified
code fragment. The improvement in running time is apparent especially
in the case of large and complex benchmarks (Cache4j, jPapabench).

On the other hand, data in Table 1 also shows that the performance bene-
fits of incremental verification, when focused on finding bugs quickly, are
slim for small programs, since also full verification finds errors in such
programs very quickly, especially when the errors are shallow. The over-
head associated with incremental verification (exploring interleavings for
multiple pairs of threads after each program code change) makes the ap-
proach useful especially for large programs.

Results of experiments focused on safety verification, presented in Ta-
ble 2, show that usage of our pairwise approach to incremental verifica-
tion greatly improves the speed compared to full verification. In partic-
ular, full verification of safety run out of the time limit for a great ma-
jority of modified code fragments in the case of some benchmarks (such
as Elevator and jPapaBench), while the pairwise incremental verification
succeeded in most cases within the limited time and memory resources.

Based on thorough inspection of log files and reports by JPF, we have val-
idated that, for every subject program in our evaluation, our incremental
verification algorithm can find the same errors as if the full verification
of the whole program state space is run every time. Some errors reported
by JPF are caused by removal of the respective program code fragment.
This corresponds to the scenario of an incomplete program still under de-
velopment, where the run of incremental verification is started at a time
when the source code of the subject program is not yet complete.

5. RELATED WORK
We briefly present techniques and tools that have similar goals (motiva-
tion), address the same problems, or use closely related approaches. More
thorough comparison to our work is provided in the technical report [15].

The relevant techniques and tools can be divided into these categories:

• Detecting possible concurrency errors using systematic exploration
of the whole space of all possible thread interleavings (cf. [13, 2]).

• Algorithmic improvements, optimizations and heuristics for ad-
dressing the problem of state explosion in the context of efficient
model checking of multithreaded programs, where huge number of
thread interleavings has to be analyzed even for rather small multi-
threaded programs. This includes different variants of partial order

Table 1: Results of experiments focused on fast search for concurrency errors (bug-finding)
pairwise incremental verification full verification

timed out found failed
program |CF| time: avg ± dev runs bugs time: avg ± dev runs

Alarm Clock 56 0.25 ± 0.22 s 0 % yes 1.20 ± 2.60 s 0 %
Prod-Cons 38 0.14 ± 0.08 s 0 % yes 0.16 ± 0.04 s 0 %
RAX Extended 44 0.17 ± 0.23 s 0 % yes 0.15 ± 0.05 s 1.1 %
Rep Workers 126 4.67 ± 12.14 s 3.4 % yes 5.31 ± 29.30 s 2.8 %
SOR 56 0.09 ± 0.17 s 0 % yes 0.83 ± 0.92 s 0 %
Cache4j 110 8.14 ± 15.06 s 0.84 % yes 32.46 ± 283.76 s 0 %
Elevator 106 7.92 ± 16.14 s 1.67 % yes 12.19 ± 71.40 s 1.0 %
QSort MT 71 1.01 ± 2.27 s 1.25 % yes 0.61 ± 0.41 s 0.7 %
jPapaBench 374 15.96 ± 25.93 s 0 % yes 28.52 ± 178.98 s 0 %

Table 2: Results of experiments with focused on checking safety (full state space traversal)
pairwise incremental verification full verification

timed out failed
program |CF| time: avg ± dev runs time: avg ± dev runs

Alarm Clock 56 0.25 ± 0.24 s 0 % 249.54 ± 143.48 s 0 %
Prod-Cons 38 0.16 ± 0.11 s 0 % 6.33 ± 1.82 s 0 %
RAX Extended 44 0.17 ± 0.24 s 0 % 12.71 ± 35.15 s 1.1 %
Rep Workers 126 41.32 ± 128.76 s 4.6 % 4494.43 ± 2859.57 s 14.7 %
SOR 56 0.09 ± 0.16 s 0 % 352.02 ± 74.26 s 0.9 %
Cache4j 110 46.18 ± 128.60 s 2.1 % 4936.50 ± 1987.80 s 2.7 %
Elevator 106 27.38 ± 54.99 s 0.6 % 102.96 ± 394.04 s 88.2 %
QSort MT 71 23.72 ± 92.62 s 3.8 % 735.84 ± 360.06 s 5.6 %
jPapaBench 374 18.41 ± 32.01 s 0 % 8.19 ± 168.26 s 89.3 %

reduction [5], modular reasoning with abstraction of threads [4],
bounding the number of thread preemptions on each state space
path (e.g., [16]), and iterative context-bounded verification [12].

• Incremental state space exploration involving model checking [9,
17] and symbolic execution [7].

• Very fast detection of concurrency errors and the corresponding
bugs in the program source code, on-the-fly while developers edits
the source code in some IDE. This category includes techniques
based on executing the program with random thread scheduling [1]
and static analysis [11].

6. ACKNOWLEDGMENTS
This work was partially supported by the Czech Science Foundation project
20-07487S and partially supported by the Charles University institutional
funding project SVV 260588.

7. REFERENCES
[1] L. Blaser. 2018. Practical Detection of Concurrency Issues at

Coding Time. Proceedings of ISSTA 2018, ACM.
[2] E. Clarke, O. Grumberg, and D. Peled. 2000. Model Checking.

MIT Press, 2000.
[3] C.L. Conway, K.S. Namjoshi, D. Dams, and S.A. Edwards. 2005.

Incremental Algorithms for Inter-procedural Analysis of Safety
Properties. Proceedings of CAV 2005, LNCS 3576.

[4] C. Flanagan and S. Qadeer. 2003. Thread-Modular Model
Checking. Proceedings of SPIN 2003, LNCS 2648.

[5] C. Flanagan and P. Godefroid. 2005. Dynamic Partial-Order
Reduction for Model Checking Software. POPL 2005, ACM.

[6] A. Groce and W. Visser. 2004. Heuristics for Model Checking Java
Programs. International Journal on Software Tools for Technology
Transfer, 6(4), Springer, 2004.

[7] S. Guo, M. Kusano, and C. Wang. 2016. Conc-iSE: Incremental
Symbolic Execution of Concurrent Software. ASE 2016, ACM.

[8] L. Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7), 1978.

[9] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan. 2008.
Incremental State-Space Exploration for Programs with
Dynamically Allocated Data. Proceedings of ICSE 2008, ACM.

[10] R.J. Lipton. Reduction: A Method of Proving Properties of Parallel
Programs. Communications of the ACM, 18(12), 1975, ACM.

[11] B. Liu and J. Huang. 2018. D4: Fast Concurrency Debugging with
Parallel Differential Analysis. Proceedings of PLDI 2018, ACM.

[12] M. Musuvathi and S. Qadeer. 2007. Iterative Context Bounding for
Systematic Testing of Multithreaded Programs. PLDI 2007, ACM.

[13] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I.
Neamtiu. 2008. Finding and Reproducing Heisenbugs in
Concurrent Programs. In Proceedings of OSDI 2008, USENIX.

[14] F. Nemer, H. Casse, P. Sainrat, J.P. Bahsoun, and M. De Michiel.
2006. PapaBench: A Free Real-Time Benchmark. Proceedings of
WCET 2006, OASIcs, volume 4.

[15] P. Parizek and F. Kliber. Incremental Verification of Multithreaded
Programs by Checking Interleavings for Pairs of Threads.
Technical report no. D3S-TR-2022-01, Department of Distributed
and Dependable Systems, Charles University, 2022.

[16] S. Qadeer and J. Rehof. 2005. Context-Bounded Model Checking
of Concurrent Software. Proceedings of TACAS 2005, LNCS 3440.

[17] G. Yang, M.B. Dwyer, and G. Rothermel. Regression Model
Checking. Proceedings of ICSM 2009, IEEE CS.

[18] Y. Yang, X. Chen, and G. Gopalakrishnan. 2008. Inspect: A
Runtime Model Checker for Multithreaded C Programs. Technical
Report UUCS-08-004, University of Utah, 2008.

[19] Concurrency Tool Comparison repository,
https://facwiki.cs.byu.edu/vv-lab/index.php/
Concurrency_Tool_Comparison

[20] Java Pathfinder verification framework (JPF), https:
//github.com/javapathfinder/jpf-core/wiki

[21] Parallel Java Benchmarks,
https://bitbucket.org/psl-lab/pjbench

