
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS
Pavel Parı́zek

Transactions in Peer-to-Peer Systems

Department of Software Engineering

Supervisor: Ing. Petr Tůma, Dr.

Study programme: Computer science

Study field: Software systems

Acknowledgements

I would like to thank my supervisor, Petr Tůma, for invaluable advice he
gave me and also for his support.

I declare that I have written this master thesis myself, using only cited
sources. I agree with lending and distribution of the thesis.

Prague, March 29, 2005 Pavel Parı́zek

Contents

1 Introduction 1
1.1 Peer-to-Peer Systems . 1
1.2 Transactions . 3
1.3 Transactions in Peer-to-Peer Systems 5

2 The JXTA Project 7
2.1 Basic Concepts . 7
2.2 JXTA Specification and Platform 12

3 Business Transaction Protocol 13
3.1 Multi-Level Transaction Model 13
3.2 BTP Atom vs. BTP Cohesion 14
3.3 Transaction Completion . 14
3.4 Abstract BTP Messages . 15

4 The BTP-JXTA Framework 16
4.1 Design Goals and Principles 16
4.2 Architecture . 18
4.3 Implementation . 29
4.4 Testing . 32
4.5 Examples . 35

5 Related Work 37
5.1 Web Services Transactions Specifications 37
5.2 Java Transaction API . 38
5.3 OMG Object Transaction Service 39
5.4 BTP Extension for JOTM . 40

6 Conclusion 41

i

A Installation and Configuration of the BTP-JXTA Framework 45
A.1 Installation . 45
A.2 System Requirements . 46
A.3 Configuration . 46

B Configuration and Operation of Example Applications 48
B.1 Configuration of the JXTA platform 48
B.2 Common Behavior of Example Applications 49
B.3 DirSynch Application . 50
B.4 Account Application . 51
B.5 DistComp Application . 51

C JXTA Binding for Abstract BTP Messages 53

D Level of Conformance to the BTP Specification 54

E Content of the Attached CD 56

Abstract
Název práce: Transakce v peer-to-peer systémech
Autor: Pavel Parı́zek
Katedra: Katedra softwarového inženýrstvı́
Vedoucı́ diplomové práce: Ing. Petr Tůma, Dr.
E-mail vedoucı́ho: Petr.Tuma@mff.cuni.cz
Abstrakt: Práce se nejprve věnuje diskuzi použitelnosti transakcı́ v
peer-to-peer systémech, s tı́m výsledkem, že transakce majı́ smysl pro
některé třı́dy aplikacı́ určených pro peer-to-peer prostředı́, a specifikuje
požadavky na protokol pro řı́zenı́ průběhu transakcı́, který by byl vhodný
pro peer-to-peer prostředı́. Dále následuje úvod do platformy JXTA, která
poskytuje prostředky pro běh peer-to-peer aplikacı́, a do protokolu BTP,
který je určen pro řı́zenı́ běhu dlouhotrvajı́cı́ch transakcı́. Poslednı́ část
textu popisuje knihovnu BTP-JXTA, která umožňuje použitı́ transakcı́ v
aplikacı́ch běžı́cı́ch na platformě JXTA, a kterou jsem implementoval v
rámci této práce. Popis knihovny se zaměřuje na architekturu a důležité
implementačnı́ koncepty a také na metodiku testovánı́, která byla použita.
Klı́čová slova: transakce, BTP, peer-to-peer, JXTA

Title: Transactions in Peer-to-Peer Systems
Author: Pavel Parı́zek
Department: Department of software engineering
Supervisor: Ing. Petr Tůma, Dr.
Supervisor’s e-mail address: Petr.Tuma@mff.cuni.cz
Abstract: The thesis begins with discussion of usability of transactions
in peer-to-peer environment, with the result that transactions are useful
for some kinds of peer-to-peer applications, and specifies requirements
on transaction coordination protocol that is suitable for peer-to-peer
environment. After that, introductions to the JXTA peer-to-peer platform
and to the BTP coordination protocol follow. The last part of the thesis
is devoted to the BTP-JXTA framework, which I have developed. The
framework extends the JXTA platform with a transaction service that uses
the BTP as its coordination protocol. The description of the framework
focuses on architecture and important implementation concepts and on
the methodology of testing that was used.
Keywords: transaction, BTP, peer-to-peer, JXTA

Chapter 1

Introduction

The main goal of this thesis is to design and implement a transaction ser-
vice for the JXTA peer-to-peer platform. Prior to the development of the
framework that will provide the transaction service, it is necessary

• to discuss usability of transactions in peer-to-peer systems,

• to specify requirements on a transaction coordination protocol that
is suitable for a peer-to-peer environment,

• and to find or develop such a protocol.

The transaction service will use the protocol for coordination of transac-
tions.

This chapter introduces peer-to-peer systems and transactions and dis-
cusses usability of transactions in peer-to-peer systems. The chapter 2 in-
troduces the JXTA project and the chapter 3 provides introduction to the
Business Transaction Protocol (BTP), version 1.0. The chapter 4 describes
the BTP-JXTA framework, including sections on architecture, implemen-
tation, testing and example applications. The chapter 5 presents several
well-known transaction frameworks and architectures and compares them
with the BTP-JXTA framework and with the BTP, respectively. The last
chapter summarizes the thesis and highlights its results.

1.1 Peer-to-Peer Systems
Peer-to-peer systems represent a new paradigm of network architecture
that differs significantly from the more traditional paradigm of client-
server network architecture. A client-server network consists of a reli-
able server and several potentially unreliable clients, which use the server.

1

On the other hand, a peer-to-peer system is a decentralized network of
loosely-coupled autonomous peers where each pair of peers communi-
cates directly, without a centralized server as a mediator.

The principal differences between peer-to-peer and client-server net-
works are:

• there are no centralized servers in a peer-to-peer network,

• peers connect directly to other peers they want to communicate with.

A peer in a peer-to-peer network has the roles of both a client and a
server at the same time and thus it does not need to use a centralized
server in order to communicate with other participants in the network.
Peer-to-peer systems usually strive for decentralization, therefore use of
centralized servers would actually be counterproductive in such an envi-
ronment.

The absence of centralized servers also brings a shift in user’s behavior
with respect to intensive computation and data storage. The traditional
client-server model promotes use of centralized servers for data storage
and computation, while the peer-to-peer model expects individual peers
to store data and perform computations and encourages collaboration of
peers with respect to these two tasks.

Decentralization of peer-to-peer networks has the potential to bring ad-
vantages like scalability and availability, provided that the resources are
replicated, and allows a peer-to-peer network to be much bigger than a
client-server network. It is possible to create a peer-to-peer network con-
sisting of millions of peers, something that would be almost impossible to
handle with one centralized server. On the other hand, participants in a
peer-to-peer network usually go offline and online all the time, therefore
the network topology changes very rapidly and communication between
peers is unreliable - these are the main disadvantages of peer-to-peer sys-
tems.

In practice, peer-to-peer systems with varying level of decentralization
exist - some of them use centralized servers for tasks like user management
and naming service, others use replicated servers in order to get better
reliability and scalability, and there are even peer-to-peer networks that
are almost completely decentralized. For example, the Napster network
was quite centralized, while the Gnutella network is highly decentralized.

The JXTA Project [2] is a peer-to-peer platform that is somewhere in
the middle on the scale between centralization and decentralization. It

2

has decentralization as one of its primary goals, but there are still some
more or less centralized elements in the JXTA network.

1.2 Transactions
A transaction is, basically, a set of operations (i.e. a unit of work) that has
several well-defined properties. A typical example of a transaction is a
transfer of money between two bank accounts. The primary purpose of
transactions is to get some form of reliability in distributed applications.

There are several transaction models, each of them defining its own
set of properties that transactions must conform to. The most popular
model is the flat transaction model that uses a set of properties well known
as the ACID properties - because of that, flat transactions are often called
ACID transactions. The letter A stands for the Atomicity property, the letter
C stands for the Consistency property, the letter I stands for the Isolation
property and the letter D stands for the Durability property.

Another popular transaction model is the nested transaction model,
which differs from the flat transaction model in that it allows nesting of
transactions - i.e. several transactions are executed in scope of one trans-
action of a higher level. There are also several models for long-lived trans-
actions, which are usually based on the nested transaction model. More
details on various transaction models, including the ACID transactions,
can be found in [20].

Almost all transaction models use the begin, commit and abort opera-
tions. The begin operation starts a transaction, the commit operation ter-
minates the transaction successfully and the abort operation is used if the
transaction has failed. Sometimes the confirm term is used as an alias for
the commit operation and the cancel or rollback terms as aliases for the abort
operation.

Transaction systems that support ACID transactions are usually
equipped with a mechanism whose task is to ensure that all participants
agree on the outcome of a transaction - i.e. success or failure - in order
to fulfill the Atomicity property. If the transaction succeeded then all its
results are made persistent, otherwise they are cancelled, in order to fulfill
the Consistency and Durability properties. This behavior is also known as
the all-or-nothing property.

Transaction services usually support concurrent execution of ACID
transactions, what means that it is necessary to use a concurrency control

3

mechanism to ensure that each transaction is isolated from the others, in
order to achieve the Isolation property. One popular concurrency mecha-
nism for ACID transactions is resource locking. It is used quite often because
ACID transactions usually take a small amount of time and their scope is
limited to systems that are managed by one organization, therefore it is
then possible for transactions to lock necessary resources for the duration
of a transaction. There is actually very rich theory behind concurrency
control for transactions, but it is out of scope of this thesis to discuss even
just the major ones - see [20] for more information on this topic.

Long-Lived Transactions
Long-lived transactions differ quite significantly from ACID transactions
in that ACID transactions usually take only seconds to complete, while
long-lived transactions can take much longer time - minutes, hours, or
even days. Long-lived transactions also usually span multiple partici-
pants, which are controlled by autonomous organizations and connected
by unreliable communication channels. It can be said that short-lived
ACID transactions are usually used for operations upon local resources,
while long-lived transactions are used for long-time business activities be-
tween autonomous participants.

From the above explanation it is clear that long-lived transactions do
not use resource locking because it is not feasible to have a resource locked
for the duration of a whole transaction. Nevertheless, a long-lived trans-
action can be composed of several ACID sub-transactions, which are local
to participants controlled by one organization, and therefore able to lock
resources for their limited duration.

If resource locking is not feasible for long-lived transactions, a different
mechanism must be used instead - and such a mechanism are compensating
actions. A compensating action is an operation that is used to cancel effects
of a previously confirmed sub-transaction, if the higher-level transaction
aborts. Compensating actions are called compensations quite often. They
are usually application specific because it is not possible to automate them
in a transaction framework.

Use of compensating actions instead of resource locking means that
models for long-lived transactions usually relax the Isolation property,
which is simply too restrictive for long-lived transactions and its use can
decrease the overall performance significantly. Even the Atomicity prop-
erty is relaxed in certain models of long-lived transactions.

An example of a coordination protocol for long-lived transactions that

4

span autonomous participants is the Business Transaction Protocol (BTP),
which is described in the chapter 3.

1.3 Transactions in Peer-to-Peer Systems
Peer-to-peer systems are unstable and unreliable, as they are loosely-
coupled and decentralized - they express behavior very different from
client-server enterprise systems where transactions are used most often.
It would, therefore, seem that transactions make no sense for a peer-to-
peer environment because of decentralization and the absence of stable
servers.

But, despite the unstability and unreliability of peer-to-peer networks,
or perhaps just for that reason, I believe that transactions could be very
useful for certain kinds of peer-to-peer applications. Even peer-to-peer
applications may want to perform some operations atomically - some-
times it is necessary to send a group of messages atomically or to send
the same message to more recipients, etc. Use of transactions can also
provide higher reliability to peer-to-peer systems and applications, at an
acceptable cost.

There is, however, one big difference between use of transactions in
peer-to-peer systems and their use in client-server enterprise systems.
Current enterprise systems are usually tightly-coupled, with all partici-
pants in a transaction managed by one organization, what means that it is
possible to use ACID transactions and resource locking in such systems.
On the other hand, transactions running in a peer-to-peer environment
usually span multiple autonomous peers and behave much like long-lived
transactions. In fact, long-lived transactions are targeted especially at en-
vironments like peer-to-peer networks.

Considering all the potential advantages of transactions in peer-to-peer
systems, it is surprising that, as far as I know, there is no mainstream trans-
action framework targeted primarily at peer-to-peer systems.

In my thesis, I have developed three example applications that show
possible uses of transactions in peer-to-peer applications. The applications
are:

• distributed account,

• synchronization of directories,

• small platform for distributed computing.

5

In order to use transactions in peer-to-peer applications, it is necessary
to have a transaction coordination protocol that is suitable for a peer-to-
peer environment. Such a protocol must fulfill the following requirements:

• support for long-lived transactions,

• suitability for an unstable network environment,

• ability to cope with temporary unavailability of peers.

The Business Transaction Protocol (BTP) fulfills all these requirements.
It is a protocol for coordination of long-lived transactions between au-
tonomous participants in an unstable environment, what means that it is
usable for peer-to-peer applications too.

Originally, I have planned to develop a new transaction coordination
protocol or to modify an existing protocol for client-server systems, but
I gradually found that the BTP fulfills all requirements on a transaction
coordination protocol for peer-to-peer systems, therefore I decided to im-
plement the BTP instead of developing a new protocol from scratch.

6

Chapter 2

The JXTA Project

This chapter introduces the JXTA Project, what is an effort to create a plat-
form for peer-to-peer applications. The text summarizes the JXTA specifi-
cation [1] and one of the overview documents [3] - both published on the
JXTA Project website [2] - and highlights the principal concepts and fea-
tures of the JXTA platform. As the text is based on the cited documents, it
may look similar to them both in structure and content.

The whole JXTA Project is divided into several sub-projects and ini-
tiatives, which are all listed on the project’s website. The core projects
are the JXTA Specification Project [1] and the JXTA Platform Project [4]. The
JXTA Specification Project manages the specification, which defines basic
concepts and protocols, and the JXTA Platform Project is the reference im-
plementation of the specification in the Java language. Besides these two
projects, there is a lot of community projects and applications built upon
the platform.

The JXTA Project was originally developed by people from Sun Mi-
crosystems, together with a few outside experts. Now it is released under
the Sun Project JXTA Software License, which is based on the Apache Soft-
ware License, but the development of core projects is still very much under
the control of Sun Microsystems.

2.1 Basic Concepts
This section describes the basic concepts of the JXTA technology, starting
with concepts related to network organization and management of infor-
mation, then moving to communication-oriented concepts and finishing
with the concept of the JXTA virtual network.

7

Network Organization
Basic elements of the JXTA network are peers, where a peer is any de-
vice that is connected to the JXTA network and that implements the JXTA
specification. There are three kinds of peers distinguished by the JXTA
platform - edge peers, rendezvous peers and relay peers.

Edge peers are normal peers that run user applications. Rendezvous
peers are responsible for management of information in the network. Re-
lay peers are related to communication between edge peers.

Peers are allowed to self-organize into peer groups, where a peer group
is a dynamic set of peers. Peer groups are usually used to create a secure
environment with a limited access or to provide custom services to a set
of peers. A JXTA service is, simply said, a JXTA-enabled application. Each
peer group provides a set of peer group services to its members.

The JXTA platform supports the notion of the peer group hierarchy,
where each peer group inherits services from the parent peer group, with
the possibility to override the inherited services or to use custom non-
standard services in such a peer group.

The root of the visible hierarchy of peer groups is the NetPeerGroup,
which gives each member peer the ability to exchange messages with any
other peer in the network. It also provides default implementations of
standard peer group services to its members. Some of the standard peer
group services are conceptually defined in the JXTA specification - exam-
ples are the Pipe Service, the Discovery Service and the Membership Ser-
vice, to name a few.

The actual root of the hierarchy of peer groups is the WorldPeerGroup,
which provides peers with raw message transports, LAN connectivity and
the ability to send multicast messages to other peers in a local network.
The reason for the NetPeerGroup to be often considered as the root of the
peer group hierarchy is that the WorldPeerGroup is hidden from applica-
tions.

Both the WorldPeerGroup and the default NetPeerGroup are automat-
ically joined at the boot time of a peer and they both have a fixed peer
group ID.

The fact that there exists something like the default NetPeerGroup, which
has a fixed peer group ID, implies that it is possible to create a private Net-
PeerGroup with a custom peer group ID, which isolates peers in such a
group from the rest of the JXTA network. Instantiation of a private Net-
PeerGroup is strongly recommended for the purpose of testing, in order
to prevent infection of the public JXTA network.

8

The JXTA specification defines a logical addressing model that is based on
location independent unique JXTA IDs, which are used for identification
of resources in the network - i.e. peers, pipes, peer groups, services, etc.
The fact that JXTA IDs are independent of a physical location means that a
resource identified with a certain ID can use different physical addresses
over time, and the JXTA platform should still work.

A separate type of a JXTA ID, together with its format, is defined in
the specification for each basic JXTA resource - there are peer IDs and peer
group IDs, just to name a few. It is also possible to develop a custom ID
format for the purpose of a user application.

Each network resource can also have a name, besides the JXTA ID, but
the names are not unique, as there is nothing like a common naming ser-
vice, which would manage the names in order to ensure their uniqueness,
in the JXTA network. It is nevertheless possible to use a custom naming
service (DNS, LDAP) for members of a custom peer group.

Management of Information
Another important group of concepts is related to management of infor-
mation in the JXTA network and to querying of those information.

Each JXTA resource has an associated advertisement that represents the
resource to the rest of the network - we can say that an advertisement is a
metadata document for the resource.

Advertisements are serialized as XML documents, with the structure
defined in XML schema documents. The JXTA specification defines a spe-
cial type of advertisement for each type of JXTA resource. It is also pos-
sible to define a custom type of advertisement for the purpose of a user
application.

The JXTA network is also responsible for management and querying
of advertisements and that is what the rendezvous peers actually do. To
say it in one sentence, rendezvous peers are peers whose primary tasks
are caching of advertisement indices and forwarding of queries between
peers.

The relationship between edge peers and rendezvous peers is similar
to the relationship between clients and servers in a typical client-server
network. Each edge peer in the JXTA network should be connected to one
rendezvous peer in order to be able to use the JXTA network to its full
potential.

9

Very important is the fact that rendezvous peers cache only advertise-
ment indices, and not the complete advertisements, in order to increase
scalability of the network. An advertisement index points to the edge peer
that caches the complete advertisement - when a rendezvous peer pro-
cesses a query and finds an index that matches a query in its cache, it
forwards the query to the edge peer that has the complete advertisement.
That edge peer then sends the advertisement to the peer that issued the
query. Edge peers use the Shared Resource Distributed Index (SRDI) ser-
vice to push advertisement indices to rendezvous peers.

Each rendezvous peer maintains its own rendezvous peer view (RPV),
what is a list of Peer IDs of several other rendezvous peers. The RPV of
each rendezvous peer is regularly updated with a loosely-coupled algo-
rithm that is based on the fact that each rendezvous peer sends a random
subset of its RPV to a random set of rendezvous peers.

A loosely-consistent distributed hash table (DHT) is used to store
advertisement indices at rendezvous peers. The JXTA platform uses a
loosely-consistent DHT because it is more suitable for unstructured net-
works with unstable peers than a structured DHT and it also helps to get
better scalability. More detailed description of the DHT that is used by the
JXTA platform is out of the scope of this document.

Communication
The most important communication-related concepts are pipes and virtual
peer endpoints, both explained here.

A pipe is a basic communication mechanism that is provided by the
JXTA platform. The specification defines two types of pipes - a point-to-
point pipe and a propagate pipe.

A point-to-point pipe is a unidirectional asynchronous communication
channel with the input pipe end and the output pipe end. It must be sup-
ported by all implementations of the JXTA specification because the JXTA
protocols rely on availability of a pipe of this kind.

A propagate pipe is a unidirectional pipe that connects one output pipe
end with multiple input pipe ends.

A pipe of any kind is not bound to specific peer endpoints by default -
the binding of pipe ends to peer endpoints is resolved at runtime.

The JXTA Platform project provides a few other communication mech-
anisms, which are built on top of unidirectional pipes - the most popular
of them are bidirectional pipes, sockets and secure pipes.

10

The primary purpose of pipes is to allow peers to exchange messages.
A JXTA message consists of a header and of an ordered set of message el-
ements. Each message element has a type, a name and an optional names-
pace.

The JXTA platform supports several types of message elements - a byte
array message element, a string message element and a text document
message element, for example. It is possible to store an XML document
into a text document message element, what implies that it is possible to
implement Web Services on top of the JXTA platform - there are, in fact,
projects that aim to do exactly that.

The JXTA specification defines two wire representations of messages -
an XML message format and a binary message format.

Each peer uses one or more message transports to send and receive mes-
sages. A message transport is an abstraction of the underlying physical
network transport that allows a peer to send and receive messages over
that particular physical transport. All message transports that are avail-
able at a peer are encapsulated into a single virtual peer endpoint that al-
lows a peer to use all available transports in a uniform way. The concept
of an abstract virtual peer endpoint almost completely isolates JXTA ap-
plications from the underlying network infrastructure - the JXTA platform
itself uses the most appropriate transport for sending of each message.

The JXTA specification defines the TCP/IP Transport, the HTTP Trans-
port and the TLS Transport, together with the binding to the underlying
physical network transport. It is possible to use custom transports too.

The last kind of peers, not yet explained, are relay peers. Their main
purpose is to interconnect edge peers that do not have a direct physical
connection. Relay peers are usable especially for NAT/firewall traversal
- when a peer behind a NAT or a firewall cannot connect directly to an
another peer then it must use a relay peer.

JXTA Virtual Network
The concepts that were introduced in this chapter allow a developer or
a network administrator to create a virtual network on top of the exist-
ing network infrastructure. Such virtual network enables each peer to ex-
change messages with other peers independently of network location, fire-
walls and transport protocols (TCP/IP, HTTP, or other non-IP networks).
Nice illustration of the structure of such a virtual network can be seen
in [3].

11

2.2 JXTA Specification and Platform
This section gives a short overview of the JXTA specification and of the
JXTA Platform project.

The JXTA specification document is divided into two parts - the first
one is a conceptual overview of the JXTA technology and the second one
is the actual specification that defines several protocols and a few types of
advertisements and IDs. The specification itself is also divided into two
parts:

• the JXTA Core Specification defines features that are required for all
implementations,

• and the JXTA Standard Services defines features that are optional but
strongly recommended in order to get greater interoperability with
other JXTA implementations.

All JXTA protocols, which are defined in the specification, are indepen-
dent of implementation, programming language, underlying operating
system and network infrastructure. Protocol messages are represented as
XML documents with the schema defined in the specification too. The pro-
tocols enable peers to discover each other, self-organize into peer groups
and exchange messages. Some of the standard services are actually imple-
mentations of these protocols.

The JXTA Platform project is the reference implementation of the spec-
ification, which therefore implements the complete specification. In ad-
dition to features and concepts defined in the specification, it provides
several extensions that make the platform significantly more usable. Ex-
amples of these extensions are sockets, bidirectional pipes and declarative
configuration. The JXTA Platform project also defines the complete Java
API.

12

Chapter 3

Business Transaction Protocol

This chapter provides a concise introduction to the Business Transaction
Protocol (BTP), version 1.0, what is a coordination protocol for long-lived
transactions that span autonomous participants in an unreliable environ-
ment (e.g. Internet or a peer-to-peer network). The text highlights the
most important concepts of the BTP and describes principal differences
between the BTP and other well-know transaction architectures and pro-
tocols, such as the JTA [6, 7] or OMG OTS [8]. Detailed description of the
BTP can be found in the BTP 1.0 specification [5], which is maintained by
the OASIS Business Transactions technical committee.

3.1 Multi-Level Transaction Model
The BTP supports a multi-level transaction model, what is another name for
a nested transaction model with unlimited level of nesting. This feature is
a must-have for any coordination protocol for long-lived transactions be-
cause limitation to no or single level of nesting would cause the protocol
to be unusable for more complex transactions.

Participants in a BTP transaction form a tree-like structure. Inner nodes
of the tree are called coordinators and leaf nodes are called participants. Each
coordinator in the tree can have zero or more sub-coordinators and zero
or more participants enrolled to it. A sub-coordinator is a coordinator that
is not at the top of the tree. An application that started the transaction and
communicates with the top-level coordinator is often called the Initiator.

Each node in the transaction tree is allowed to exchange messages only
with nodes that are at most one level up or down. This rule is not explic-
itly stated anywhere in the BTP specification, as far as I know, but it is
implicitly assumed. The parent of a node, if the node has any, is called the

13

superior of the node and each child of a node is called an inferior.
A superior:inferior relationship exists between each superior-inferior pair

in the tree. The evolution of this relationship over time is specified by state
tables that are defined in the BTP specification.

3.2 BTP Atom vs. BTP Cohesion
The BTP defines two types of long-lived transactions - BTP Atoms and BTP
Cohesions.

A BTP Atom is a long-lived transaction that relaxes only the Isolation
property, therefore the outcome of such a transaction is still atomic - all
participants in a transaction are required to confirm in order for the trans-
action to succeed. Simply said, BTP Atoms preserve the all-or-nothing
property. The top-level coordinator of a BTP Atom is sometimes called an
Atom Coordinator, inner nodes are called Sub-coordinators and leaf nodes of
the tree are called Participants.

On the other hand, a BTP Cohesion is a transaction that relaxes the
Atomicity property in addition to the Isolation property. It therefore does
not require all participants in a transaction to confirm in order for the
transaction to succeed and get confirmed. Each coordinator in the transac-
tion tree of a BTP Cohesion must discuss the outcome with the associated
application, because only the application knows the set of inferiors that
must confirm for the success of the sub-transaction that is managed by
the coordinator. The set of inferiors that are required to confirm is called
the confirm-set. The top-level coordinator of a BTP Cohesion is sometimes
called a Cohesion Composer, inner nodes are called Sub-composers and leaf
nodes in the tree are called Participants.

3.3 Transaction Completion
The BTP uses a slightly modified two-phase commit protocol for the termina-
tion of a transaction. The phases are sometimes called the decision phase
and the termination phase. The decision phase uses the decision protocol to
achieve an agreement on the outcome of a transaction and the termination
phase then uses the termination protocol to propagate the outcome to all
participants. Both phases usually meld together to a certain degree.

The termination of a BTP Cohesion is special in that each Composer
in the tree must consult the confirm-set with the associated application,

14

while the confirm-set for a BTP Atom is always equal to set of all inferiors
of a coordinator.

The BTP also supports autonomous confirm and cancel of participants,
what means that participants in a BTP transaction are allowed to confirm
or cancel autonomously, with the risk that it could lead to an undefined
state, also known as a contradiction or a hazard.

3.4 Abstract BTP Messages
The BTP specification defines three groups of abstract BTP messages - mes-
sages used only for control relationships, messages used for outcome rela-
tionships and messages common for both types of relationships. Messages
that belong to the first group are used to start or terminate a transaction
- examples are the BEGIN and CONFIRM TRANSACTION messages. Mes-
sages that belong to the second group are used to achieve an agreement on
the outcome of a transaction - examples are the PREPARE and CANCELLED
messages. The last group contains the STATUS and FAULT messages, to
name a few.

15

Chapter 4

The BTP-JXTA Framework

This chapter describes the BTP-JXTA framework, which provides a trans-
action service for the JXTA platform, using the BTP, version 1.0, as a coor-
dination protocol for transactions.

The chapter is divided into several sections. First, the design goals
and principles for the framework are specified, then the architecture and
important implementation concepts are described. The last two sections
are devoted to testing and examples, in that order.

More details of topics that are related to this chapter can be found in
the Programmer Guide [21], in the User Guide [22], or in appendices to
this thesis. The guides have some parts that are very similar to the cor-
responding parts of the thesis, especially if they discuss the same feature
or concept, because the thesis and the guides have different purposes and
audiences - and some information must be provided to readers of any of
these documents, no matter whether they prefer to read the thesis or one
of the guides.

4.1 Design Goals and Principles
The design goals and principles of the BTP-JXTA framework are

• practical usability of the framework,

• lightweight architecture,

• easy learning curve,

• mapping of concepts from the BTP specification,

• and object-oriented design.

16

More detailed discussion of each element of the list follows.

Practical Usability of the Framework
Primary purpose of the BTP-JXTA framework is to be a transaction service
for the JXTA platform, which uses the BTP as a transaction coordination
protocol. My primary goal, therefore, was to develop such a transaction
service that is also simple, efficient and actually usable by real-world ap-
plications.

Lightweight Architecture
I have decided to make the framework as much lightweight as possible
and I have also attempted to minimize the complexity of implementation
and to reduce the number of dependencies on third-party libraries.

The main motivation for lightweightness of architecture is to allow to
deploy the BTP transaction service, which is provided by the framework,
as a part of an application, i.e. in the same instance of the Java Virtual
Machine (JVM). No separate servers or processes should be necessary in
order to use the BTP service.

As for the effort to minimize the complexity and number of depen-
dencies, I have tried to adhere to the principle that says applications and
libraries should be modular, simple and should have only one purpose,
in order to reduce their complexity. This principle is clearly in contrast
with the practice of making applications and frameworks quite complex,
dependent on a lot of third-party libraries and with a lot of unnecessary
features - this applies especially to some modern frameworks written in
the Java language and to a lot of specifications that are related to those
frameworks.

Easy Learning Curve
Important characteristic of any framework is the learning curve. I have
made an effort to design the public interfaces of the BTP-JXTA frame-
work with simplicity in mind, focusing also on compatibility with cor-
responding interfaces in well-known transaction services and frameworks
like the JTA [6] or OMG OTS [8], in order to make transition to the BTP-
JXTA framework as easy as possible for application developers. I have also
created the communication-oriented interfaces compatible with the JXTA
Platform API.

17

Mapping of Concepts from the BTP Specification
The design and implementation of the BTP-JXTA framework is to a great
extent influenced by the BTP specification. For example, the BTPElement,
Participant and ApplicationElement interfaces correspond to ab-
stract components that are described in the BTP specification. Also the
implementation of the BTP state tables and abstract BTP messages is an
almost direct mapping of the specification to the source code.

Object-Oriented Design
I have attempted to design the framework with principles of good object-
oriented design in mind - for example, the Separation of Interface and Imple-
mentation principle is applied quite extensively. I have also used several
well-known design patterns, such as the Abstract Factory pattern [19], dur-
ing the process of development.

Clean object-oriented design of the framework results in better exten-
sibility and easier maintenance of the source code and, what is more im-
portant, also promotes the usability of the framework in real-world appli-
cations.

4.2 Architecture
This section provides high-level description of architecture of the frame-
work and discusses the most important public interfaces and classes that
are provided by the framework.

The UML class diagram, displayed on the figure 4.1, presents the core
architecture of the framework in the form of associations between inter-
faces. Each architectural element presented on the diagram is described
below.

BTPService
BTPElement getBTPElement();
BTPPipeService getBTPPipeService();

The BTPService interface represents a primary access point to the BTP-
JXTA framework for applications. It serves as a factory for instances of
the BTPElement interface - it is similar to the TransactionFactory
interface, which is provided by the OMG OTS framework, in this respect.

18

Figure 4.1: Core Architecture of the BTP-JXTA Framework

The implementation class of this interface also works as a wrapper for the
JXTA Platform API, in order to allow other classes in the framework to
focus on the BTP-related behavior.

An instance of the BTPService interface must be made available to
each application that wants to use the BTP-JXTA framework for coordina-
tion of transactions. The framework was designed in a way that recom-
mends the BTPService object to be deployed as a part of an application
itself, although it is possible to use some remoting technology to access the
BTPService object if it runs in a different JVM instance. It is nevertheless
required to deploy the BTPService object at the same peer as applica-
tions that are going to use it, because each instance of the BTPService
interface has a name that should be equal to the name of the underlying
JXTA peer. Principal advantage of such a setup is permanent availability
of the transaction service to applications, even if the communication chan-
nel that leads to the rest of the JXTA network is broken - and that could
happen quite often in a peer-to-peer network.

An alternative approach would be to allow the BTPService object to
exist in a different JVM instance than the application, or at a different peer.
However, such an approach has several disadvantages that are based on

• unreliability of peer-to-peer networks,

19

• and complexity of exchange of objects between different JVM in-
stances.

Were it the case that the BTPService object and the application run at dif-
ferent peers, it could happen that the communication channel between the
application and the BTPService object breaks in the middle of a transac-
tion. A solution for the problem of broken channel is migration of transac-
tion context between instances of the transaction service, but the current
version of the BTP specification does not say anything about this feature,
except to note that it will be discussed in future releases.

Management of a Transaction
Management of transactions is the most important task any transac-
tion framework should allow applications to perform. The BTP-JXTA
framework provides three interfaces just for this purpose - namely
the BTPElement, ApplicationElement and Participant interfaces.
They provide means for control of application’s participation in a transac-
tion and for management of a transaction.

BTPElement

void begin (TransactionType type);
Participant begin (Context supCtx,

ApplicationElement appElement);
Participant enrol(Context ctx,

ApplicationElement appElement);
TransactionOutcome confirm(

BTPIdentifier[] confirmSet,
boolean reportHazard);

TransactionOutcome cancel(boolean reportHazard);

The BTPElement interface provides methods that allow an application
to start and terminate a transaction and to control the transaction during
its lifetime. The name of this interface is based on the BTP Element term,
which is used in the BTP specification to refer to a component that per-
forms BTP-related operations on behalf of an application.

Some methods of the BTPElement interface implement abstract BTP
messages that are used in control relationships. Signatures of those meth-
ods are to a great extent determined by the BTP specification, as their ar-
guments generally correspond to attributes of BTP messages that are im-

20

plemented by them. Attributes that make no sense for direct method calls
are left out. The BTP specification allows abstract BTP messages that are
used in control relationships to be implemented with direct method calls
instead of real messages. I have decided to use direct method calls because
use of real messages brings more flexibility but also more complexity. Use
of direct method calls is simpler and it has only a minor disadvantage in
that it ties a BTPService instance to the application. Fortunately, this
disadvantage is not an issue for a majority of system setups.

The BTPElement interface must be used for both top-level transac-
tions and sub-transactions, although some methods that are provided by
the interface are not allowed to be called in case of a sub-transaction be-
cause operations that correspond to those methods make no sense for a
sub-transaction - examples are the confirm and cancel methods, to
name the most important of them. It would be possible to create one
interface for management of top-level transactions and another interface
for management of sub-transactions but that would make the API more
complex without any significant advantage. I admit that the solution I
have used is not as clean as it should be - it violates the Interface Segrega-
tion Principle [19] of object-oriented design - but it simplifies the use of the
framework and reduces the learning curve.

It is also important to say that the BTPElement interface corresponds
to specific interfaces, defined by other transaction services and frame-
works - namely to the Transaction and TransactionManager inter-
faces from the JTA framework and to the Terminator and Coordinator
interfaces, which are defined in the OMG OTS specification. All these in-
terfaces have generally the same purpose as the BTPElement interface.

ApplicationElement

Vote prepare();
boolean confirm();
void cancel();
void cancel(Compensation[] compensations);
BTPIdentifier[] getConfirmSet();

The ApplicationElement interface allows the BTP-JXTA framework to
notify applications about certain important transaction-related events and
to collect responses to those events. Example of such an important event
is the request to perform a decision to be prepared.

This interface has the same purpose as the XAResource inter-
face, which is defined in the JTA specification, and as the Resource

21

interface, defined in the OMG OTS specification. Signature of the
ApplicationElement interface was inspired by those other interfaces
to some degree. I have only added a few methods that are necessary for
my implementation of the BTP specification.

The name of this interface is based on the Application Element term,
which is used in the BTP specification to refer to the application that uses
the BTP.

Participant

void resign();
void allInferiorsEnrolled();
boolean autoPrepared();
boolean autoConfirm();
boolean autoCancel();
void addCompensation(Compensation compensation);

The Participant interface allows an application to control its partici-
pation in a transaction after it is enrolled to one. It especially allows an
application to resign from a transaction or to perform autonomous con-
firm or cancel of the participant that is associated with the application.
Support for such behavior is required by the BTP specification.

The methods provided by this interface implement abstract BTP mes-
sages that are used in outcome relationships and can be sent from an infe-
rior to a superior at the initiative of the inferior, in order to support opera-
tions described in the previous paragraph.

The name of this interface is derived from the Participant term, which
is used by the BTP specification as a name for leaf nodes in the transaction
tree - i.e. nodes that do not represent coordinators.

The Participant interface has no mapping to any interface that is
defined in the JTA or OMG OTS specifications, as those transaction frame-
works do not allow resources to control their participation in transactions.

Transaction Tree

This section describes the roles of instances of the BTPElement,
ApplicationElement and Participant interfaces in the transaction
tree during the lifetime of a transaction.

Instances of the BTPElement interface represent inner nodes in the
transaction tree (i.e. coordinators) and instances of the Participant and
ApplicationElement interfaces represent leaf nodes - i.e. participants

22

that are responsible for application work made in the scope of a trans-
action. There is, however, one exception to this rule, which is described
below. An instance of any of these interfaces can be associated with at
most one transaction during its lifetime - this also implies the fact that it
is not necessary to pass a transaction ID as an argument to methods of the
ApplicationElement interface.

There are two key concepts that determine the structure of
the transaction tree with respect to instances of the BTPElement,
ApplicationElement and Participant interfaces. The first concept
is the difference between local and remote inferiors and the second concept is
the fact that a sub-transaction runs at each peer that hosts an application par-
ticipating in a transaction.

A local inferior of a node is an inferior that is represented by instances
of the Participant and ApplicationElement interfaces, which exist
in the same JVM instance as the BTPElement object that represents the
superior to the local inferior. This BTPElement object also manages the
transaction the inferior is enrolled to. The ”local” adjective reflects the fact
that all these objects exist in the same instance of JVM.

A remote inferior of a node is represented by a BTPElement object that
is hosted by a different peer. This also implies the second key concept,
as each BTPElement object manages its own sub-transaction. It is then
possible to enrol local inferiors, which are responsible for operations per-
formed in the scope of a transaction, to that sub-transaction.

The decision to distinguish between local and remote inferiors was mo-
tivated by the effort to increase simplicity and efficiency. It greatly reduces
the number of messages that must be exchanged between different peers,
as the communication between a sub-coordinator and local inferiors that
are enrolled to the sub-coordinator is implemented with method calls, not
with real messages.

If the structure of a transaction tree was implemented in a different
way - i.e. without the necessity to run a sub-transaction at each peer - then
the implementation class of the Participant interface would have to be
almost as complex as the implementation class of the BTPElement inter-
face, because local inferiors would have to exchange messages with the
remote coordinator. Such setup would therefore result in a much higher
number of messages exchanged between nodes in the transaction tree.

The exception to the rule that says instances of the Participant and
ApplicationElement interfaces represent leaf nodes in the transaction
tree is the fact that instances of these two interfaces are created also for

23

each sub-transaction. The instance of the Participant interface, which
is associated with a sub-transaction, allows the application to control the
complete sub-transaction in the same way as it allows to control the par-
ticipation of a local inferior in a transaction. It is not possible to use the
BTPElement object, which manages the sub-transaction, for this purpose,
because several methods of the BTPElement interface are allowed to be
called only on a BTPElement object that represents the top-level coordi-
nator, as was explained above.

Were it designed in a different way, without the exception to the
rule at place, then the application would not be able to control the sub-
transaction at all and it would be necessary to call a certain method on all
Participant instances, which represent local inferiors, to do something.

The figure 4.2 displays the structure of the transaction tree for one spe-
cific transaction with respect to instances of relevant interfaces, applica-
tions and peers. It also shows the superior:inferior relationships between
nodes in the tree and the direction of communication between applications
and various objects that are provided by the framework.

Compensating Actions

The BTP specification does not say almost anything about distribution and
execution of compensating actions - it only says that it is too much an
application-dependent feature to be included in such a generic specifica-
tion.

Nevertheless, the BTP-JXTA framework supports management of com-
pensations in a very simple way. A compensating action that should
be managed by the framework must be represented by an instance of
the Compensation interface. The Participant interface provides
the addCompensation method, which allows the application to supply
an instance of the Compensation interface to the framework, and the
ApplicationElement interface provides the cancel method, which
passes all stored compensations back to the application if the transaction
is cancelled.

It is, of course, not required from applications to use the BTP-JXTA
framework for management of compensations. Applications are free to
manage the compensations themselves or to use both approaches concur-
rently.

24

Figure 4.2: Structure of a Transaction Tree

25

BTP Pipes
Another important task, second only to management of a transaction,
which should be performed by any framework aimed at distributed trans-
actions, is the transfer of application messages with a transaction context
attached to them, ideally in a way that is compatible with the underly-
ing communication framework. Support for the transfer of application
messages with a transaction context attached is necessary in order to give
applications some information about transactions the messages belong to.

The BTP-JXTA framework also provides a mechanism for transfer of
messages with a transaction context attached, which is represented by the
InputBTPPipe, OutputBTPPipe and BTPPipeService interfaces. All
three interfaces are compatible with the JXTA API to a great extent, in or-
der to simplify the transition of existing applications built upon the JXTA
technology to the BTP-JXTA framework. The BTP pipes term is used to
refer to the interfaces listed above quite often in the text.

A BTP transaction context, represented by the Context interface,
stores information that must be passed along with all messages exchanged
in scope of the transaction, in order to allow the BTP-JXTA framework to
recognize the transaction and perform all necessary operations.

The diagram, displayed on the figure 4.3, shows the classes and inter-
faces that make the BTP pipes, including associations between them.

The InputBTPPipe interface extends the InputPipe interface,
which is provided by the JXTA Platform, and adds methods that allow
an application to receive messages that have a BTP context attached to
them. Messages that are received through methods inherited from the
InputPipe interface have no BTP context attached, what means that they
are not in scope of any transaction.

The OutputBTPPipe interface extends the OutputPipe interface,
also provided by the JXTA Platform, and adds a method that allows an ap-
plication to send messages with a BTP context attached. Messages that are
sent through methods inherited from the OutputPipe interface are not in
scope of any transaction because they have no BTP context attached, as for
the InputBTPPipe interface.

The BTPPipeService interface provides methods for creating of in-
stances of the InputBTPPipe and OutputBTPPipe interfaces - i.e. it
works as a factory for instances of those interfaces. It does not extend the
PipeService interface, which is provided by the JXTA Platform API, be-
cause methods of that interface return instances of the InputPipe and

26

Figure 4.3: BTP Pipes

OutputPipe interfaces only. One instance of the BTPPipeService in-
terface is associated with each BTPService object.

Explicit vs Implicit Transfer of Context

There are two main approaches to the transfer of a transaction context -
the explicit and the implicit. These two approaches differ in that the ex-
plicit transfer requires an application to explicitly attach a context to the
message, while the implicit transfer means that the framework takes care
of attaching the correct transaction context to the message. The BTP-JXTA
framework supports only the explicit transfer of a context for reasons that
are explained below.

The fact that the BTP pipes support only the explicit transfer of a BTP
context implies that the application that wants to send a message must it-
self pass a Context instance as an argument to the corresponding method
of the OutputBTPPipe interface. When the application receives a mes-
sage through some method of the InputBTPPipe interface, it must use
the BTP-JXTA framework to extract the BTP context from the received
message.

27

The implicit transfer of a BTP context is not supported by the BTP-
JXTA framework because each BTPElement object must work with two
Context instances at the same time - with the superior context and with
the context for inferiors - for the reason explained in the next paragraph.
An association of a Context object with a thread, which is a common
solution for support of the implicit transfer of a context, is therefore not
possible because the association would be frequently invalid.

A BTPElement object, which represents a node in the transaction tree,
must use one Context instance in communication with its superior and
a different Context instance in communication with its inferiors, instead
of one Context instance for all cases. The reason for this is necessity to
respect the rule that says each node in the transaction tree is allowed to
see only one level up and one level down. A BTPElement object may
therefore not allow its inferiors to see the Context instance that came
from its superior.

One of possible solutions for the implicit transfer of a BTP context is
to store an association of two Context objects with a thread but then
the OutputBTPPipe instance would have to know whether the mes-
sage is going to be sent to a superior or to an inferior and, similarly, the
InputBTPPipe instance would have to know if the received message was
sent by a superior or by an inferior. It is possible to get this knowledge in
case of BTP messages but definitely not in case of application messages un-
less the API of the InputBTPPipe and the OutputBTPPipe interfaces is
made more complex. Therefore, I have decided not to support the implicit
transfer of a BTP context.

Extensions
I have also created two extensions to the core BTP-JXTA framework, which
may simplify applications that use the framework for coordination of
transactions on top of the JXTA platform. These extensions are described
here.

FileService

The FileService extension is a wrapper for the BTP pipes that allows appli-
cations to exchange complete files very easily.

The protocol for exchange of files is designed in a way to get at least
some reliability. A reply - success or error - must be received for each
payload message sent by a peer, before another payload message can be

28

submitted. Errors detected by the sender of a file are reported with an er-
ror message and errors detected by the recipient of a file are reported with
an error reply. When an expected reply is not received in the user-defined
timeout, then the sender of the corresponding payload message sends an
error message. This mechanism also ensures that payload messages are
received in the order they were sent.

FilterInputPipe

The FilterInputPipe extension is a wrapper for the InputBTPPipe inter-
face that allows applications to receive only those messages that contain a
message element with a certain name.

4.3 Implementation
This section presents several important concepts and approaches that are
used in the implementation of the BTP-JXTA framework.

Use of Object Factories
One of these concepts is the use of abstract factories for construction of in-
stances of the BTPService, BTPElement and Participant interfaces.
Each abstract factory class provides methods that create instances of the
corresponding interface and the newInstance method, which instanti-
ates the factory class itself. Name of the implementation class for each
abstract factory can be specified with a system property; the default value
is defined in the source code.

Abstract factories with customizable implementations are useful espe-
cially for testing, because it is then easy to use a custom factory class that
creates instances better suited for testing - extended with additional meth-
ods, for example.

Implementation of Abstract BTP Messages
A large part of the BTP specification is devoted to abstract BTP messages
that are supposed to be exchanged between participants in transactions.
All abstract BTP messages, except those that are used only in control rela-
tionships, are implemented by classes that extend the BTPMessage class.
Abstract messages that are used only in control relationships are imple-
mented by methods of the BTPElement interface.

29

Each class that implements an abstract BTP message contains fields
that are necessary to represent all attributes associated with that partic-
ular BTP message. Some of these attributes, which are common to all ab-
stract BTP messages, are implemented directly in the BTPMessage class,
in order to reduce the amount of source code written.

The ContextImpl class, which implements the Context interface, is
not a subclass of the BTPMessage class because a BTP transaction context
does not make a standalone message - it is sent and received only as a part
of application messages.

The BTP specification defines all abstract BTP messages and their rep-
resentation as XML documents for the purpose of interoperability. How-
ever, implementations of the BTP specification are free to use any represen-
tation of abstract BTP messages they want, thus the BTP-JXTA framework
uses instances of the JXTA Message class as representation of BTP mes-
sages ”on the wire”, i.e. for the purpose of exchange of messages between
peers. Individual attributes of a BTP message are represented as message
elements. Details of mapping of abstract BTP messages to instances of
JXTA Message class can be found in the appendix C.

Implementation of BTP Superior:Inferior Relationship
Another key concept, defined in the BTP specification and implemented
by the BTP-JXTA framework, is the superior:inferior relationship and its
evolution.

Implementation of the BTP superior:inferior relationship is divided
into two groups of classes. Classes in the first group implement the BTP
state tables, which are defined in the BTP specification, and classes in the
second group implement state machines, whose purpose is to manage
evolution of one instance of the superior:inferior relationship.

BTP State Tables

The BTP state tables are implemented by the SuperiorStateTable and
InferiorStateTable classes, which represent the actual state tables,
and by the SuperiorState, InferiorState and Event classes, which
enumerate possible states and events.

The definition of state tables is hardwired into the
SuperiorStateTable and InferiorStateTable classes, what
is not a very maintainable solution, actually. I would prefer to have these
two classes generated from the definition of the state tables represented as

30

an XML document, for example, but I have not found such a document at
the website of the technical commitee that maintains the BTP specification.

State Machines

Classes that implement the BTP state tables are heavily used by the
SuperiorFSM and InferiorFSM classes that implement the state ma-
chines. The ”FSM” abbreviation stands for the Finite State Machine term.

The BTPElementImpl class, which implements the BTPElement in-
terface, uses the state machines to manage superior:inferior relation-
ships between participants in a transaction. The SuperiorFSM and
InferiorFSM classes, also called the state machine classes, help to deter-
mine what to do when a certain BTP message is received or when some
other BTP-related event occurs.

Addressing of BTPElement and Participant Objects
An instance of the BTPServiceImpl class, which implements the
BTPService interface, must be able to uniquely identify instances of the
BTPElement and Participant interfaces it manages, in order to for-
ward each received BTP message to the expected recipient. All instances
of the BTPElement interface, which are managed by one BTPService
object, and instances of the Participant interface are identified by their
local BTP names - i.e. strings composed of the ”btpname” string and a
unique number. A local BTP name must be unique only in the scope of
one BTPService object. Each node in the transaction tree, which is repre-
sented by a BTPElement instance or by a Participant instance, is ad-
dressable by the combination of a service name, which is associated with a
BTPService object, and a local BTP name. Instances of the BTPAddress
class are used to represent such addresses.

Persistence
An instance of the BTPServiceImpl class is also responsible for persis-
tence of instances of the BTPElement and Participant interfaces.

A BTPService object uses an instance of the Persistence interface
to save the state of all instances of the BTPElement and Participant
interfaces it manages. The Persistence interface provides methods
that allow its user to save and load a byte array, what implies that
the BTPService object must convert the state of BTPElement and

31

Participant objects to a byte array prior to use of the Persistence
interface.

An application that uses the BTP-JXTA framework is free to use a cus-
tom implementation of the Persistence interface because instance of
that interface is passed as an argument to the factory for instances of the
BTPService interface. If no custom implementation is supplied then the
default implementation, represented by the FilePersistence class, is
used.

4.4 Testing
This section focuses on mechanisms and procedures I have used to test the
functionality of the BTP-JXTA framework in order to minimize the number
of undiscovered bugs in the source code.

Testing of Complex Components
Testing of software, and especially unit testing, has gained very much in
popularity recently, for reasons that I would like to mention here. First
of all, tools and frameworks that make the process of testing easier and
more straightforward have been developed - example of such a tool is the
popular JUnit framework [13]. Then there is the fact that the process
of software development is becoming so complex that several methodolo-
gies, which are known as agile methodologies, have emerged and they all
favor continuous unit testing of the software product from the beginning
of its development to the end. Last but not least, there is also a higher
demand for more reliable and secure software.

Unit testing is based on the principle that says each test case should
test only one method of one class. It is hard to conform to this principle all
the time, but even so the unit testing is quite usable as it helps to discover
lot of bugs in the source code very early in the process. This also reduces
the cost of software development in addition to the fact that the software
has fewer bugs.

Another advantage of unit testing is that it enforces better object-
oriented design in order to make classes and components testable. For
example, components that adhere to the Separation of Interface and Imple-
mentation and Dependency Injection principles [19] are more easily testable
than components that violate these principles.

32

However, unit testing with the JUnit framework, for example, is def-
initely not a silver bullet solution, as it is not so easy to unit test more
complex components and classes that have non-trivial dependencies - and
the same applies for testing of behavior that spans multiple components.
It is, therefore, necessary to use an extension of basic unit testing to be able
to test complex components and behavior easily, without too much effort
on part of the developer.

There are actually two major approaches to unit testing of more com-
plex components and of processes that span multiple classes.

The first approach uses mock objects to replace dependencies of the
tested component. A mock object is something like a stub implementa-
tion of a dependency of the tested class. Few frameworks exist for making
the testing with mock objects easier - for example, the EasyMock [15] and
jMock [16] frameworks.

The second major approach uses the aspect-oriented programming to re-
define certain methods in dependencies of the tested component or to
trace method calls and so on.

I have decided to use the aspect-oriented programming because mock
objects have one principal disadvantage from my point of view. This dis-
advantage is the fact that it is not so easy to create a mock object for
a complex class, which has many methods - and that is the case of the
BTPElementImpl class, which is the one I wanted to test in particular.

Introduction to Aspect-Oriented Programming
The aspect-oriented programming, usually abbreviated as AOP, is a re-
cent paradigm of software development that extends and supplements the
object-oriented programming paradigm.

In one sentence, the AOP allows a developer to implement a crosscut-
ting concern in a more simple way than it is possible with a pure object-
oriented approach. A crosscutting concern is behavior that spans multi-
ple classes or components - logging, security or transactional behavior are
popular examples of crosscutting concerns.

The following list presents the basic terminology of the aspect-oriented
programming:

• a join point is a well-defined point in the execution of a program - e.g.
method invocation or field access,

33

• a pointcut is a set of join points that exposes the execution context to
the associated advice,

• an advice is a piece of code that is executed at each join point in a
pointcut,

• an inter-type declaration, also called static crosscutting feature, changes
the structure of a program; it is possible, for example, to add a field
to a class or to let the class implement another interface,

• an aspect is a unit of code, i.e. something like a class, which encapsu-
lates pointcuts, advices and inter-type declarations; it is possible to
define normal methods, which can be used in advices, in an aspect.

The AspectJ framework [14] is one of the most powerful AOP frame-
works and it is quite a heavyweight framework, as compared to other
available frameworks. In the version I have used, it allows a developer to
augment the sources at the compile time only - support for runtime mod-
ification of bytecode is going to be included in future releases, though.

Unit Testing with JUnit and AspectJ
I have used the JUnit framework together with the AspectJ framework
to do unit testing of the BTP-JXTA framework.

Main motivation for use of the AspectJ framework, in addition to the
JUnit framework, was the necessity to test the BTPElementImpl class,
especially the correctness of implementation of the BTP. Use of the JUnit
framework together with the AspectJ framework allowed me to perform
these two tasks quite easily. The design of my testing-related classes was
to a certain extent influenced by ideas from two documents I found on the
web - see [18] and [17].

The following paragraphs describe the classes I have created in order
to unit test the BTP-JXTA framework.

The BTPTestCase class extends the TestCase class, which is pro-
vided by the JUnit framework, with static methods for recording of
method invocations and message submissions and receptions. The meth-
ods of the BTPTestCase class are static because they are called from the
BTPTestCaseRecorder aspect. Recorded invocations of methods are
stored in a list of BTPMethodCall objects and records of message sub-
missions and receptions are stored in lists of BTPMessageInfo objects.
The BTPTestCase class also provides several assert-methods that allow

34

test cases to check if a certain method was called or a certain message was
sent.

The BTPTestCaseRecorder aspect records invocations of methods
of the BTPServiceImpl, BTPElementImpl and ParticipantImpl
classes and also messages sent or received by a BTPService instance.

For unit tests of the BTPElementImpl, ParticipantImpl and
BTPServiceImpl classes I have created subclasses of those classes,
which override some of the inherited methods and provide addi-
tional methods that allow test cases to prepare the state of tested
objects. Moreover, subclass of the BTPServiceImpl class, named
BTPServiceTestImpl, does not use the JXTA platform to send and re-
ceive messages - a test case should simulate such behavior through meth-
ods that are provided by the BTPServiceTestImpl class. I have also
created special implementations of abstract factory classes that create in-
stances of the above mentioned subclasses of the tested classes. These
special factory classes are used only in tests.

Combined use of the JUnit and AspectJ frameworks allowed me to
test my implementation of the BTP quite easily. Use of mock objects would
require me to write mocks for a lot of interrelated classes, what is a prob-
lem especially in case of the BTPElementImpl class. With the AspectJ
framework in place, I needed only to create subclasses of the tested classes
and the special implementations of abstract factories, in addition to the
actual test cases.

Functional Testing
I have also created one functional test - namely the FileDistr applica-
tion - that runs several global transactions in order to examine various
courses of a transaction. This functional test uses the AspectJ frame-
work for verification of results of test cases. Implementation details can be
found in the Programmer Guide [21].

4.5 Examples
This section introduces three applications that I have created as examples
of use of the BTP-JXTA framework and as a proof of concept that it makes
sense to use transactions in a peer-to-peer environment, at least for some
classes of applications. The example applications also illustrate the useful-
ness of the BTP-JXTA framework for practical purposes.

35

I have made an attempt to create such example applications that would
show three different kinds of peer-to-peer applications that can utilize
transactions.

The DirSynch example application allows the user to synchronize
content of a specific directory between two or more peers. I have choosen
to create a file-exchange application because it represents a very popular
class of peer-to-peer applications, a majority of which do not use transac-
tions nowadays. One of the reasons for use of transactions by applications
of this kind is to support reliable downloads in a sense of the all-or-nothing
property.

The Account application provides a distributed (money) account fa-
cility to the user, what represents an another kind of peer-to-peer appli-
cations that can use transactions. This specific application illustrates use
of transactions for atomic exchange of messages between several peers in
order to ensure consistency of the account balance.

The last example, which I have developed, is the DistComp applica-
tion that works as a small platform for distributed computing - and that
is also a typical application for peer-to-peer systems. This example appli-
cation differs from the other two in that it uses BTP Cohesions instead of
BTP Atoms. It uses transactions for assignment of tasks to peers that are
going to execute them.

36

Chapter 5

Related Work

In this chapter, I would like to present several transaction protocols and
frameworks and compare them with the BTP and with the BTP-JXTA
framework. More specifically, I describe the Web Services Transaction
specifications, Java Transaction API, OMG Object Transaction Service and
the BTP extension for the JOTM transaction service.

5.1 Web Services Transactions Specifications
The BTP is not the only coordination protocol for long-lived transac-
tions, of course. Perhaps the most important of the other protocols and
frameworks that target roughly the same environment as the BTP are
Web Services Transactions that are described in the WS-Coordination, WS-
AtomicTransaction and WS-BusinessActivity specifications [12].

The WS-Coordination specification provides a framework for defini-
tion of coordination protocols for distributed applications in the Web Ser-
vices environment. The activity term is used as a name for general-purpose
computation and communication between applications.

The WS-AtomicTransaction and WS-BusinessActivity specifications
build upon the WS-Coordination specification in that they define coor-
dination protocols that enable the participants to reach agreement on the
outcome of distributed activities. Actually, the first of these two specifi-
cations provides support for short-lived atomic transactions, which have
the all-or-nothing property, and the second one provides support for long-
lived business activities. The BTP specification overlaps primarily with the
WS-BusinessActivity specification, as the BTP is not aimed at short-lived
transactions.

37

All three Web Services specifications are not standalone, as they are
built upon other more general Web Services specifications, like SOAP and
WSDL. This also implies that they use XML for representation of mes-
sages.

Use of XML for representation of messages is supported by the JXTA
platform too, what implies that it would be possible to implement the Web
Services Transactions specifications on top of the JXTA platform, at least in
theory. However, I have decided to use the BTP as a coordination protocol
partially because the Web Services specifications have several disadvan-
tages, from my point of view. The most important of them is that they are
more generic and abstract than the BTP, and they also require a couple of
other specifications to be implemented first. On the other hand, the BTP is
quite compact and standalone - it does not even require the use of XML,
although it specifies the XML representation of abstract BTP messages for
the purpose of interoperability.

5.2 Java Transaction API
The Java Transaction API (JTA) [6] is a popular API for management of
transactions that is aimed at distributed enterprise applications written in
the Java language.

The JTA specification defines only the API, not the actual transaction
service, what implies that it is an implementation independent API. An
example of a concrete implementation of the JTA is the Java Transaction
Service (JTS) [7], what is a mapping of the OMG OTS to the Java environ-
ment. The JTA requires support for flat ACID transactions, and optionally
for nested transactions, from the underlying transaction service.

The JTA specification defines several interfaces - the most im-
portant of them are the TransactionManager, Transaction,
UserTransaction and XAResource interfaces, which are described be-
low.

The TransactionManager interface represents a transaction man-
ager that is used to coordinate distributed transactions. It corresponds
to the BTPElement and BTPService interfaces, which are defined by
the BTP-JXTA framework. Instance of the TransactionManager inter-
face is usually used by an application server that provides a transaction
service to applications hosted by it - popular example of such an appli-
cation server is an EJB container. The UserTransaction interface is an

38

application-level version of the TransactionManager interface, as it al-
lows an application to manage a transaction programatically.

The Transaction interface represents a transaction in progress. This
interface also corresponds to the BTPElement interface, which is pro-
vided by the BTP-JXTA framework.

The XAResource interface encapsulates the communication with a re-
source (e.g. DBMS), which is performed with the X/Open XA protocol [9].
It corresponds to the ApplicationElement interface, which is provided
by the BTP-JXTA framework.

The JTA/JTS transaction framework and the BTP-JXTA framework dif-
fer especially in the field of their target audience. The JTA is typically used
for short-lived atomic transactions between several resources that are con-
trolled by one organization, while the BTP-JXTA framework is aimed at
long-lived transactions in a peer-to-peer environment. Complexity and
learning curve of both APIs is roughly at the same level, in my opinion.

5.3 OMG Object Transaction Service
Another popular transaction service is the OMG Object Transaction Ser-
vice (OTS) [8], which allows to use transactions in CORBA applications.

The OMG OTS specification defines only interfaces that are related to
transaction management, as it builds upon several other OMG specifica-
tions - especially on the CORBA specification, to name the basic one. It
uses standard CORBA mechanisms for invocation of methods on objects
and for communication between participants in a transaction.

The OMG OTS specification defines many interfaces - the most
important of them are the TransactionFactory, Terminator,
Coordinator and Resource interfaces.

The TransactionFactory interface provides a method that starts a
transaction and returns an object that represents the transaction. It there-
fore corresponds to the BTPService interface and partially also to the
BTPElement interface, both provided by the BTP-JXTA framework.

The Terminator interface allows an application to commit or rollback
a transaction and the Coordinator interface provides methods, which
perform other operations with a transaction - registration of a resource, for
example. Both these interfaces correspond to the BTPElement interface.

The Resource interface defines operations that are invoked on a
resource by the transaction service. It has the same purpose as the
ApplicationElement interface.

39

Primary difference between the BTP-JXTA framework and the OMG
OTS is that the BTP-JXTA framework is targeted only at Java applications
that use the JXTA technology for communication, while the OMG OTS is
a platform and language independent transaction service, as is the case
for other OMG specifications related to the CORBA technology. The OMG
OTS itself is a little more complex than the BTP-JXTA framework but also
more capable - it supports both the explicit and implicit transfer of a trans-
action context, for example. The real complexity of both BTP-JXTA frame-
work and OMG OTS stems from the fact that they require to learn the
underlying technology - JXTA or CORBA - prior to use of transactions.

5.4 BTP Extension for JOTM
The Java Open Transaction Manager (JOTM) [10] is an open source im-
plementation of the JTA, which is hosted on the website of the ObjectWeb
consortium. The important fact, with respect to this thesis, is that there
is also the BTP extension for the JOTM (JOTM-BTP) [11]. The JOTM-BTP
extension is an implementation of the BTP for the Web Services environ-
ment, as it uses the Axis framework that implements the SOAP as a target
platform.

40

Chapter 6

Conclusion

This chapter summarizes the thesis and highlights important points of the
text. It especially presents the results of discussion of usability of transac-
tions in peer-to-peer systems and reviews the BTP-JXTA framework, with
special focus on level of adherence to goals and principles stated prior to
the development of the framework.

The discussion of possibilities of use of transactions in peer-to-peer
systems results in the statement that it makes sense to use transactions
for some kinds of peer-to-peer applications, despite the differencies be-
tween peer-to-peer systems and client-server systems, where transactions
are used most often. Example applications for the BTP-JXTA framework,
which I have developed, represent three different kinds of peer-to-peer
applications that can use transactions.

The chapter, which is devoted to the BTP-JXTA framework, starts with
the list of goals and principles that I have attempted to achieve and adhere
to.

The level of practical usability of the framework and its learning curve
are both illustrated by the example applications and discussed in the chap-
ter 5. It is possible to say that the BTP-JXTA framework is equal with some
popular transaction frameworks in terms of usability and learning curve.

The other three goals and principles are related to the architecture and
design of the framework - and they were adhered to with several excep-
tions that are explained in the text.

I would also like to emphasize the methodology of testing I have used
during the development of the framework. It is a combination of unit
testing with aspect oriented programming, which allowed me to verify
the functionality of the framework and the correctness of implementation
of the BTP.

41

The BTP-JXTA framework is a working and usable transaction service
for the JXTA platform, as can be seen from the example applications, but
there is definitely room for improvements. I plan to make the BTP-JXTA
framework, including all associated documents, publicly available, in or-
der to allow other people to use and extend it in the future.

42

Bibliography

[1] JXTA Protocols Specification Project
http://spec.jxta.org

[2] Project JXTA website
http://www.jxta.org

[3] Project JXTA 2.0 Super-Peer Virtual Network, May 2003
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

[4] JXTA Platform Project
http://platform.jxta.org

[5] OASIS Business Transactions TC
http://www.oasis-open.org/committees/tc home.php?wg abbrev=business-
transaction

[6] Java Transaction API (JTA)
http://java.sun.com/products/jta/

[7] Java Transaction Service (JTS)
http://java.sun.com/products/jts/

[8] OMG Object Transaction Service (OTS)
http://www.omg.org/technology/documents/formal/transaction service.htm

[9] X/Open XA Specification
http://www.opengroup.org/bookstore/catalog/c193.htm

[10] Java Open Transaction Manager
http://jotm.objectweb.org

[11] BTP Extension for Java Open Transaction Manager
http://jotm.objectweb.org/jotm-btp.html

43

[12] Web Services Transactions specifications
http://www-106.ibm.com/developerworks/library/specification/ws-
tx/

[13] JUnit, Testing Resources for Extreme Programming
http://www.junit.org

[14] AspectJ Project
http://www.eclipse.org/aspectj/

[15] EasyMock
http://www.easymock.org

[16] jMock - A Lightweight Mock Object Library for Java
http://jmock.codehaus.org/

[17] Virtual Mock Objects using AspectJ with JUnit
http://www.xprogramming.com/xpmag/virtualMockObjects.htm

[18] Test flexibly with AspectJ and mock objects
http://www-106.ibm.com/developerworks/java/library/j-
aspectj2/

[19] Martin, Robert C., ”Principles and Patterns”
http://www.objectmentor.com/resources/articles/Principles and Patterns.PDF

[20] Bernstein, P.A., Hadzilacos, V., Goodman, N., ”Concurrency Control
and Recovery in Database Systems”

[21] Programmer Guide for the BTP-JXTA Framework

[22] User Guide for the BTP-JXTA Framework

44

Appendix A

Installation and Configuration of
the BTP-JXTA Framework

A.1 Installation
The BTP-JXTA framework can be built and installed through invocation
of the ant command in the directory where the build.xml file is located.
The installation process creates the build directory, where all compiled
class files are placed, and the release directory, where the results of the
release build process are placed.

The release directory contains following files and subdirectories:

• the btp-jxta.jar file, which contains the BTP-JXTA framework
itself,

• the btpservice.properties file with the default configuration
of the transaction service,

• the log4j.properties file, which configures the Log4j library,

• the pipeadvgen.sh and pipeadvgen.bat utilities, which can be
used to create a file with a pipe advertisement,

• the peeradvgen.sh and peeradvgen.bat utilities, which can be
used to create a file with a peer advertisement,

• a subdirectory for each example application.

It is also possible to do a test build with the ant debug command that
executes all unit tests and the FileDistr functional test, in addition to

45

building all sources. Results of the test build are placed in the tests
directory instead of the release directory.

A.2 System Requirements
A few software packages and libraries are required for building and run-
ning of the BTP-JXTA framework, examples and tests successfully:

• Java runtime 1.4.2 or compatible,

• Ant 1.6.2 or compatible,

• JXTA 2.3.1 or compatible,

• Log4j 1.2.8 or compatible,

• JUnit 3.8.1 or compatible (only for the test build),

• AspectJ 1.2 or compatible (only for the test build).

The lib directory contains all required libraries and packages, except
the Java runtime and Ant, in versions that were used during the develop-
ment and testing and are known to be working together with this release
of the BTP-JXTA framework. The Java runtime and Ant software packages
are not distributed with the framework because they are quite common.

A.3 Configuration
The BTP-JXTA framework is configured through the
btpservice.properties file, which must be present in the cur-
rent working directory, otherwise the default configuration is used. All
properties and configuration variables are described here.

The btpservice.advertisements.directory property defines
the directory where the files with advertisements are stored. A
BTPService instance first looks in that directory when it needs an adver-
tisement, and only if a file with the required advertisement is not found, it
tries to find the advertisement in the JXTA network.

The btpservice.version property specifies the version of the BTP-
JXTA framework. This configuration variable should not be modified by
the user.

The btpservice.persist.filename property defines the path to
the file that is used by the FilePersistence class.

46

The btpservice.send.initial.timeout property defines the
initial number of milliseconds between successive attempts to send a mes-
sage. The initial number of milliseconds is doubled after each unsuccessful
attempt.

The btpservice.send.attempts.count property defines the
number of attempts to send a message. The failure to send a message
is reported to the application only if all attempts are unsuccessful.

The btpservice.pipe.initial.timeout property defines the
initial timeout, in milliseconds, for attempts to resolve an output pipe. The
initial value of the timeout is doubled after each unsuccessful attempt.

The btpservice.pipe.attempts.count property defines the
number of attempts to resolve an output pipe. The failure to resolve a
pipe is reported to the application only if all attempts are unsuccessful.

The btpservice.pipeadv.search.timeout property defines the
timeout for search for a pipe advertisement with the JXTA Discovery Ser-
vice. Timeout value is defined in milliseconds.

The btpservice.wait.timeout property defines the number of
seconds the BTPService and BTPElement objects wait for an important
BTP-related message to arrive. For example, the wait for the PREPARED
message is limited by the value of this property.

47

Appendix B

Configuration and Operation of
Example Applications

Example applications are deployed into subdirectories of the release di-
rectory. The top-level directory for each application contains shared JAR
files and a subdirectory for each preconfigured application peer. The di-
rectory for each peer contains pregenerated pipe advertisements, several
properties files, and the run.sh and run.bat scripts, which start the
peer. Each instance of any example application corresponds to exactly one
JXTA peer and vice versa.

The most important fact related to use of the JXTA platform by example
applications is that each of them uses its own private JXTA NetPeerGroup
for the purpose of isolation from the public JXTA network.

All three example applications use pregenerated pipe advertisements,
which are stored in XML files, thus it is not necessary to publish and dis-
cover any advertisement. Pipe names are composed of the package name
and the application name. For example, the ”dirsynch peer1 pipe” string
is the name of the input pipe for the peer no. 1 in the DirSynch applica-
tion.

B.1 Configuration of the JXTA platform
All peers must have access to at least one rendezvous peer in order to work
properly. Since each application uses its own private NetPeerGroup, it is
safe to make a rendezvous peer from one of the application peers - actually,
the peer no. 1 is configured as a rendezvous peer in all applications by
default.

It is important to remember that edge peers in any example applica-

48

tion will not work properly (or even start) if the preconfigured rendezvous
peer for the application is not running and therefore not reachable by the
edge peers. If the rendezvous peer is restarted while some other edge
peers are running, the edge peers may not work even after the rendezvous
peer is up again.

All example applications store configuration in a properties file whose
path is passed as a command-line argument. Almost all properties in the
file are related to configuration of the JXTA platform. Description of indi-
vidual configuration variables follows:

• the advertisements.directoryproperty defines the path to the
directory where the files with advertisements should be stored,

• the peer.name property defines the name of the peer,

• the peer.ip.addr property defines the peer’s IP address,

• the peer.tcp.port property defines the peer’s TCP port,

• the peer.http.port property defines the peer’s HTTP port,

• the peer.rendezvousproperty specifies if the peer works as a ren-
dezvous peer or not - possible values are ”yes” and ”no”,

• the rdvpeer.ip.addr property defines the rendezvous peer’s IP
address,

• the rdvpeer.tcp.port property defines the rendezvous peer’s
TCP port,

• and the rdvpeer.http.port property defines the rendezvous
peer’s HTTP port.

B.2 Common Behavior of Example Applications
All examples write to the screen some application-specific messages and
also some messages for major transaction-related events, such as trans-
action begin, inferior enrol, transaction confirm, etc. All transaction-related
messages are indented and enclosed in square brackets.

The Account and DistComp applications enable a user to turn the
transaction-related messages on/off with the txon and txoff commands,
respectively, as there could be quite a lot of those messages. The

49

DirSynch application does not support these commands because it does
not read anything from the standard input - fortunately, it does not write
so much transaction-related messages to the screen as the other two exam-
ple applications.

B.3 DirSynch Application
Each instance of the DirSynch application periodically checks the direc-
tory that is specified in the configuration. When a change is detected - a
file is added, removed or updated - a notification and the complete content
of the file are distributed to peers that are enumerated in the peers.list
file. The application loads the current content of the directory at the
startup and considers it to be the ”original” content for the purpose of
detection of changes, what means that the application does not attempt to
synchronize changes that were performed when it was not running.

It is possible to cause a distribution of updates to fail (and the transac-
tion to be cancelled) when a file without read and write access is put to the
monitored directory. Such a file is then detected as an added file but the
application is not able to read it and therefore the distribution fails.

The DirSynch application uses several application-specific configura-
tion variables, which are:

• the dirsynch.monitored.directory property, which defines
the path to the directory that is monitored for changes,

• the dirsynch.uptime.minutes property, which defines the up-
time of the application in minutes,

• and the dirsynch.monitor.interval property, which defines
the number of seconds between checks for updates to the monitored
directory.

The DirSynch application also writes some application-specific mes-
sages to the screen. A message is displayed:

• when a new, updated or removed file is detected in the monitored
directory,

• when the distribution of updated files starts,

• when the distribution is completed, successfully or with a failure,

• when a file is received, either successfully or with a failure.

50

B.4 Account Application
Each instance of the Account application accepts commands from the
standard input. The quit command shutdowns the underlying peer im-
mediately, the change command with an integer parameter changes the
account balance and the show command displays the current account bal-
ance.

An attempt to change the account balance in a transaction succeeds
if and only if all peers confirm they have received the message with a
change and performed the change successfully, otherwise the transaction
is cancelled. Use of transactions is necessary in order to achieve atomic
changes of the account balance and to get consistent values of the account
- all peers should have the same account balance, regardless of the out-
come of a transaction. Whenever the account balance changes, its new
value is written to a file in order to allow the peer to be restarted without
breaking the consistency. The path to the file is configurable through the
account.balance.file property.

It is possible to cause an attempt to change the account balance to fail
(and the transaction to be cancelled) if the result of the change would be
negative, or if at least one of the peers fails to update its local value (e.g.
it is offline, etc). Nevertheless, when a peer goes offline and later it starts
again, the application should work properly.

The application attempts to ensure that the account balance never falls
below zero but it is not 100% reliable because of the nature of long-lived
transactions. When one transaction temporarily adds a certain amount to
the account balance and then another transaction substract from the bal-
ance, it is possible to get a negative value of the account balance if the
first transaction aborts. This application only ensures that an individual
change will not make the balance negative but it can happen that the can-
cellation of a transaction will make it negative.

The Account application writes certain application-specific messages
to the screen too. A message is displayed when a local change of the ac-
count balance is performed. Other messages are displayed only at the peer
that initiated the change of balance - namely the notification of result of the
change and the current account balance after the change.

B.5 DistComp Application
Each instance of the DistComp application accepts commands from the
standard input. The quit command shutdowns the underlying peer. The

51

wait command, with a task ID and a number of seconds as parameters,
tells the peer to execute a task. The stats command displays the number of
tasks that are executed at the time of invocation of the command and the
total number of tasks executed during the complete session.

Each peer accepts tasks from the command-line with the wait com-
mand. When a peer gets a new task from the user (i.e. the peer is now
the owner of that task), it tries to find a peer that will accept and execute
the task - it may even be that peer itself. A peer accepts a task only if it is
available at the moment the task was received. All attempts to find such
a peer are encapsulated in one transaction. It can happen that the task
owner would have to do several attempts to find such a peer; the maxi-
mum number of attempts is equal to three. The transaction is terminated
when the task is accepted by some peer, or if the task owner runs out of at-
tempts. Execution of the task is started when the transaction is confirmed
- i.e. when the peer that accepted the task knows that the task was really
assigned to it.

It is possible to cause a task to fail if the tasks are supplied to the appli-
cation in such an order that results in two concurrent attempts to assign a
task to one peer. This can happen, for example, when the number of tasks
that are waiting to be accepted is higher than the number of application
peers. If that is the case, then there will be some unsuccessful attempts to
have the task accepted by a peer. If the number of unsuccessful attempts
reaches the maximum then the failure to assign and execute the task is
reported to the user.

If an attempt to quit an application instance is made and some tasks
that are owned by the underlying peer are not completed yet, the applica-
tion will only wait for the completion of those tasks before the exit - i.e. no
new tasks are started during that time.

The DistComp application writes certain application-specific mes-
sages to the screen too. A message is displayed:

• when the actual execution of a task starts or completes,

• when the decision, if a task is accepted or not, is made,

• when the result of execution of a task is acknowledged by the owner
of the task.

52

Appendix C

JXTA Binding for Abstract BTP
Messages

This appendix describes the JXTA binding for abstract BTP messages - i.e.
the way of serialization of abstract BTP messages to JXTA messages - that
is used by the BTP-JXTA framework. The specification of the binding is
not as formal as the definition of the XML representation of BTP messages,
which can be found in the BTP specification.

The BTP-JXTA framework uses the btp and btpjxta namespaces for mes-
sage elements that contain attributes of BTP messages, what means that
these two namespaces are reserved for the framework. Actually, only the
btpjxta namespace is used in this release of the BTP-JXTA framework.

Each abstract BTP message that can possibly be exchanged between
two peers is implemented by a subclass of the BTPMessage class, and
each attribute of the BTP message is represented by an attribute of that
class.

The mapping of attributes of abstract BTP messages to elements of
JXTA messages is defined by two tables, which can be found in the Pro-
grammer Guide [21]. I have defined the mapping for attributes of all
BTP messages that are implemented by subclasses of the BTPMessage
class, and also for some additional attributes that are used in the BTP con-
text and in application messages. The mapping is implemented by the
BTPMessageUtils class.

53

Appendix D

Level of Conformance to the BTP
Specification

This appendix lists features described in the BTP specification, version 1.0,
that I decided not to implement, together with motivation for the decision
in each case.

Redirection
The redirection feature (and the REDIRECT abstract BTP message) is not
implemented because the BTP-JXTA framework does not support migra-
tion of a transaction context between instances of the BTP transaction ser-
vice, as a BTPService object with a particular service name is tied to the
JXTA peer with the same name. Each received REDIRECT message is re-
sponded to with the FAULT message.

See the BTP specification, sections 5.4.4 and 7.7.16, for more details.

Timeout for the Decision to be Prepared
The minimum inferior timeout qualifier for the PREPARE message
and the inferior timeout qualifier for the PREPAREDmessage are not
supported because they do not fit into the internal architecture of the BTP-
JXTA framework, and they are not important enough to warrant a change
to the architecture.

Time-limited decision to be prepared makes sense only when the su-
perior and the inferior are managed by different organizations and run at

54

different peers. When the superior and the inferior are run by the same or-
ganization, as is usually the case of a local inferior enrolled to the superior
that manages a sub-transaction, the organization can very easily ensure
proper behavior of participants it controls, including timing of operations.

See the BTP specification, sections 7.10.2 and 7.10.3, for more.

Group of Related Messages
Support for groups of related messages is not implemented because it is
rather complex feature and it is only an optimization of communication
(i.e. an optional feature). Future versions of the BTP-JXTA framework
may support this feature. An example of use of groups of messages is the
one-shot optimization.

See the BTP specification, sections 5.3.2, 7.3 and 7.9, for more.

Transaction Timelimit
The transaction timelimit feature is not implemented too. The BTP specifi-
cation says it is especially useful in situations when the terminator (i.e. the
top-level application) fails and therefore is not able to confirm or cancel
the transaction. The decider (i.e. the top-level coordinator) can cancel the
transaction autonomously if the timeout expires without the terminator
requesting confirm or cancel of the transaction.

This feature is not useful for my implementation of the BTP, because
both the top-level application and the top-level coordinator, which is rep-
resented by a BTPElement object, run in the same JVM instance, what
means that usually either both of them fail or none of them fails. An ap-
plication should take care of doing confirm or cancel at the right time, i.e.
not too long since the start of the transaction.

This feature could make some sense for sub-transactions, which should
fail automatically if the top-level coordinator does not start the termina-
tion process in time. However, there is a problem in that the BTPService
object is not able to cancel a sub-transaction in a clean way because it has
no access to the Participant object that was returned from the begin
method of the BTPElement interface, and, moreover, the decision to can-
cel the sub-transaction autonomously should be left to the application.

See the BTP spec, section 5.4.5, for more details on this feature.

55

Appendix E

Content of the Attached CD

The attached CD contains the following directories, files and documents:

• the README file, which contains concise description of installation
and configuration of the framework and examples,

• source code for the BTP-JXTA framework, examples and tests, all in
the src directory,

• configuration files for example applications, which are in the main
directory,

• binary release of the BTP-JXTA framework and of the example ap-
plications, including copies of all configuration files; all of it is in the
release directory,

• all third-party libraries required to build and run the BTP-JXTA
framework and examples successfully, except the Java runtime, can
be found in the lib directory,

• the build.xml and filedistr-run.xml files, what are build
scripts used by the Ant tool,

• binary release of the Ant tool, which is in the
apache-ant-1.6.2-bin.zip archive,

• the User Guide for the BTP-JXTA framework, whose source DocBook
file and release PDF document are both in the docs directory,

• the Programmer Guide for the BTP-JXTA framework, whose source
DocBook file and release PDF document are in the docs directory
too,

56

• the diplomka.tex file, what is the source document for this thesis
in the LaTeX format,

• the diplomka.ps and diplomka.pdf files, which both contain
this document,

• the taskspec.txt file, which contains the original specification of
this thesis,

• the images directory, which contains images that are used in the
thesis and in both guides,

• the BTP directory, which contains the BTP specification and several
other documents related to the BTP,

• the JXTA directory, which contains the JXTA specification and one
overview document of the JXTA platform.

57

