
Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Pavel Paŕızek

Formal Verification of Components in Java

Department of Software Engineering
Advisor: Prof. Frantǐsek Plášil

Abstract

Title: Formal Verification of Components in Java
Author: Pavel Paŕızek

email: parizek@dsrg.mff.cuni.cz
phone: +420 2 2191 4235

Department: Department of Software Engineering
Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Advisor: Prof. Frantǐsek Plášil
email: plasil@dsrg.mff.cuni.cz
phone: +420 2 2191 4266

Mailing address (both Author and Advisor):
Dept. of SW Engineering, Charles University in Prague
Malostranské nám. 25
118 00 Prague, Czech Republic

WWW: http://dsrg.mff.cuni.cz
This thesis: http://dsrg.mff.cuni.cz/∼parizek/phd-thesis

Abstract:
Formal verification of a hierarchical component application involves (i) checking
of behavior compliance among sub-components of each composite component, and
(ii) checking of implementation of each primitive component against its behavior
specification and other properties like absence of concurrency errors. In this the-
sis, we focus on verification of primitive components implemented in Java against
the properties of obeying a behavior specification defined in behavior protocols
(frame protocol) and absence of concurrency errors. We use the Java PathFinder
model checker as a core verification tool.
We propose a set of techniques that address the key issues of formal verification
of real-life components in Java via model checking: support for high-level property
of obeying a behavior specification, environment modeling and construction, and
state explosion. The techniques include (1) an extension to Java PathFinder that
allows checking of Java code against a frame protocol, (2) automated generation
of component environment from a model in the form of a behavior protocol, (3)
efficient construction of the model of environment’s behavior, and (4) addressing
state explosion in discovery of concurrency errors via reduction of the level of
parallelism in a component environment on the basis of static analysis of Java
bytecode and various heuristics. We have implemented all the techniques in the
COMBAT toolset and evaluated them on two realistic component applications.
Results of the experiments show that the techniques are viable.

Keywords

Software components, Java language, behavior protocols, concurrency errors,
model checking, static analysis, state explosion, environment modeling

http://dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz/~parizek/phd-thesis

Acknowledgments

I would like to thank all those who supported me in my doctoral study and the work
on my thesis. I very appreciate the help and counseling received from my advisor
Prof. Frantǐsek Plášil. For the various help they provided me, I also thank my
colleagues; in particular to (in alphabetical order): Jǐŕı Adámek, Petr Hnětynka,
Pavel Ježek, Tomáš Kalibera, Jan Kofroň, Tomáš Poch, and Ondřej Šerý.

My thanks also go to the institutions that provided financial support for my
research work. Through my doctoral study, my work was partially supported by the
Grant Agency of the Czech Republic projects 201/03/0911 and 201/06/0770, by the
Czech Academy of Sciences project 1ET400300504, and the ITEA project OSIRIS.

Last but not least, I am in debt to my parents and Alena, whose support and
patience made this work possible.

Contents

1 Introduction 5
1.1 Formal verification . 5
1.2 Software components . 8
1.3 Formal verification of software components 9
1.4 Problem statement . 11
1.5 Goals of the thesis . 11
1.6 Structure of the thesis . 12

2 Background 13
2.1 Program verification frameworks . 13
2.2 Compositional verification . 15
2.3 Behavior Protocols . 16

3 Goals revisited 19

4 Contribution: verification of Java code of primitive components 20
4.1 The whole picture — application of the assume-guarantee paradigm . 21
4.2 Modeling component environment via behavior protocols 26
4.3 Obeying a frame protocol . 27
4.4 Addressing state explosion in discovery of concurrency errors 29
4.5 Contribution reflected in publications 29

5 Model Checking of Software Components: Combining Java
PathFinder and Behavior Protocol Model Checker 32

6 Specification and Generation of Environment for Model Checking
of Software Components 42

7 Modeling Environment for Component Model Checking from Hi-
erarchical Architecture 55

8 Partial Verification of Software Components: Heuristics for Envi-
ronment Construction 70

9 Modeling of Component Environment in Presence of Callbacks and
Autonomous Activities 79

3

10 Evaluation and related work 99
10.1 Method . 99
10.2 Tools . 103
10.3 Experiments . 103

11 Conclusion 106

References 108

4

Chapter 1

Introduction

As increasingly complex and autonomous software systems are nowadays used in
almost all domains, including mission- and safety-critical systems, reliability has
become a key issue — there is growing need for reliable software systems.

Modern approaches to construction of reliable software systems include (i) us-
age of formal methods for analysis and verification of systems’ behavior and (ii)
decomposition of large and complex systems into well-defined units — software
components. It is recommended to apply formal methods and decomposition at
all stages of the development process to discover as many errors as possible and to
ensure correct functionality with respect to the requirements. More specifically, use
of formal verification at the design stage helps cut down the development expenses,
since the cost of fixing an error is in general lower in case of design models than in
the source code, while use of formal verification at the implementation stage helps
discover low-level errors in the source code that may have been introduced into the
system during implementation in a programming language.

Nevertheless, in this work we focus only on systems built from software compo-
nents, and, in particular, on formal verification (and discovery of errors) during the
implementation stage.

1.1 Formal verification

In software industry, the prevailing approach to discovery of errors in software sys-
tems (programs) is testing [11], which is based on monitoring and examining pro-
gram’s output during its execution; specifically, the output of a tested program is
evaluated with respect to required and expected properties of the program’s be-
havior. Although testing is a successful approach, it can never find all violations
of a specific property (i.e. errors) in the implementation of a software system or
prove that the system satisfies the property, since it checks only selected executions
paths (paths in the state space) of the system [11] — e.g. only selected interleav-
ings of parallel threads. For that reason, testing is not good at detection of subtle
and difficult to reproduce errors (e.g. timing-dependent) that occur only in specific
execution paths or depend on specific inputs. Well-known examples of such errors
are concurrency errors (deadlocks and race conditions) that occur only for specific
thread interleavings — in this case, use of formal methods can help.

5

Formal methods [14] are rigorous techniques for analysis and verification (hence
formal verification) of design and implementation of software systems — in par-
ticular, they employ mathematical models of behavior of software systems and al-
gorithms that process the models. The principal advantage of formal verification
methods over software testing is the ability to (i) show whether a software system
satisfies all the given properties (i.e. whether it is correct with respect to the prop-
erties) and (ii) find all violations of the properties (all errors) — formal methods aim
at exhaustive checking of all execution paths in a software system, while testing can
only find some of the errors. On the other hand, a drawback of formal methods is
that they typically have very high time and memory requirements (i.e. they do not
scale well) and give no answer for some inputs due to undecidability or intractability,
while testing can be successfully applied to software systems of any size (it scales
very well).

In between formal verification and software testing is the approach of runtime
analysis (also called as dynamic analysis). Like testing, runtime analysis techniques
check only selected execution paths of a software system and therefore cannot be
used to verify that the system satisfies a specific property. However, the advantage
of runtime analysis over testing is that the former can give some information about
the execution paths that were not directly analyzed via limited use of formal tech-
niques [35] — e.g. it can find a potential error on a different execution path than
the one that was analyzed.

Techniques of formal verification are either automated or interactive. The group
of automated techniques includes model checking and static analysis, while a typical
example of interactive techniques is logical inference (theorem proving). Here in this
work we focus on automated techniques of formal verification of software systems,
i.e. on software model checking and static program analysis. An introduction to
these two techniques follows.

Model checking

Model checking [21] was originally introduced as a technique for automated verifi-
cation of finite state models of software and hardware systems against properties
expressed via temporal logic, however, now it is used for all kinds of systems and
properties, including potentially infinite systems like Java programs and high-level
properties like obeying of a behavior specification defined via a state machine. Nev-
ertheless, most model checkers support a proprietary and/or domain-specific low-
level modeling language that allows to encode models in a way suitable for model
checking — for example, SMV [45] uses guarded command language and SPIN [38]
accepts models in Promela, which is a C-like programming language suitable for
modeling communication protocols. There are only few model checkers that accept
programs in mainstream programming languages like Java or C — these include
Java PathFinder [60], Bogor [27], Blast [12] and MAGIC [19].

A typical model checker accepts a description (model or source code) of a soft-
ware system and a set of properties as an input, and systematically traverses the
state space of the system — i.e. it examines all possible execution paths, and, in
particular, all possible interleavings of parallel threads — with the goal of detecting
violations of the properties. If it finds a violation of a property (an error), it provides

6

a counter-example (an error trace) that identifies the execution path violating the
property.

The main limitations of model checking with respect to verification of real-life
software systems are state explosion [21] and environment modeling [51] (in this
thesis also referred to as problem of missing environment).

The state explosion problem occurs especially in model checking of large and
complex systems, as the size of the state space is roughly exponential with respect
to the number of threads and components, and to the size of the input domains; it
is typically manifested by the model checker running out of memory or time. Main
approaches to addressing state explosion include abstraction [21], heuristics [32],
symbolic model checking [45], and compositional reasoning [22][53]. Abstraction
techniques help reduce the size of the whole state space (e.g. via restriction of data
domains or slicing [58]) and thus make verification of system’s correctness more
feasible, while heuristics help find specific kinds of errors in limited time and memory
(i.e. before a model checker runs out of memory) via guiding the model checker to
potential error states during the state space traversal. The basic idea of symbolic
model checking is to represent the state space via formulas in a propositional logic,
i.e. not as a state-transition graph. Finally, compositional techniques address state
explosion via application of the divide-and-conquer approach — each component is
verified in isolation — and therefore work well for systems that can be decomposed in
a natural way (e.g. systems built from components). Since the idea of compositional
reasoning is very related to the topic of this thesis, we provide a more detailed
overview in Sect. 2.2.

The problem of missing environment is caused by the fact that model checking
works only for closed systems, whose models have a single initial state (entry point)
and reflect all possible values of inputs. However, most software systems are open,
i.e. they do not feature a single entry point and their behavior depends on a partic-
ular environment — e.g. on data received over network or loaded from a file, or on
actions performed by the user via GUI. Common solution to this problem is based on
modeling and construction of an artificial environment, which closes the given open
system [51]. Such an environment typically consists of (i) a test harness (driver)
that exercises the given open system in various ways (simulating behavior e.g. of
a user or a particular real environment) and provides an entry point (e.g. main

method), and (ii) specification of a subset of possible values of inputs like method
parameters and files with test data. Nevertheless, it is in general hard to construct
an artificial environment that exercises a given open system in all reasonable ways
that correspond to expected and valid usage of the system.

Static analysis

There exist many techniques of static analysis of programs — slicing [58], abstract
interpretation [26], type inference, and also detection of specific control-flow (or
syntactical) patterns in source code (e.g. [39]). The common characteristic of all
these techniques is that they directly analyze the program’s source code, i.e. without
the need of executing the program or systematically traversing its state space. In
particular, static analysis allows to reason about the run-time behavior and output
of a program at compile-time.

7

In general, the purpose of any static analysis technique is either to provide a
specific information about the source code of a given program (e.g. specific abstrac-
tion of its behavior), or to check whether a specific property holds for the program’s
code (e.g. absence of deadlocks in all control-flow paths) [46]. However, the inherent
limitation of static analysis is the ability to provide only imprecise or approxima-
tive answers [55], since (i) it does not have the knowledge of run-time values of all
program’s variables and (ii) works in general only with an abstraction of the source
code (i.e. with an abstraction of the program’s behavior) — computation of precise
answers may be undecidable. There is also a trade-off between safety and precision
of the analysis — e.g. for checking the code against a specific property, a safe (con-
servative) analysis reports also some spurious (false) errors in addition to real errors,
while precise analysis reports only real errors (i.e. no spurious errors) but may not
find all of them.

The majority of static analysis-based techniques do not suffer from the problem
of missing environment, since they work for both closed and open systems. In case of
an open system, it is only necessary to use (worst-case) assumptions about behavior
of an environment of the system (fragment of a program) — e.g., it may be assumed
that any value of a method parameter is possible. An obvious consequence is a lower
precision of the analysis and reporting of spurious errors.

Combination of formal verification techniques

As indicated above, both the model checking and static analysis techniques have
certain advantages and drawbacks with respect to each other — specifically, model
checking is precise but suffers from state explosion and the problem of missing
environment, while static analysis is typically efficient but produces approximate
answers and spurious errors. A popular approach is to combine both techniques,
so that one compensates for the drawbacks of the other and vice versa — typically,
model checking is used as the main verification technique, and static analysis is used
for construction of an abstract model of a software system subject to verification
and for reduction of the state space size (e.g., in Bandera [25]). Note that some ver-
ification toolsets and frameworks also use theorem proving and runtime analysis as
complementary approaches — the former as decision procedures that help construct
abstract models of software systems’ behavior (see e.g. [9]), and the latter to tell the
model checker on which parts of the state space it should focus (see e.g. [35]).

1.2 Software components

A software component is, in the broadest sense, a unit of code that can be reused in
different contexts without knowledge of its internals [57]. However, we use a more
concrete definition: a software component is a reusable unit of code with explicit
interfaces and well-defined behavior (functionality), which can be composed with
other components to form a complex software system.

Each component has two kinds of interfaces — provided interfaces, which specify
the services that the component provides to its clients, and required interfaces that
specify the services it requires from the environment (e.g. from other components).

8

Components are then interconnected via bindings among interfaces; specifically, a
provided interface of one component is bound to a required interface of another com-
ponent. As for component’s behavior, it is necessary to specify its valid (expected)
use by the clients and the reactions to such a valid usage — the component’s contract
— in a formal way, i.e. via a formal behavior specification of some sort. The be-
havior specification can be defined in an event trace-based formalism (e.g. a process
algebra [10]) or via pre/post-condition pairs.

A component-based software system is designed, implemented and deployed in a
way that corresponds to a specific component model. In general, a component model
is a conceptual framework that specifies a set of rules and concepts for all aspects
of the lifecycle of both individual components and complete component-based sys-
tems — ranging from the particular definition of a component and the notion of a
component type (defined, e.g., as a set of component interfaces) to an architecture
definition language (ADL) that allows to express a structure of a component-based
application. A component platform consists of a component model and a runtime
environment for components, which implements the model.

There are two main kinds of component models — flat and hierarchical. The
obvious difference between a hierarchical and flat component model is that the for-
mer supports nested components, while the latter does not. In case of a hierarchical
component model, it is necessary to distinguish between two kinds of components
(as a consequence of component nesting) — primitive components and composite
components. Primitive components are leafs of a hierarchy, i.e. they are black-box
entities that are implemented in a programming language like Java. Composite com-
ponents are gray-box entities with externally visible structure — they are composed
of nested sub-components interconnected via bindings among interfaces.

Flat component models and the corresponding platforms are typically developed
by industry; the models are simple (i.e. provide less features), while the platforms
provide stable and mature runtime environments. Well-known examples of such
models are EJB [28] and CCM [47].

Component platforms based on hierarchical models — e.g. Darwin [43],
Wright [4], SOFA [18] and Fractal [15] — are typically developed by academia.
They support advanced features like multiple communication styles and behavior
modeling and verification. However, on the other hand, the majority of them pro-
vide a very limited runtime environment (or none at all) [43][4]. Moreover, many
hierarchical component models aim only at design of component applications, i.e.
they support modeling of architecture and behavior, and completely neglect the
component’s implementation and its verification.

Nevertheless, in this work we focus on those hierarchical component models and
platforms that explicitly support both behavior modeling and component implemen-
tation in a programming language, in particular on SOFA [18] and Fractal [15].

1.3 Formal verification of software components

With respect to formal verification, there are two main differences between general
software systems like Java programs and systems built from explicit components
with well-defined interfaces and hierarchical structure (e.g. SOFA applications):

9

1) Individual components are typically equipped with a formal behavior specifi-
cation of some kind, so that behavior compatibility among components at each
level of nesting in a hierarchy (behavior compliance) can be formally verified;

2) A single component is an open system, i.e. the problem of missing environment
is inherent to verification of implementation of individual components.

Ad (1) Most approaches to component behavior specification are based on for-
malisms like finite state machines (e.g. Labeled Transition Systems [10] - LTSs) and
process algebras (e.g. behavior protocols [52] and CSP [37]) that allow to specify
valid sequences of events on component interfaces, where an event corresponds to a
method invocation or return, or to sending and receiving of a message. For example,
behavior protocols [52] are used in the SOFA and Fractal component platforms, and
CSP [37] is used in Wright. Then, two or more components are behaviorally com-
pliant if they communicate without errors — e.g., in case of two components, one
component should not emit an event that is not expected by the other. Neverthe-
less, checking of behavior compliance between components in a particular hierarchy
makes sense only if implementation of each primitive component (e.g. Java code)
in the hierarchy obeys its behavior specification (i.e. behaves in accordance with
it). In case of design-oriented component models (e.g. Darwin), it is necessary to
assume that the primitive component obeys its behavior specification, while in case
of models like SOFA and Fractal, which explicitly support implementation of prim-
itive components in real programming languages like Java and C, it is possible (and
desirable) to formally verify that the implementation of each primitive component
obeys its behavior specification.

Ad (2) A typical solution is to use a model of an artificial environment of the
component subject to verification, so that a closed system can be constructed. In
case of model checkers that accept programs in real programming languages, code
of such an artificial environment has to be provided in order to create a complete
program composed of the code of the component and environment. It is possible
to use the most general environment (universal environment) that may call each
method of the component at any time, for an arbitrary number of times, and in
parallel with any of the other methods [29]. Nevertheless, a component is typically
expected to work correctly only in some environments [3] — in that case, the obvious
option is to use a restricted environment that behaves in the same way as a particular
real environment of the component (e.g. the rest of a particular component-based
system).

In general, the main advantages of building reliable software systems using well-
defined components and their formal verification are:

(i) The possibility to increase performance of formal verification and make it
feasible for real-life software systems; this is due to the opportunity to apply tech-
niques of compositional reasoning, which exploit the natural modular (hierarchical)
structure of such systems. For example, the problem of state explosion can be mit-
igated this way, since a single component typically has a smaller state space than
the whole system.

(ii) Reuse of ”correct” components in different contexts, e.g. in different applica-
tions. In particular, an isolated component can be formally verified together with a

10

specific model of its environment, using e.g. the assume-guarantee paradigm [53][30],
and then employed in all software systems that interact with the component accord-
ing to the model.

However, both advantages can be exploited only if the component platform sup-
ports formal specification of component behavior, behavior composition and com-
pliance checking, and verification of implementation of primitive components.

1.4 Problem statement

As indicated above, many of state-of-the-art hierarchical component models sup-
port (i) specification of component behavior via finite state machines (e.g. LTS)
and process algebras (e.g. behavior protocols), and (ii) formal verification of be-
havior compliance among components at the same level of nesting in a hierarchy
via model checking. However, according to our knowledge, none of them supports
checking whether an implementation of a primitive component obeys its behavior
specification via automated methods of formal verification — i.e. via model check-
ing and static analysis. The technique of model checking is in particular suitable for
checking of implementation against such a property, since event trace-based behavior
specifications describe the temporal behavior of a software system.

Considering formal verification of implementation of primitive components in
general, i.e. against various properties (including obeying of behavior specification
and absence of concurrency errors), an obvious idea is to apply the compositional
approach and model check one isolated primitive component at a time in order to
address the state explosion problem. Nevertheless, model checking of complex (real-
life) and highly parallel components is still prone to state explosion, and, moreover,
the problem of missing environment has to be addressed too in such a case.

To summarize, the challenge of automated formal verification of implementa-
tion of real-life primitive components against various properties has not been fully
addressed yet.

1.5 Goals of the thesis

The general goal of the thesis is to address the challenge and issues mentioned
above — i.e. automated formal verification of implementation of real-life primitive
components against various properties — in the context of Java as the implemen-
tation language and behavior protocols as the formalism for component behavior
specification. This includes:

• developing a model checking-based technique for verification of component
Java code against the property of obeying a behavior specification defined via
behavior protocols,

• solving the problem of missing environment for model checking of isolated
primitive components implemented in Java, and

11

• addressing the problem of state explosion for verification of component Java
code against the properties of obeying a behavior specification and absence of
concurrency errors.

1.6 Structure of the thesis

The thesis is structured as a collection of already published papers with a unifying
text. Chapter 2 provides necessary background and Chapter 3 describes revisited
goals with respect to the background. Chapter 4 gives overview of our contribution
with references to the included papers. The papers are included in Chapters 5-9.
Then follows evaluation and related work (Chapter 10), and a conclusion.

12

Chapter 2

Background

In this chapter we present an overview of several verification frameworks for pro-
grams in Java — in particular, we discuss their advantages and drawbacks with
respect to the goals of this thesis. Moreover, we provide an introduction to the
compositional verification and assume-guarantee paradigm, and an overview of the
formalism of behavior protocols.

2.1 Program verification frameworks

There exist several tools and frameworks that employ model checking for the purpose
of verification of programs in mainstream languages like Java and C against various
properties (e.g. absence of deadlocks and satisfaction of a temporal logic formula).
For example, the Java PathFinder model checker [60] and Bandera toolset [25] aim
at verification of Java programs, and MAGIC [19] is a framework for reasoning about
programs written in the C language. In this section we focus on the verification tools
for Java programs (i.e. Java PathFinder and Bandera), which are the most relevant
with respect to our goals.

Java PathFinder

Java PathFinder (JPF) [60] is a highly extensible and configurable explicit-state
model checker for Java programs. It accepts a complete Java bytecode program
(with main) as an input, and works directly with the bytecode, i.e. on the level of
bytecode instructions. In fact, JPF is implemented as a special Java virtual machine
(JPF VM) that supports backtracking, state matching and non-determinism — it
examines all execution paths of the given Java program. Each transition in the JPF
state space corresponds to a set of bytecode instructions and each JPF state contains
by default the full state of the JPF VM, including complete heap and stacks of all
threads. Similar to other state-of-the-art software model checkers, JPF supports
standard optimization techniques like partial order reduction (performed on-the-fly)
and thread/heap symmetry reduction that help reduce the state space size.

The key feature of JPF is a high degree of extensibility and customizability;
specifically, it provides an API for:

13

• plugins (listeners) that allow to monitor the state space traversal and execution
of the checked program by JPF VM to a great detail, and to intercept it;

• custom search strategies (DFS, BFS, heuristic search) and various heuristics
for state space traversal [32];

• customizable state management and representation — in particular, JPF can
be configured to take into account only a subset of the full JPF VM state
during the state space traversal (e.g. for state matching).

Besides that, JPF also provides an API — the Verify class — for non-deterministic
data choice that can be used in test drivers to check a unit of code for different
inputs; e.g. a call of Verify.getInt(5) means that the subsequent code is checked
for each integer value in the range 0 . . . 5.

As for properties a Java bytecode program can be checked against, JPF supports
by default only low-level properties like absence of concurrency errors, uncaught
exceptions and assertion violations. However, it can be extended via listeners and/or
domain-specific extensions, which replace part of the JPF core, in order to check
more complex and higher-level properties. The currently available domain-specific
extensions include model checking of UML 2.0 state charts, symbolic execution
(suitable for inputs with unbounded domains), and compositional verification.

Bandera toolset

Bandera [25] is a toolset for model checking of general Java programs, which ac-
cepts source code of a complete Java program and a set of properties expressed in
temporal logic as an input. The toolset includes the core model checker Bogor [27]
and several auxiliary tools that prepare input for Bogor and present its output in
a user-friendly way. More specifically, since the input language of Bogor is BIR
(Bandera Intermediate Representation), the auxiliary tools perform the following
tasks: (i) translation of Java source code (input of Bandera) into a model in BIR,
(ii) various abstractions and transformations of the model (e.g. slicing [33]), and
(iii) translation of counter-examples in BIR back to Java.

Bogor is a general purpose explicit-state model checker, which verifies models de-
fined in the BIR language against properties defined via temporal logic — primitive
propositions in temporal logic expressions can refer to heap structure, data values
and source code locations. The current version of BIR supports all features common
to modern object-oriented programming languages (e.g. Java) like dynamic creation
of objects and threads, virtual methods and garbage collection; in other words, it is
possible to express all features of Java in BIR (there is no significant semantic gap
between Java and BIR). Like JPF, Bogor too provides an API for non-deterministic
data choice.

A key benefit of Bogor is its extensibility, since it allows to construct domain-
specific model checkers on top of it. Specifically, Bogor supports custom strategies
and heuristics for state space traversal, custom state storage and representation,
and several property specification languages like regular expressions and CTL. The
BIR modeling language is also extensible by constructs and primitives specific to

14

particular domains. Besides that, Bogor supports common state space reduction
techniques, like partial order reduction and heap/thread symmetry. An example
of a domain-specific extension to Bogor is the Cadena design and verification envi-
ronment [34], which aims at component systems based on the CORBA component
model (CCM) [47].

Comparison of Java PathFinder with Bandera

From the point of view of our goals, JPF and Bandera have basically the same
capabilities, advantages and drawbacks. Both support all the important features
of Java (JPF directly via special JVM, Bandera via translation to BIR), are highly
extensible and configurable, and provide APIs that allow easy integration into larger
development and verification frameworks (like Cadena [34] in case of Bandera). On
the other hand, none of them

• supports checking of Java code against high-level properties based on event
traces by default — an extension has to be used and/or created;

• is applicable to isolated software components directly, since both of them ac-
cept only complete Java programs with main (the problem of missing environ-
ment occurs); however, Bandera already provides a generator of an artificial
environment for Java classes [59].

Regarding extensibility, an advantage of JPF over Bandera is the support for listen-
ers that allow to monitor and intercept the state space traversal.

2.2 Compositional verification

The key idea behind compositional verification ([22], [13]) is application of the
divide-and-conquer approach. The big task of verifying a software system at once
is decomposed into smaller tasks of verifying the individual components one at a
time, and the verification results for the whole system (i.e. related to global prop-
erties) are derived from the results for individual components (local properties) and
interaction among the components. Such a derivation can be performed, e.g., via
model checking of abstractions (models) of all the components and the interaction
among them. Note also that the problem of missing environment is inherent to
compositional model checking, since each component is checked in isolation.

Although a ”naive” approach to compositional model checking, as described
above, may help address state explosion at least partially, it does not help much
in this respect if the level of interaction among components of a given system is
high, and, moreover, the local properties of individual components do not have to
be preserved at the global level [22]. Both these issues are addressed by the assume-
guarantee paradigm, which is a popular approach to compositional model checking.

Assume-guarantee paradigm

Using the assume-guarantee paradigm (A-G), model checking of a single component
C can be used to verify whether C satisfies a given property P when put into an

15

environment E that satisfies a specific assumption A (about E ′s behavior). The
property P can be associated with the behavior of the complete system (C and E
together) or with C only — we focus on the case when P is a local property of
C (of its implementation). The assumption A characterizes the expected behav-
ior of all the environments for C, in which C is expected to work correctly (valid
environments).

Actual checking of C ′s behavior in a specific E is performed in two steps — first
it is checked whether C satisfies P under the assumption A, and then it is checked
whether A characterizes the E ′s behavior correctly. The property P is guaranteed
to hold for C in E only if both checks finish with a positive answer. The checking
process can be formally expressed by the following inference rule (well-known as the
A-G rule):

< A > C < P >
< true > E < A >

< true > C || E < P >

The rationale behind use of an assumption A is that the behavior of C typically
depends on the behavior of its environment E. Note, however, that application of
the A-G paradigm makes sense only if the assumption A is simpler than the specific
E it models, i.e. if A abstracts the real behavior of E, for example, via hiding
internal communication between the parts of E.

The assume-guarantee paradigm was originally introduced for temporal logic
model checking (e.g. in [53]) and the assumptions were defined manually in most
cases. However, there are recent techniques that support checking against properties
expressed via transitions systems (e.g. via LTS [30] and STS [56]) and automated
construction of assumptions via learning [23]. In general, the A-G paradigm can
be used for compositional verification of any software system that consists of well-
defined parts (e.g. components or processes); specifically, an assumption about
environment’s behavior (environment assumption) can be defined in any suitable
formalism (including behavior protocols), and satisfaction of any property supported
by the model checker can be verified.

2.3 Behavior Protocols

The formalism of behavior protocols (BP) [52], developed in our research group, is a
specific process algebra that we use for modeling of component behavior. Currently,
it is supported by the SOFA and Fractal component platforms.

In general, a behavior protocol prot is an expression that specifies a set L(prot) of
finite traces of atomic events on components’ provided and required interfaces. The
events in a protocol directly correspond to implementation-level events like invoca-
tion of a specific method on a specific interface — specifically, each atomic event has
the syntactical form <prefix><interface name>.<method name><suffix>, where
the prefix can be either ? (acceptance) or ! (emitting), and the suffix can be either
↑ (method invocation) or ↓ (return from a method). Therefore, four types of atomic
events are supported:

16

acceptance of a method invocation: ?interface.method↑,
emit of a method invocation: !interface.method↑,
acceptance of a return from a method : ?interface.method↓,
emit of a return from method : !interface.method↓.

More complex behavior protocols can be constructed from the atomic events via the
following binary operators: ; (sequence), + (choice), * (repetition), and | (parallel
composition). The parallel composition operator generates all interleavings of event
traces defined by its operands such that no synchronization is assumed. The empty
protocol is denoted by NULL.

The formalism of behavior protocols also supports several useful shortcuts that
enhance readability:

• !i.m{prot} stands for !i.m↑ ; prot ; ?i.m↓, and

• ?i.m{prot} stands for ?i.m↑ ; prot ; !i.m↓.

The protocol prot models a method body, which can be empty.
For the purpose of modeling the behavior of SOFA and Fractal components with

behavior protocols, we distinguish between component’s frame and architecture.
The frame of a component is formed by all the component’s external provided and
required interfaces. The architecture of a given component is represented either by
the component’s internal structure (a set of sub-components and bindings among
their interfaces at the first level of nesting) in case of composite components, or by
the implementation in a programming language in case of primitive components.
We say that an architecture implements a frame.

Then, the component’s frame protocol specifies the valid sequences and interleav-
ings of atomic events (method invocations and returns) on the component’s frame
— in other words, it specifies how the component can be used by its environment
and how it reacts to requests from the environment. The architecture protocol of a
specific composite component models the composed behavior of its sub-components.

The main advantage of the formalism of behavior protocols is the built-in sup-
port for checking of behavior compliance among components equipped with frame
protocols. For that purpose behavior protocols provide the consent operator (∇) [2],
which is a special kind of parallel composition; specifically, application of the consent
operator on two protocols

• generates all interleavings of event traces defined by its operands (like |),

• forces complementary events (e.g. ?i.m↑ and !i.m↑) to synchronize, i.e. to
form an internal action (e.g. τi.m↑), and, in particular,

• identifies specific communication errors: deadlock (”no activity”) and no re-
sponse to a call (”bad activity”).

Two behavior protocols are compliant if their composition via consent does not yield
any communication errors. We distinguish between two kinds of behavior compli-
ance: (1) horizontal compliance among components at the same level of nesting (e.g.

17

among all sub-components of a specific composite component), and (2) vertical com-
pliance between a frame protocol and an architecture protocol of a specific composite
component. Satisfaction of vertical compliance for a particular component means
that the component’s architecture implements its frame correctly.

Both kinds of behavior compliance are supported by the Behavior Protocol
Checker (BPChecker) [42], which implements the consent operator. Technically,
the search for communication errors in composition of two protocols is performed
via exhaustive state space traversal, where each transition corresponds to an atomic
event from one of the protocols. Checking of compliance between three or more pro-
tocols is implemented via subsequent application of the consent to pairs of protocols
(the ∇ operator is associative).

Nevertheless, as indicated in Sect. 1.3, checking of behavior compliance among
components in a particular hierarchy makes sense only if each primitive component in
the hierarchy obeys its behavior specification. In the context of behavior protocols,
we say that a primitive component obeys its frame protocol. Formal definition of
this property (obeying of a frame protocol) for primitive components implemented
in Java is in Sect. 4.3.

18

Chapter 3

Goals revisited

In the light of the facts mentioned in the previous chapter, we decided to address the
general goal of the thesis (Sect. 1.5) on the basis of the assume-guarantee paradigm
and Java PathFinder. The assume-guarantee paradigm provides a coherent theo-
retical framework for verification and analysis of behavior of isolated components.
Java PathFinder (JPF) is a state-of-the-art verification tool (model checker) for Java
bytecode programs.

We have chosen JPF over the Bandera toolset, since at the time we made the de-
cision only the alpha release (not fully stable) of Bandera was available and JPF was
more extensible and customizable — both JPF and Bandera did not support prop-
erties based on sequences of events (e.g. obeying of a frame protocol) at that time.
The other JPF-related issues, which have to be solved, are that (i) it works only for
complete Java programs with main (there is the problem of missing environment)
and (ii) it is prone to state explosion when checking complex Java programs.

The detailed goals of the thesis are:

G1) To sufficiently solve modeling and construction of an artificial environment for
verification of component’s Java code with JPF.

G2) To extend JPF with support for checking component’s Java code against the
high-level property of obeying a frame protocol.

G3) To address state explosion in model checking of component’s Java code with
JPF against the properties of obeying a frame protocol and absence of con-
currency errors.

19

Chapter 4

Contribution: verification of Java
code of primitive components

In this chapter we provide an overview of our contribution and, in particular, show
how we addressed the goals G1-G3 from Chapter 3. Technical details and additional
information on any part of our contribution can be found in the already published
papers (forming also the Chapters 5-9 of this thesis).

Throughout the whole chapter, we illustrate the key ideas and concepts of our
contribution on a part of the component application developed in the CRE project
with France Telecom [1]. The whole application works as a provider of WiFi Internet
access at airports, supporting e.g. payment via a credit card and assignment of
IP addresses via DHCP. However, we focus only on the DhcpServer component
(Fig. 4.1), which is responsible for management of IP addresses — in particular,
it assigns IP addresses to newly connected clients via DHCP, tracks expiration of
DHCP leases, and stores assigned IP addresses in a database.

More specifically, DhcpServer consists of four components: IpAddressManager,
Timer, DhcpListener and TransientIpDb. The DhcpListener component interacts
with clients via the DHCP protocol, TransientIpDb is a database of temporally
assigned IP addresses, and Timer notifies IpAddressManager on expiration of DHCP
leases. The IpAddressManager component is responsible for assigning proper IP
addresses to clients — it does that on the basis of clients’ MAC addresses provided
via DHCP and information about mapping between MAC and IP addresses that is
stored in the database (TransientIpDb).

The frame protocols of IpAddressManager and TransientIpDb, modified and
simplified with respect to [1] for the purpose of illustrating our contribution, are
depicted on Fig. 4.2 and Fig. 4.3, respectively. The simplified frame protocol of
IpAddressManager captures only calls on provided methods of the component and
interaction with TransientIpDb. The frame protocol of TransientIpDb states that
(i) it is possible to call any method M of the component in parallel with any other
method or, in particular, with another instance of the same method, and (ii) each
method can be called for a finite number of times.

We use the IpAddressManager component in Sect. 4.3 for illustration of check-
ing whether component’s Java implementation obeys the frame protocol with JPF,
and the TransientIpDb component for illustration of addressing state explosion

20

DhcpServer
ID

hc
pC

al
lb

ac
k

Ip
A

dd
re

ss
In

va
lid

at
ed

(Ip
A

dd
re

ss
)

IpAddressManager

DhcpListener

TransientIpDb

IT
im

er
C

al
lb

ac
k

Ti
m

er

Ti
m

eo
ut

()

IIp
M

ac
Pe

rm
an

en
tD

b

IManagement

IIpMacTransientDbIDhcpCallback
IDhcpListenerCallback

IDhcpListenerCallback

ReleaseIpAddress(Mac, Ip)
RenewIpAddress(Mac, Ip)

Ip ← RequestNewIpAddress(Mac)

IT
im

er
C

al
lb

ac
k

IT
im

er

IT
im

erC
an

ce
lT

im
eo

ut
()

Se
tT

im
eo

ut
(T

im
eo

ut
)

SetExpirationTime(Ip, ExpTime)
GetExpirationTime(Ip) → ExpTime

GetIpAddress(Mac) → Ip
GetMacAddress(Ip) → Mac

Remove(Ip)
Add(Mac, Ip, ExpirationTime)

IIpMacDb

Se
tE

xp
ira

tio
nT

im
e(

Ip
, E

xp
Ti

m
e)

G
et

E
xp

ira
tio

nT
im

e(
Ip

) →
 E

xp
Ti

m
e

G
et

Ip
A

dd
re

ss
(M

ac
) →

 Ip
G

et
M

ac
A

dd
re

ss
(Ip

) →
 M

ac
R

em
ov

e(
Ip

)
Ad

d(
M

ac
, I

p,
 E

xp
ira

tio
nT

im
e)

IIp
M

ac
Pe

rm
an

en
tD

b

IManagement

StopUsingPermanentIpAddresses()
StopRenewingPermanentIpAddresses()

UsePermanentIpDatabase()

Figure 4.1: The DhcpServer component

in discovery of concurrency errors in Java code with JPF (in Sect. 4.4). A frag-
ment of the Java code of IpAddressManager is depicted on Fig. 4.4 (only the
RequestNewIpAddress method is included) and a fragment of the Java code of
TransientIpDb is depicted on Fig. 4.5 (only business methods are included).

4.1 The whole picture — application of the

assume-guarantee paradigm

Our approach to formal verification of Java implementation of isolated primitive
components against various properties is based on the assume-guarantee paradigm
(A-G) and Java PathFinder.

As an assumption we use the behavior model of a particular environment of
a component subject to verification. The environment can be general (universal),
specific to a particular context (Sect. 4.2), or even specific to a particular property
(Sect. 4.4). The model of environment’s behavior — the environment assumption
— is defined in the formalism of behavior protocols and reflected in the artificial
environment (see below).

A ”guarantee” is a specific property of the Java code of the component (and its
environment, in some cases), which is satisfied under the given assumption, i.e. in
the environment modeled by the assumption. Although it is, in general, possible
to use any property supported by JPF, we explicitly focus on the following two

21

(

(

(

?IDhcpListenerCallback.RequestNewIpAddress {

!IIpMacTransientDb.GetIpAddress ;

(!IIpMacTransientDb.Add + NULL)

}

+

?IDhcpListenerCallback.RenewIpAddress {

!IIpMacTransientDb.GetIpAddress ;

(!IIpMacTransientDb.SetExpirationTime + NULL)

}

+

?IDhcpListenerCallback.ReleaseIpAddress {

!IIpMacTransientDb.GetIpAddress ;

(!IIpMacTransientDb.Remove + NULL)

}

)*

|

?ITimerCallback.Timeout {

(

!IIpMacTransientDb.GetExpirationTime ;

(!IIpMacTransientDb.Remove + NULL)

)*

}*

)

; ?IManagement.UsePermanentIpDatabase ;

(

same as above

)

; ?IManagement.StopUsingPermanentIpDatabase

)*

Figure 4.2: Frame protocol of the IpAddressManager component

22

?IIpMacTransientDb.Add*

|

?IIpMacTransientDb.Add*

|

?IIpMacTransientDb.Remove*

|

?IIpMacTransientDb.Remove*

|

?IIpMacTransientDb.GetMacAddress*

|

?IIpMacTransientDb.GetMacAddress*

|

?IIpMacTransientDb.GetIpAddress*

|

?IIpMacTransientDb.GetIpAddress*

|

?IIpMacTransientDb.GetExpirationTime*

|

?IIpMacTransientDb.GetExpirationTime*

|

?IIpMacTransientDb.SetExpirationTime*

|

?IIpMacTransientDb.SetExpirationTime*

Figure 4.3: Frame protocol of the TransientIpDb component

23

public class IpAddressManagerImpl

implements IDhcpListenerCallback {

protected IIpMacDb iIpMacTransientDb;

public String RequestNewIpAddress(byte[] MacAddress) {

String ipAddr = iIpMacTransientDb.GetIpAddress(MacAddress);

Date expTime = new Date(System.currentTimeMillis()+3600000);

iIpMacTransientDb.Add(MacAddress, ipAddr, expTime);

return ipAddr;

}

...

}

Figure 4.4: Fragment of Java implementation of the IpAddressManager component

properties of component’s Java code: (i) obeying of a frame protocol and (ii) absence
of concurrency errors.

The process of checking of a primitive component against a specific property
with JPF consists of the following four steps:

1) automated construction of the behavior model of a particular environment for
the component subject to verification,

2) manual specification of possible values of method parameters,

3) automated generation of the artificial environment (Java code) from the be-
havior model and specification of values, and

4) verification of Java code of the complete program composed of the component
and artificial environment against the given property with JPF.

The artificial environment is generated from the behavior model and specifica-
tion of method parameter values in an automated way by the tool — Environment
Generator for Java PathFinder [49] — that we developed. The generated environ-
ment for a specific component (Java code) contains a driver class with the main

method, which calls methods of the component’s provided interfaces according to
the model of environment’s behavior, and stub implementations of all required in-
terfaces of the component. For example, the environment for the Timer component
contains main, which calls methods on the ITimer provided interface, and a stub
implementation of the ITimerCallback required interface. Specification of possible
values of method parameters is provided by the user in the form of a Java class that
works as a container for the values.

24

public class TransientIpDbImpl implements IIpMacDb {

protected Map ipMac = new HashMap();

protected Map macIp = new HashMap();

protected Map expTimes = new HashMap();

public void Add(byte[] MacAddr, String IpAddr, Date ExpTime) {

ipMac.put(IpAddr, MacAddr);

macIp.put(MacAddr, IpAddr);

expTimes.put(IpAddr, ExpTime);

}

public Date GetExpirationTime(String IpAddr) {

Date expTime = (Date) expTimes.get(IpAddr);

return expTime;

}

public String GetIpAddress(byte[] MacAddr) {

String ip = (String) macIp.get(MacAddr);

return ip;

}

public byte[] GetMacAddress(String IpAddr) {

byte[] mac = (byte[]) ipMac.get(IpAddr);

return mac;

}

public void Remove(String IpAddr) {

byte[] mac = (byte[]) ipMac.get(IpAddr);

if (mac != null) {

ipMac.remove(IpAddr);

macIp.remove(mac);

expTimes.remove(IpAddr);

}

}

public void SetExpirationTime(String IpAddr, Date ExpTime) {

if (expTimes.containsKey(IpAddr)) {

expTimes.put(IpAddr, ExpTime);

}

}

}

Figure 4.5: Java implementation of the TransientIpDb component

25

4.2 Modeling component environment via behav-

ior protocols

As indicated in Sect. 1.1, it is in general hard to model and construct a reasonable
artificial environment for a given component for the purpose of feasible model check-
ing. Our solution to this problem is based on modeling the environment’s behavior
via behavior protocols — behavior model of an environment (artificial or real) for a
specific isolated component C is denoted as an environment protocol of C.

Since an environment of C can be seen as another component E bound to C,
the environment protocol of C is actually a frame protocol of E. A specific behavior
protocol can be used as an environment protocol EPC of C, if it is compliant with
the frame protocol FPC of C — i.e. the formula EPC∇FPC has to hold.

We propose three different particular environment protocols, each having its own
specific advantages and drawbacks with respect to the others — an inverted frame
protocol, a context protocol, and an environment protocol based on a calling &
trigger protocol.

An inverted frame protocol EP inv
C of a component C models an environment

that exercises C in all ways it was designed for — the environment performs all
sequences and interleavings of method call-related events that are allowed by the
C’s frame protocol. The inverted frame protocol of C is derived directly from C’s
frame protocol via syntactical replacement of all ! with ? (and vice versa) in the
protocol, however checking with JPF is prone to state explosion if the environment
constructed from the inverted frame protocol is used.

A context protocol EP ctx
C of C models the actual use of C in a particular com-

ponent application, i.e. it is specific to a particular context. Technically, EP ctx
C

corresponds to composition of frame protocols of all the other components in the
particular application. Since only a subset of component’s functionality is often
used by the application, the context protocol is often simpler than the inverted
frame protocol and therefore checking with JPF is less prone to state explosion if
the environment constructed from the context protocol is used. For example, the
context protocol of TransientIpDb (Fig. 4.6) involves less parallelism than its in-
verted frame protocol. On the other hand, construction of the context protocol is
prone to state explosion, since it involves state space traversal — BPChecker is used
to create the composition of frame protocols.

The issues of the inverted frame protocol and context protocol (liability to state
explosion) are addressed by use of an environment protocol that is based on the
calling & trigger protocol of C (EP trig

C). It models the actual use of C in a par-
ticular application (like the context protocol) and is derived syntactically from the
frame protocols of all the other components in the application — thus, both the
construction and checking with JPF are less (or not at all) prone to the state explo-
sion. However, EP trig

C is a valid model of environment’s behavior only if the frame
protocols of all the other components in the application (i.e. their behavior) satisfy
certain constraints (see Chapter 9 for details). If the constraints are not satisfied,
then EP ctx or EP inv has to be used.

Note that for any of the three specific environment protocols introduced above,
it is not necessary to verify whether the clause < true > E < A > in the A-G

26

(

!IIpMacTransientDb.GetIpAddress ;

(

!IIpMacTransientDb.Add

+

!IIpMacTransientDb.SetExpirationTime

+

!IIpMacTransientDb.Remove

+

NULL

)

)*

|

(

!IIpMacTransientDb.GetExpirationTime ;

(!IIpMacTransientDb.Remove + NULL)

)*

Figure 4.6: Context protocol of the TransientIpDb component

rule (Sect. 2.2) holds, since an artificial environment E for C is directly generated
from the environment protocol (assumption A). In other words, the clause < true >
E < A > holds implicitly for all the three cases.

4.3 Obeying a frame protocol

We say that a primitive component implemented in Java obeys its frame protocol,
if (i) it is able to accept all sequences and interleavings of method calls on its
provided interfaces that are specified by the frame protocol (e.g. without throwing
of an exception), and (ii) it reacts correctly to each call on a provided interface,
i.e. performs valid sequences and interleavings of calls of methods on its required
interfaces. Each execution path in the Java program composed of a component and
its environment has to be compliant with the component’s frame protocol — the
set of execution paths is determined by the environment and thus the environment
should use the component correctly with respect to its frame protocol.

Put formally, a component C obeys its frame protocol FPC iff the formula
L(JavaC/calls) ⊆ L(FPC) holds for any valid environment E for C (such that
FPE∇FPC), where JavaC/calls denotes all sequences of invocations and returns
of/from methods of C’s provided and required interfaces that occur in the Java
program composed of C and E. The property of obeying a frame protocol is, in
general, a specific relation between Java code and a behavior protocol.

For illustration, the fragment of Java code of IpAddressManager depicted on
Fig. 4.4 obeys the fragment of the component’s frame protocol (Fig. 4.7), while the

27

fragment of the Java code depicted on Fig. 4.8 violates the frame protocol — the
incorrect code contains also the call of the SetExpirationTime method.

...

?IDhcpListenerCallback.RequestNewIpAddress {

!IIpMacTransientDb.GetIpAddress ;

(!IIpMacTransientDb.Add + NULL)

}

...

Figure 4.7: Fragment of the frame protocol of the IpAddressManager component

...

public String RequestNewIpAddress(byte[] MacAddress) {

String ipAddr = iIpMacTransientDb.GetIpAddress(MacAddress);

Date expTime = new Date(System.currentTimeMillis()+3600000);

iIpMacTransientDb.Add(MacAddress, ipAddr, expTime);

Date expTime2 = new Date(System.currentTimeMillis()+2400000);

iIpMacTransientDb.SetExpirationTime(ipAddr, expTime2);

return ipAddr;

}

...

Figure 4.8: Fragment of Java implementation of the IpAddressManager component
that violates the frame protocol

In order to allow checking of the (high-level) property of obeying a frame protocol
with JPF, it is necessary to extend and/or customize it, since it supports only low-
level properties like deadlocks and assertion violations by default. Our approach
is based on combination of JPF and BPChecker in such a way that both checkers
cooperate during traversal of their own state spaces. More specifically, we have
created a listener for JPF that monitors the traversal of the state space of the given
Java program (component + environment) in JPF and notifies the BPChecker of
all method call-related events on the provided and required interfaces of the given
component. When the BPChecker receives an event from the JPF listener, it checks
whether the event is allowed in the current state of its state space (determined by
the frame protocol) — in case of a negative answer, it tells JPF to stop the state
space traversal and report an error trace.

28

4.4 Addressing state explosion in discovery of

concurrency errors

Well-established approaches to addressing the state explosion in discovery of spe-
cific kinds of errors via model checking include use of heuristics for state space
traversal [32] and guiding of a model checker by results of static analysis or runtime
analysis [35]. For concurrency errors it means, for example, use of a heuristic that
prefers state space paths involving aggressive thread interleaving and guiding of the
model checker by a counter-example (reported by static or runtime analysis) that
identifies a potential deadlock. A common characteristic of these approaches is that
they can be applied only during actual model checking (of a complete program) —
however, an isolated component is not such a program.

We propose an alternative and complementary approach — construction of a
reasonable environment for an isolated component on the basis of static analysis
of component’s code and various heuristics. The key idea behind the approach is
that the reasonable environment for a specific component will be simpler than the
component’s full environment (corresponding to a particular environment protocol)
e.g. in terms of the maximal number of threads running in parallel (level of paral-
lelism), and therefore its use will mitigate the state explosion and also help discover
the specific errors in limited time and memory.

Since here we aim at the discovery of concurrency errors in component Java
code with JPF, we construct the reasonable environment in such a way that only
those component’s methods that feature potential concurrency errors are executed in
parallel by the environment. To be more specific, we reduce the level of parallelism
in an environment protocol, yielding a reduced environment protocol, which is then
used a model of behavior of a reduced environment. The methods to be executed in
parallel by the reduced environment (i.e. methods that feature potential concurrency
errors) are identified via static analysis that searches for suspicious bytecode patterns
(e.g. unsynchronized access to a shared variable) in pairs of Java methods and
a heuristic that assigns weights to the patterns (Chapter 8). When the reduced
environment is constructed, JPF is applied to the complete Java program composed
of a component and reduced environment in order to check parallel execution of the
identified methods for presence or absence of real concurrency errors.

For illustration, consider the TransientIpDb component (Fig. 4.5), whose meth-
ods involve unsynchronized read and write accesses to shared variables. Reduction
of the particular environment protocol of TransientIpDb (Fig. 4.9) on the basis
of search for suspicious bytecode patterns would produce the reduced environment
protocol depicted on Fig. 4.10, which specifies parallel execution of selected pairs of
methods. E.g. parallel execution of the methods Add and GetExpirationTime is
specified, since both of them access the expTimes variable.

4.5 Contribution reflected in publications

Our contribution is reflected in the included papers in the following way:

29

!IIpMacTransientDb.Add*

|

!IIpMacTransientDb.Remove*

|

!IIpMacTransientDb.GetMacAddress*

|

!IIpMacTransientDb.GetIpAddress*

|

!IIpMacTransientDb.GetExpirationTime*

|

!IIpMacTransientDb.SetExpirationTime*

Figure 4.9: Environment protocol of the TransientIpDb component

(

!IIpMacTransientDb.Add*

|

!IIpMacTransientDb.GetExpirationTime*

)

+

(

!IIpMacTransientDb.Add*

|

!IIpMacTransientDb.Remove*

)

+

...

Figure 4.10: Reduced environment protocol of the TransientIpDb component —
search for suspicious patterns

30

Chapter 5 [PPK07] presents our approach to checking Java code of an isolated
primitive component against the property of obeying a frame protocol with JPF;
in particular, technical details on cooperation between JPF and BPChecker and
mapping between their state spaces are provided there.

Chapter 6 [PP07a] describes our approach to the generation of an artificial envi-
ronment (Java code) for a given primitive component and introduces the use of an
inverted frame protocol as a model of the environment’s behavior.

Chapter 7 [PP07b] introduces the concept of a context protocol and also provides
a syntactical algorithm for its derivation.

Chapter 8 [PP07c] presents our approach to addressing state explosion in dis-
covery of concurrency errors via reduction of the level of parallelism in a component
environment on the basis of search for suspicious Java bytecode patterns (corre-
sponding to potential concurrency errors). In particular, it provides details on the
supported patterns and an evaluation of the approach on several real-life components
implemented in Java.

Chapter 9 [PP08] introduces the calling & trigger protocol and syntactical con-
straints on components’ frame protocols that have to be satisfied in order to make
the calling & trigger protocol a valid model of environment’s behavior. Moreover,
it also provides the formal definition of an environment protocol on the basis of the
consent (∇) operator and an evaluation of all particular environment protocols that
we use — inverted frame protocol, context protocol, and calling & trigger protocol.

[PPK07] P. Parizek, F. Plasil, and J. Kofron. Model Checking of Software Com-
ponents: Combining Java PathFinder and Behavior Protocol Model Checker, In
Proceedings of 30th IEEE/NASA Software Engineering Workshop, published by
IEEE Computer Society, ISBN 0-7695-2624-1, ISSN 1550-6215, pp. 133-141, Jan-
uary 2007.

[PP07a] P. Parizek and F. Plasil. Specification and Generation of Environment for
Model Checking of Software Components, In Proceedings of Formal Foundations of
Embedded Software and Component-Based Software Architectures (FESCA 2006),
ENTCS, volume 176, issue 2, published by Elsevier B.V., ISSN 1571-0661, pp. 143-
154, May 2007.

[PP07b] P. Parizek and F. Plasil. Modeling Environment for Component Model
Checking from Hierarchical Architecture, In Proceedings of Formal Aspects of Com-
ponent Software (FACS’06), ENTCS, volume 182, published by Elsevier B.V., ISSN
1571-0661, pp. 139-153, June 2007.

[PP07c] P. Parizek and F. Plasil. Partial Verification of Software Components:
Heuristics for Environment Construction, In Proceedings of 33rd EUROMICRO
SEAA conference, published by IEEE Computer Society, ISBN 0-7695-2977-1, ISSN
1089-6503, pp. 75-82, August 2007.

[PP08] P. Parizek and F. Plasil. Modeling of Component Environment in Presence
of Callbacks and Autonomous Activities, Accepted for publication in proceedings of
TOOLS EUROPE 2008, LNBIP, to be published by Springer-Verlag, June 2008.

31

Chapter 5

Model Checking of Software
Components: Combining Java
PathFinder and Behavior Protocol
Model Checker

Pavel Paŕızek1,
Frantǐsek Plášil,
Jan Kofroň1

Contributed paper at 30th IEEE/NASA Software Engineering
Workshop (SEW-30).

In conference proceedings,
published by IEEE CS,
pages 133–141,
ISBN 0-7695-2624-1,
ISSN 1550-6215,
January 2007.

The original version is available electronically from the publisher’s site
at http://doi.ieeecomputersociety.org/10.1109/SEW.2006.23.

1Regarding the relative contribution of me and my colleague Jan Kofroň, I have designed and
implemented the plugin for JPF that manages the cooperation between JPF and BPChecker, while
Jan Kofroň performed the experiments and implemented a minor extension of BPChecker that was
necessary to make the cooperation work.

32

http://doi.ieeecomputersociety.org/10.1109/SEW.2006.23

*The work was partially supported by the Grant Agency of the Czech Republic (project number 201/06/0770) and France Telecom
under the external research contract number 46127110.

Model Checking of Software Components:
Combining Java PathFinder and Behavior Protocol Model Checker*

Pavel Parizek, Frantisek Plasil, Jan Kofron

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{parizek,plasil,kofron}@nenya.ms.mff.cuni.cz

http://nenya.ms.mff.cuni.cz

Academy of Sciences of the Czech Republic
Institute of Computer Science

{plasil,kofron}@cs.cas.cz
 http://www.cs.cas.cz

Abstract

Although there exist several software model checkers
that check the code against properties specified e.g. via a
temporal logic and assertions, or just verifying low-level
properties (like unhandled exceptions), none of them
supports checking of software components against a high-
level behavior specification. We present our approach to
model checking of software components implemented in
Java against a high-level specification of their behavior
defined via behavior protocols [1], which employs the Java
PathFinder model checker and the protocol checker. The
property checked by the Java PathFinder (JPF) tool
(correctness of particular method call sequences) is
validated via its cooperation with the protocol checker. We
show that just the publisher/listener pattern claimed to be
the key flexibility support of JPF (even though proved very
useful for our purpose) was not enough to achieve this kind
of checking.

Keywords: software components, behavior protocols, model
checking, cooperation of model checkers

1. Introduction
Model checking is one of the approaches to formal

verification of finite state hardware and software systems.
A model checker usually accepts a finite model of a target
system and a property expressed in some property
specification language, and checks whether the model
satisfies the property via traversal of the state space that is
generated from the model. Especially model checking of

software is a popular research topic nowadays, mainly
because there are several issues that have to be solved before
the technique can be used for real-life applications.

A general problem of model checking is the necessity to
create a model of the system to be checked. Manual
construction of the model is an error-prone process, and even
if the model is automatically extracted from a specification
of the system or from the source code, it is typically an
abstraction of the system - therefore, a model checker may
find errors in the model that are not present in the original
program and vice versa.

In case of properties to be checked, the most common
way to express them is via a temporal logic (LTL, CTL) and
in the form of assertions. However, it is also possible to
check for a predefined set of properties - deadlocks or
properties specific to a certain class of systems such as
device drivers.

As to software model checking at the program source
code level, a crucial problem is the size of state space
triggered by the model of a program (i.e. the problem of state
explosion). Despite that, there exist such model checkers.
For Java programs, these are most notably the Java
PathFinder (JPF) [5] and Bandera [7] tools. (An advantage
of JPF over Bandera is that the most recent release of the
latter is an alpha version, not being fully stable yet, and that
JPF is also more extensible). The properties checked are
either predefined (e.g. absence of a deadlock) or to be
specified in LTL (Bandera) and via assertions related to the
code (JPF). A typical feature of both Bandera and JPF is the
combination of static program analysis and model checking.

33

Database

Logger

IDatabase

ITxMngr

ILog

Transaction
Manager

ILog

ITxMngr

IDatabase

DBServer
db

db

logger

logger

tm

tm

Figure 1: Architecture of the DBServer component

The former is used to create a program model; to lower the
state space size, abstraction techniques are applied - these
include partial order reduction [13] and data abstraction
[13].

State explosion can be also mitigated by the
decomposition of a software system into small and well-
defined units, components. Typically, a software
component generates a smaller state space than the whole
system and therefore can be checked with fewer
requirements on space and time. Nevertheless, model
checking of code of software components usually brings
along the problem of missing environment, which means
that it is not possible to model check an isolated
component, because it does not form a complete program
with an explicit starting point (e.g. the main method). In
order to overcome this obstacle, it is necessary to create a
model of the environment of the component subject to
model checking, including the specification of possible
values of method parameters, and then check the whole
program, composed of the environment and component.

A specific feature of software components is the
existence of ADLs (Architecture Description Languages)
used to specify component interfaces, and, first of all,
composition of components via bindings of their interfaces
(i.e to specify the architecture of a component-based
application at a higher level of abstraction than code). Some
ADLs even include the option to specify behavior of the
components, typically in a LTS-based formalism [15, 18,
16, 17].

 An obvious challenge, not addressed yet to our
knowledge, is to check the code of software components
against a high-level behavior specification provided at the
ADL component specification level.

1.1. Goal and structure of the paper
The goal of the paper is to show how the challenge

mentioned above can be addressed for software components
implemented in the Java language and a high-level
specification of their behavior defined via behavior
protocols [1] employed in ADL. We present our approach
that integrates the Java PathFinder model checker with the
behavior protocol checker [4].

The remainder of the paper is organized as follows. Sect.
2 introduces an example of a component ADL specification,
Sect. 3 provides an overview of behavior protocols and
Sect. 4 introduces the Java PathFinder model checker. Sect.
5 presents the key contribution - the description of our
solution for model checking of primitive (non-composed)
software components’ code against behavior protocols that
makes JPF cooperate with the protocol checker. Sect. 6
provides results of evaluation and the rest of the paper
contains related work and conclusion.

2. Example
In this section we provide an example, which will be used

to illustrate the ideas presented throughout the rest of the
paper. Consider the component architecture in Fig.1. Here
the component DBServer provides the IDatabase
interface and contains three primitive subcomponents -
Database, Logger and Transaction Manager. The
IDatabase interface is implemented by the delegation to
the Database subcomponent. The other two subcomponents
of the DBServer component are bound to the required
interfaces of the Database subcomponent.

Fragments of an ADL specification for the DBServer and
Database components may take the following form:

frame DBServer {
 provides:
 IDatabase db;
 protocol:
 ?db.start ; (?db.add || ?db.get ||
?db.remove)* ; ?db.stop
};

frame Database {
 provides:
 IDatabase db;
 requires:
 ILog logger;
 ITxMngr tm;
 protocol:
 // presented in Sect. 3
};

These fragments specify the frame (boundary, a collection
of interface instances) of the components DBServer and
Database. For instance, the specification states that
Database has two required interfaces (logger of the type
ILog and tm of the type ITxMngr); in a similar vein, db of
the type IDatabase is its provided interface. The
protocol section of each of the frames contains the
behavior specification (in the form of behavior protocols
explained in Sect. 3) of the respective component.

34

Fragments of Java source code of all interfaces and
implementation of the Database component follow:

public interface IDatabase
{
 public void start();
 public void stop();
 public void add(String key, Object data);
 public Object get(String key);
 public void remove(String key);
}

public interface ILog
{
 public void log(String message);
}

public interface ITxMngr
{
 public void init();
 public void destroy();
 public void begin();
 public void commit();
 public void rollback();
}

public class DatabaseImpl implements
IDatabase
{
 private ILog logger;
 private ITxMngr tm;

 public void start()
 {
 logger.log(“start”);
 tm.init();
 }

 public void stop()
 {
 logger.log(“stop”);
 tm.destroy();
 }

 public void add(String key, Object data)
 {
 tm.begin();
 ... // adding data
 if (ok) tm.commit();
 else tm.rollback();
 }

 public Object get(String key)
 {
 // similar to the add method
 }

 public void remove(String key)
 {
 // similar to the add method
 }
}

3. Behavior Protocols
3.1. Basics

A behavior protocol is an expression that describes the
behavior of a software component in terms of atomic events
on the provided and required interfaces of a component, i.e.
in terms of accepted and emitted method call requests and
responses on those interfaces. The semantics of a behavior
protocol is defined in terms of Labeled Transition System
(LTS), where transitions are labeled by atomic events.

Each atomic event in a behavior protocol has the
following syntax: <prefix> <interface>.<method>
<suffix>. The prefix ? denotes an accept event and the
prefix ! denotes an emit event. The suffix 8 stands for a
request (i.e. a method call) and the suffix 9 stands for a
response (i.e. return from a method).

Several useful shortcuts are defined: an expression of the
form !i.m is a shortcut for the protocol !i.m8 ; ?i.m9, an
expression of the form ?i.m is a shortcut for the protocol
?i.m8 ; !i.m9 and an expression of the form
?i.m{prot} is a shortcut for the protocol ?i.m8 ; prot
; !i.m9. The NULL keyword denotes an empty protocol.

The protocol section of the ADL example in Sect. 2
illustrates how most of the operators of behavior protocols
are applied. It includes the sequence operator ;, the
repetition operator *, the alternative operator +, and the or-
parallel operator ||. There is also an and-parallel operator |,
yielding all the possible interleavings of the event traces
defined by its operands. The or-parallel operator is a shortcut
(p || q stands for p + q + (p | q), where p and q are
behavior protocols).

A behavior protocol defines a possibly infinite set of
traces, where each trace is a finite sequence of atomic events.

The following protocol specifies a part of the Database
component’s behavior.

?db.start8 ; !logger.start8 ; ?logger.start9
; !tm.init8 ; ?tm.init9 ; !db.start9

It starts with accepting request for start call on db, then,
as a reaction, issues the request for start call on logger
and accepts the response, does the same for the init call on
tm, and, finally, issues a response to start call on db.

For every component, we assume its frame protocol [1]
is specified in ADL. The frame protocol describes the
external behavior of a component, which means the protocol
contains only the events on the external interfaces
determined by the component’s frame. For every composite
component, its architecture protocol can be generated as a
parallel composition of the frame protocols of the
subcomponents at the first level of nesting [1].

The frame protocol of the Database component, with the
syntactical shortcuts mentioned above applied, might be:

35

?db.start{!logger.start ; !tm.init} ;
(
 ?db.add{!tm.begin ; (!tm.commit +
!tm.rollback)}
 ||
 ?db.get{!tm.begin ; (!tm.commit +
!tm.rollback)}
 ||
 ?db.remove{!tm.begin ; (!tm.commit +
!tm.rollback)}
)* ;
?db.stop{!logger.stop ; !tm.destroy}

The behavior specified by this protocol reflects the
expected usage pattern of the component and also its
reaction to each call accepted on its db interface. For
example, it states that when the component accepts a
request for add call on db, it should (in the following order)

1) call the begin method on tm,
2) call one of the commit and rollback methods on

tm, and, finally,
3) issue a response to the add call on db.

In addition, the protocol states that calls of add, get,
remove on db can be accepted in parallel and this can be
repeated a finite number of times.

Important feature of behavior protocols is the notion of
behavior compliance which allows to say whether two
components, equipped with frame protocols, can
communicate without errors or not. Horizontal compliance
of components that are at the same level of nesting is
evaluated via a mechanism similar to parallel composition
of their frame protocols the results of which are not only the
traces produced by the | operator, but also all erroneous
traces reflecting communication errors (such as no activity
and bad activity [2]). Vertical compliance between a frame
and an underlying architecture is evaluated by being treated
as horizontal compliance between the architecture’s
protocol and inverted frame protocol (constructed from the
frame’s protocol by replacing all accept events with emit
events and vice versa)[3].

Obviously, the whole component-based system, in which
the horizontal and vertical compliance is verified at all
levels of component nesting, works fine under the
assumption that the code of each primitive component
really implements what was specified by its frame protocol.
More precisely, on its frame interfaces the component has
to accept/issue such method call-related event sequences
that correspond to the traces specified by the frame protocol
- it has to obey its frame protocol [1].

3.2. Protocol Checker
For the purpose of static checking of compliance

between two protocols, we use the static protocol checker
[4] developed in our research group. Taking two protocols
as arguments, it creates a parse tree for each of these
protocols and then produces a composite parse tree that
determines the state space reflecting the parallel

composition of the two protocols. A transition in the state
space represents execution of an atomic event. In each step
of state space traversal, the checker acquires the list of
possible transitions from the current state. In search for
communication errors, it systematically, in the DFS manner,
explores all branches in the state space that correspond to
those transitions.

In addition, in our research group, we have also
developed a runtime protocol checker to check whether a
component obeys its frame protocol in a particular run. The
tested component is equipped by interceptors at its frame’s
interfaces which notify the runtime checker on the method
call related events. Not needing to traverse the whole state
space (and employ backtracking), the run time checker just
selects the transition that corresponds to an actually observed
event; if there is no such available in the state space, it
reports a violation of the frame protocol’s obeying.

4. Java PathFinder
Java PathFinder (JPF) [5] is a modern software model

checker for Java byte code. More specifically, it is a
specialized Java Virtual Machine (JPF VM), which runs on
top of the underlying host JVM, and, in contrast to the
standard JVM, executes the program in all possible ways.
The state space of a target program is a tree in principle, with
branches determined by the threads’ instructions interleaving
and possible values of input data.

Like other model checkers for concurrent programs, JPF
supports partial order reduction (POR) [13]. The purpose of
this technique is to lower the state space size via including in
the state space only one interleaving of instructions that are
both independent and executed in different threads. The
consequence is that JPF actually traverses a reduced state
space where each state is associated with one of the
following events (“points”) in the byte code execution:

(a) Scheduling point. The current instruction is thread
scheduling relevant (e.g. it accesses a shared variable,
starts/stops a thread, blocks a thread, etc.)

(b) Value point. A value selection takes place (see below).
In order to enable checking of a code unit (e.g. a method)

for different values of input data (e.g. method parameters),
JPF contains the static class Verify that provides methods
for a systematic selection of values of virtually any type. The
methods of Verify are to be called in the checked code. For
example, if the checked code unit executes
Verify.random(3), an integer value from the range 0..3
is selected. However, after reaching an end state, JPF
backtracks (recursively) up to the Verify.random(3) call
and selects another value from 0..3; this is repeated until all
the values from this interval have been used for execution.
Obviously, employing methods of Verify increases the
state space size since each selected value triggers a different
branch in the state space.

By default, JPF searches the state space of the checked
program for “low-level” properties like deadlocks,

36

4: !tm.begin8

State space of
Java PathFinder

State space of
Protocol Checker

.

. JPF
Listener

1: invoke
 tm.begin

2: invoke insn

6: return
<from
tm.begin>

7: return insn

Protocol
Checker 9: ?tm.begin9

3: notify(!tm.begin8
 onward)

8: notify(?tm.begin9
 onward)

5: ok

10: ok

Figure 2: Communication between the JPF and Protocol
Checker - traversal of state spaces in the onward direction

9: !tm.begin8

State space of
Java PathFinder

State space of
Protocol Checker

.

. JPF
Listener

6: invoke
 tm.begin

7: invoke insn

1: return
<from
tm.begin>

2: return insn

Protocol
Checker 4: ?tm.begin9

8: notify(!tm.begin8,
 backward)

3: notify(?tm.begin9
 backward)

10: ok

5: ok

[already visited state]

Figure 3: Communication between the JPF and Protocol
Checker - traversal of state spaces in the backward direction

unhandled exceptions and failed assertions, however since
it is extensible via the publisher/listener pattern, it allows to
observe the course of the state space traversal. This way,
listeners can check for specific (and more complex)
properties in each visited state.

Each state of a checked program, as stored by JPF,
consists of the heap, static area and stacks of all threads,
thus representing the current state of the checked program
at a particular scheduling or value point. When traversing
the state space, JPF checks whether the current state has
been already visited. In a positive case, it backtracks to the
nearest scheduling or value point, for which there exist an
unexplored branch and continues along that. This
backtracking is based on keeping a stack representing the
currently explored path in the state space (an item in the
stack determines the list of not yet visited branches).

5. Model Checking Against Behavior
Protocols
5.1. Motivation - Analysis of Options

Our key desire is to check whether a primitive
component, implemented in Java, obeys its frame protocol.
Since JPF is, without any extension, able to check only low-
level properties (Sect. 4), and obeying a frame protocol is
a quite high-level property, checking for this property in
JPF is not directly possible. We identified the following
options to address this problem:

(i) Protocol assertions: To enhance the component’s
code with assertions reflecting the frame protocol, and then
let JPF check for violation of the assertions.

(ii) State spaces integration: To modify JPF in such a
way that (a) any method call on an external (frame)
interface of the component will be respected in POR, i.e
there will be a state associated with the call, and (b) the
state space representing the frame protocol will be an
integral part of the state space searched by JPF; the later
can be achieved by some kind of parallel composition of the
protocol related and code related state spaces.

(iii) Checkers’ cooperation: To modify POR as
described above (ii(a)) and keep the program code and
protocol related state spaces separated and let model
checker for each of them cooperate, i.e. to let JPF and
protocol checker cooperate.

Since (i) inherently involves the kind of program
analysis not easily reusable from JPF, and (ii) means a
major modification of both JPF and model checker
(moreover triggering the need to cope with portability
issues with respect to future JPF versions), we have decided
to go for (iii) whereas a key modification (not a major one)
seemed to be necessary mainly at the protocol checker side.

5.2. Cooperation of Java PathFinder and Protocol
Checker

Since JPF and the protocol checker work on different
levels of abstraction - JPF at the level of byte code
instructions and the protocol checker at the level of behavior
protocols - and their states represent different information, it
is necessary to define a mapping from the JPF state space,
which is the lower-level one, into the state space of the
protocol checker. Fortunately, this is possible since both
state spaces can reflect all executions of the checked
program in terms of frame methods’ calls (even though at a
different level of abstraction). The mapping is implemented
as a JPF listener. The listener traces all executions of the
invoke and return byte code instructions that are
corresponding to methods of the provided and required
interfaces of a target component, and notifies the protocol
checker of such instructions in the form of atomic events,
thus telling the protocol checker which transition from the
list of all possible transitions it should take. The notification
is done during traversal of the JPF state space in both the
onward and backward directions.

When the protocol checker is notified about an event that
does not correspond to any element of the list of available
transitions in the current state, it reports a violation of the
frame protocol to JPF. In a similar vein, JPF notifies the
protocol checker when it reaches an end state (i.e. and end of
a branch of its state space, corresponding to the end of the
main method), and if, in that case, the protocol checker is
not in an end state of its own state space (e.g. it expects some
more events to occur), an error is reported as well.

Communication between the Java PathFinder and the
protocol checker during checking of the beginning of the
add method, provided by the Database component, is
depicted on Fig. 2 and Fig. 3. In both figures, the left part

37

shows the JPF state space and the right part shows the state
space of the protocol checker; the numbers determine order
of the related activities. Fig. 2 illustrates traversal of both
state spaces in the onward direction and Fig. 3 the process
of backtracking from an already visited state.

5.3. Modifications of JPF
In the process of implementing cooperation of JPF with

the protocol checker, we had to enhance the functionality of
JPF (i.e. to make several modifications of its source code)
in order to support the mapping from the JPF state space
into the state space of the protocol checker. The
modifications include:

(i) POR modification. The code responsible for partial
order reduction was modified by adding a new frame call
point reflecting execution of an invoke or return instruction
that corresponds to an event in the frame protocol. Even
though this addition increases the state space size for most
programs, it was inherently necessary.

(ii) State representation extension. Unfortunately, the
relation between a frame call point and a state of the
protocol checker may not be unique (so that no mapping
can be found for this JPF state). In particular this happens
in a specific case of correspondence between an if-else
statement and an alternative in a frame protocol; below, the
source code fragment and the corresponding part of the
frame protocol (in two variants) illustrate such case:

 // Java code
 ...
 boolean b = Verify.randomBool();
 if (b) {
 mA(); mB();
 }
 else {
 mC(); mD();
 b = true;
 }
 mE(); mF();
 ...

 // fragments of frame protocol
 // variant 1
 (mA ; mB ; mE ; mF)
 +
 (mC ; mD ; mE ; mF)

 //variant 2
 (mA ; mB ; mE ; mF)
 +
 (mC ; mD ; mX ; mY)

Looking at the source code, it is clear that mE(); mF()
will be always executed with b set to true. Consequently,
when JPF backtracks at some point after executing mF() for
the first time, to check the other if-else statement branch,
it reaches an already visited state at the end of the if-else
statement (since b == true is kept) and backtracks again,

not executing the mE and mF methods for the second time. At
that point, the protocol checker will report a protocol
violation though, since it expects mE and mF to be called.
This happens even though the code obeys the protocol in
variant 1. However, considering the variant 2, the code does
not obey the protocol, but the protocol checker will again
report a protocol violation, however not because the code
does not obey the protocol, but again since it expects mX and
mY to be called.

A solution to this problem was to assign a unique
counterpart to a JPF state by the following JPF extension:
Each state representation contains also the frame call trace
for each thread (in addition to heap, static area and thread
stack frames). Therefore the states with the same heap, static
area and thread stacks, but with different frame call traces for
a certain thread, are differentiated and their mapping to
protocol checker state space is easy to determine. In the
example above, when the state representation extension is
applied, JPF is forced to execute the mE and mF methods for
the second time because the two branches of the if-else
statement produce different frame call traces.

5.4. Modifications of Protocol Checker
We have extended the static protocol checker with a new

functionality in order to let it accept notifications from a JPF
listener and drive the traversal of the protocol state space
according to the received atomic events. In this respect, the
added functionality is similar to the runtime protocol
checker; put differently, the extended protocol checker can
be viewed upon as the runtime protocol checker with
support of backtracking. When the extended protocol
checker receives an event, it checks whether it is possible to
perform a corresponding transition in its state space in the
desired direction (onward/backward); in a negative case, it
reports a violation of the protocol to the JPF listener.

5.5. The Whole Picture - Making the Pieces Work
Together

The tool for model checking of primitive components
against behavior protocols, created via cooperation of JPF
and the protocol checker, accepts as input implementation of
a primitive component (i.e. its byte code), its environment
(see below) and the specification of the component’s
architecture and frame protocol in the form of ADL.

When executed, the tool runs JPF with the protocol
checker on the program composed of the component and its
environment. The output is a success message, if the
implementation obeys the frame protocol; otherwise the
stack of the protocol checker and stacks of all threads are
printed as a counterexample.

The environment of a target component is generated by
another tool (environment generator) from its frame protocol
[20]. Possible values of method parameters have to be
provided in the form of a special Java class that serves as a
container for the sets of values.

38

JPF modification Protocol (1) Protocol (2) Protocol (3)

POR 17 states / 3.3 sec 74 states / 2.5 sec 5085 states / 11.8 sec

POR + states representation 17 states / 2.7 sec 309 states / 2.7 sec 59011 states / 227 sec

Table 1: State space size / time required of the two JPF modification alternatives for a
component when checked against three versions of its frame protocol

6. Evaluation
6.1. Discussion

Even though the proposed solution works “reasonably
well” as documented by the experimental results provided
in Sect. 6.2, a key drawback of this solution is that it
increases the state space unnecessary by considering the
continuation after each if-else statement twice (by
putting it into separate branches) in specific cases similar to
the one described in Sect 5.3. To illustrate this, consider
again the Java code from the example in Sect. 5.3 and the
following fragment of the corresponding frame protocol:

 ((mA ; mB) + (mC ; mD)) ; mE ; mF

Here, the protocol asks the methods mE and mF to be
executed only once. However, JPF with the state
representation extension executes mE(); mF(); for the
second time after backtracking to process the else branch
(mC(); mD()). This way of handling the if-else
statement continuations is the main cause of deterioration
in performance (Sect.6.2).

We envision two solutions to this problem: (a)
Coordination of backtracking. The idea, instead of
extending the state representation with frame call traces, is
to allow JPF to backtrack only if the protocol checker is
also currently in an already visited state. Technically, if JPF

is in a state when backtracking is desirable it asks the
protocol checker for a permission to do so (which can be
denied). However, a downside of this technique is the
necessity to additionally modify the JPF core, with all
related drawbacks (portability to new JPF versions, ...). (b)
State space integration. This option was already mentioned
in Sect. 5.1. The basic idea is to create JPF state space with
compound states, each covering both the program code and
behavior protocol substates. Here, backtracking
coordination would be addressed implicitly by requiring it
to be desirable in both substates of the state in question.

Both solutions are equivalent with respect to
backtracking since both of them allow JPF to backtrack
only if both the current state in the program code state space
and the current state in the protocol state space allow to
backtrack. However, an advantage of the first solution
(coordination of backtracking) is that it is much easier to
implement and can be made distributed without much
effort, i.e. each checker can run in a separate address
space/node, obviously helping fight state explosion.

Nevertheless, the bottom line is that just the
publisher/listener pattern claimed to be the key extensibility

support of JPF (even though it proved very useful for our
purpose) was not enough to achieve JPF cooperation with
our protocol checker. In particular, out of this pattern, we
had to extend the JPF internal state representation (internal
state model in [6]) and furthermore we faced the problem of
backtracking coordination. If these two issues were directly
supported via JPF API, the JPF extensibility would be
substantially enhanced, since we believe at least the former
issue would be a prevailing problem of checking the validity
of particular method call sequences (traces) via JPF,
regardless the underlying state machine variant.

6.2. Experimental Results
As mentioned above, we have implemented several

extensions and modifications to the original JPF code in
order to make it possible to check whether a Java
implementation of a primitive component obeys its frame
protocol.

We have run several tests1 to get a performance
comparison between the versions of JPF with the
modification of state representation turned off and on, and to
show the impact of the complexity of environment and size
of data domains on the time and space requirements for
checking. All tests were done on a non-trivial, yet simple,
primitive component (roughly 100 lines of Java code). The

code of the component is such that its state space mapping to
the protocol state space is unique. This component has a
provided interface i1 and three required interfaces i2, i3,
and i4, each of them featuring some of the methods
m1,m2,..., m5. The component was checked against the
three versions of its frame protocol stated below, with the
component’s environment also generated from the frame
protocol. The simple protocol (1) contains just an alternative
and nested call operators, while the protocol (2) employs also
the repetition operator. The most complex protocol (3)
contains in addition the and-parallel operator.

(1) ?i1.m1{!i2.m1 ; !i3.m1 ; !i4.m1} ;
?i1.m2{!i4.m2 ; !i3.m2 ; !i2.m2}

(2) ?i1.m1{!i2.m1 ; !i3.m1 ; !i4.m1} ; (
?i1.m3{!i4.m3 ; !i2.m3 ; (!i2.m4 + NULL);

1All tests were performed on Intel Pentium 4 HT, 3.0 GHz,
2.0 GB RAM, running Windows 2003 Server Enterprise Edition
SP1, and Sun Java SDK build 1.4.2_04-b05

39

Protocol (1) Protocol (2) Protocol (3)

One-value domain 17 states / 2.7 sec 309 states / 2.7 sec 59011 states / 228 sec

Two-value domain 17 states / 2.4 sec 749 states / 3.2 sec 163968 states / 389 sec

Four-value domain 17 states / 2.4 sec 2499 states / 4.5 sec 1099386 states / 1548 sec

Table 2: State space / time required for different data domains

!i2.m6 ; (!i4.m4 + !i4.m5)})* ;
?i1.m2{!i4.m2 ; !i3.m2 ; !i2.m2}

(3) ?i1.m1{!i2.m1 ; !i3.m1 ; !i4.m1} ; (
(?i1.m3{!i4.m3 ; !i2.m3 ; (!i2.m4 + NULL) ;
!i2.m6 ; (!i4.m4 + !i4.m5)}) |
(?i1.m4{!i4.m3 ; !i3.m5 ; !i3.m6; (!i4.m4 +
!i4.m5)}))* ; ?i1.m2{!i4.m2 ; !i3.m2 ;
!i2.m2}

Table 1 illustrates the effects of the two JPF
modifications (POR only and both POR and state
representation extension) in terms of the state space and
time requirements growth.

Table 2 shows the performance of the modified JPF
(POR+states representation) for data domains of increasing
complexity (one-, two-, and four-value data domains are
considered). The abstract data sets were used for eleven
variables in the source code. Generally, doubling the size of
a data domain of a single globally accessible variable
results in twice as large state space (exponential growth)

allowing usually only small data domains to be taken into
account. Nonetheless, such verification still provides
valuable information, more thorough than simple testing.

From these experimental results, it is clear that a
drawback of modifications to JPF we made is the growth of
the state space, which results in increase of time
requirements of the checking process. Despite that, the state
space of a typical primitive component can be still traversed
in a reasonable time: In addition to these performance tests,
we have also successfully applied this JPF and protocol
checker cooperation to a non-trivial component-based
application consisting of 20 components with the
architecture and behavior specified via ADL and behavior
protocols (over 300 lines); the verification of a component
took from few minutes to 24 hours in the worst case.

7. Related work

Besides the Java PathFinder model checker, there exist
other tools for model checking of finite-state software
systems [7, 9, 10, 12]. As far as we know, these model
checkers require the checked property to be specified in a
particular firmly determined way (e.g. custom property
specification language, assertions, etc.), Specifically, none
of them targets software components, let alone checking the
components’ code against behavior properties specified at

the ADL level, as apparent from their short characteristics
provided below.

The Bandera tool set [7] is designed for model checking
of Java programs against temporal logic expressions. It
supported the Spin and JPF model checkers originally, but
the next generation of the tool set employs Bogor [8] as the
core model checker.

Similar to Bandera, the Zing model checker [9] targets
concurrent object-oriented programs. It accepts a model of a
target program, defined in a custom specification language,
as input and verifies it against user-defined assertions.

The SLAM model checker [10] is a part of the SDV tool
for formal verification of device drivers for the Windows
operating systems. It is specific in that it creates a Boolean
abstraction of a target program and uses the principle of
refinement to discard errors that are present in the abstraction
but not in the original program. Properties to be checked are
to be specified in a low-level language called SLIC [11].

The MAGIC tool [12] aims at formal verification of C
programs against finite state machine specifications. It uses

compositional approach, which means that it decomposes a
software system into several components (i.e. procedures
written in the C language), and then verifies each component
separately. More specifically, it is able to verify that a finite
state machine (LTS) is a safe abstraction of a C procedure by
employing the abstract-verify-refine paradigm [21].

Charmy [19] is an extensible tool for architectural
analysis. It allows graphical UML-like specification of a
system architecture including topology editor, sequence and
state charts. The specification can be checked in an
automatized way for absence of static specification errors,
e.g. for each send message operation in a component there
has to be a receive message operation in another component,
messages with the same name must have the same number of
parameters, etc. The architecture specification can be
translated (again in an automatized way) into Promela (Spin
specification language), and it can be checked for an
arbitrary property expressible in LTL.

So the bottom line is that none of these checkers employs
the idea of checking a given model against a specific
property via cooperating with another model checker.
However, the technique of integrating a model checker with
another tool for automated verification has been applied
several times in the following form: A model checker is used
in a theorem prover as a decision procedure for temporal
properties[14, 22]. Typically, this approach is applied to

40

software systems with a large (or even infinite) state space.
For example, an integration of the Isabelle/IOA theorem
prover with the :cke model checker is presented in [14].
The Isabelle tool employs the :cke tool as an oracle for :-
calculus formulas related to I/O automata.

8. Conclusion and future work
In this paper, we presented our approach to model

checking of software components implemented in the Java
language against their behavior specification (behavior
protocols [1]), which makes the Java PathFinder model
checker [5] cooperate with the protocol checker [4]. The
key benefits include a quick realization, decent
performance, and relatively easy maintainability when
facing a new version of JPF. We showed, however, that just
the publisher/listener pattern claimed to be the key
flexibility support of JPF (even though proved very useful
for our purpose) was not enough to achieve JPF cooperation
with the protocol model checker.

As to future work, our current research goals include (a)
extending JPF with a direct support for behavior protocols
(the options “protocol assertions” and “state spaces
integration” in Sect. 5.1). (b) Coordination of backtracking
mentioned in Sect. 6.1 - this is of our highest priority.

Acknowledgments
We would like to record a special credit to Jiri Adamek

for valuable hints and comments regarding the cooperation
of JPF and the protocol checker.

References

[1] F. Plasil and S. Visnovsky: Behavior Protocols for
Software Components, IEEE Transactions on Software
Engineering, vol. 28, no. 11, Nov 2002

[2] J. Adamek and F. Plasil: Component Composition
Errors and Update Atomicity: Static Analysis, Journal
of Software Maintenance and Evolution: Research and
Practice, vol. 17, no. 4, John Wiley, 2005

[3] J. Adamek and F. Plasil: Erroneous Architecture is a
Relative Concept, Proceedings of Software Engineering
and Applications (SEA), published by ACTA Press,
ISBN 0-88986-425-X, pp. 715-720, Nov 2004

[4] M. Mach, F. Plasil, and J. Kofron: Behavior Protocol
Verification: Fighting State Explosion, IJCIS Vol.6,
Number 1, ACIS, ISSN 1525-9293, pp. 22-30, 2005

[5] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda:
Model Checking Programs, Automated Software
Engineering Journal, Vol. 10, No. 2, Apr 2003

[6] P. C. Mehlitz, W. Visser, and J. Penix: The JPF
Runtime Verification System, NASA Ames Research
Center, http://javapathfinder.sourceforge.net

[7] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C.
S. Pasareanu, Robby, and H. Zhueng: Bandera:

Extracting Finite-state Models from Java Source Code,
ICSE 2000, pages 439-448

[8] Robby, M. Dwyer, and J. Hatcliff: Bogor: An extensible
and highly-modular model checking framework, In FSE
03: Foundations of Software Engineering, pages 267-
276, ACM, 2003

[9] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y.
Xie: Zing: a model checker for concurrent software,
Technical report, Microsoft Research, 2004

[10] T. Ball and S. K. Rajamani: The SLAM Project:
Debugging System Software via Static Analysis, POPL
2002, ACM, Jan 2002

[11] T. Ball and S. K. Rajamani: SLIC: A Specification
Language for Interface Checking (of C), MSR-TR-2001-
21, Microsoft Research, 2002

[12] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith:
Modular Verification of Software Components in C,
IEEE Transactions on Software Engineering, vol. 30, no.
6, June 2004

[13] E. Clarke, O. Grumberg, and D. Peled: Model Checking,
MIT Press, Jan 2000

[14] T. Hamberger: Integrating Theorem Proving and Model
Checking in Isabelle/IOA, Technical report, T.U.
Munich, August 1999

[15] R. Allen and D. Garlan: A Formal Basis for Architectural
Connection, In ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 6, issue 3,
pp. 213-249, July 1997

[16] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer:
Specifying Distributed Software Architectures, Proc. 5th
European Software Engineering Conf. (ESEC 95), vol.
989, pp. 137-153, 1995

[17] D. Giannakopoulou, J. Kramer, and S. C. Cheung:
Analysing the Behaviour of Distributed Systems using
Tracta, Journal of Automated Software Engineering, vol.
6(1), Jan 1999

[18] F. Plasil, D. Balek, and R. Janecek: SOFA/DCUP:
Architecture for Component Trading and Dynamic
Updating, Proceedings of ICCDS’98, Annapolis,
Maryland, USA, IEEE CS Press, May 1998

[19] P. Inverardi, H. Muccini, and P. Pelliccione: CHARMY:
An Extensible Tool for Architectural Analysis,
ESEC-FSE'05, The fifth joint meeting of the European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering.
Research Tool Demos. Lisbon, Portugal, 2005

[20] P. Parizek and F. Plasil: Specification and Generation of
Environment for Model Checking of Software
Components, Technical Report No. 2005/5, Dep. of SW
Engineering, Charles University, Nov 2005

[21] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith:
Counterexample-guided abstraction refinement, In
Computer Aided Verification, pages 154-169, 2000

[22] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M.
Srivas: PVS: Combining Specification, Proof Checking,
and Model Checking, Proceedings of CAV’96, 1996

41

Chapter 6

Specification and Generation of
Environment for Model Checking
of Software Components

Pavel Paŕızek,
Frantǐsek Plášil

Contributed paper at Workshop on Formal Foundations of Em-
bedded Software and Component-Based Software Architec-
tures (FESCA 2006).

In Electronic Notes in Theoretical Computer Science,
published by Elsevier B.V.,
Volume 176, Issue 2,
pages 143–154,
ISSN 1571-0661,
May 2007.

The original version is available electronically from the publisher’s site
at http://dx.doi.org/10.1016/j.entcs.2006.02.036.

42

http://dx.doi.org/10.1016/j.entcs.2006.02.036

FESCA 2006

Specification and Generation of Environment
for Model Checking of Software Components

Pavel Parizeka,1, Frantisek Plasila,b,1

a Department of Software Engineering
Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
{parizek, plasil} @ nenya.ms.mff.cuni.cz

b Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic
plasil @ cs.cas.cz

Abstract

Model checking of isolated software components is inherently not possible because a component does not
form a complete program with an explicit starting point. To overcome this obstacle, it is typically necessary
to create an environment of the component which is the intended subject to model checking. We present our
approach to automated environment generation that is based on behavior protocols [9]; to our knowledge,
this is the only environment generator designed for model checking of software components. We compare
it with the approach taken in the Bandera Environment Generator tool [12], designed for model checking
of sets of Java classes.

Keywords: Software components, behavior protocols, model checking, automated generation of
environment

1 Introduction

Model checking is one of the approaches to formal verification of software systems
that gets a lot of attention at present. Still, there are some obstacles that have to be
addressed, at least partially, before model checking of software can be widely used in
practice. Probably the biggest problem is the size of state space typical for software
systems. One solution to this problem (state explosion) is the decomposition of a
software system into small and well-defined units, components.

Nevertheless, a component usually cannot be checked in isolation, because it
does not form a complete program inherently needed to apply model checking. It
is, therefore, necessary to create a model of the environment of the component
subject to model checking, and then check the whole program, composed of the

1 This work was partially supported by the Czech Academy of Sciences (project 1ET400300504) and France
Telecom under the external research contract number 46127110.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

43

environment and component. The environment should be created in a way that
minimizes the increase of the state space size caused by the composition.

1.1 Goals and Structure of the Paper

The paper aims at addressing the problem of automated generation of environment
for model checking of software components implemented in the Java language. The
main goal is to present our approach that is based on behavior protocols [9] and
to compare it with the approach taken in the Bandera Environment Generator
tool [12], which is the only other Java focused approach we are aware of.

The remainder of the paper is organized as follows. Sect. 2 provides an example
to illustrate the problem of environment generation and Sect. 3 introduces the
Bandera Environment Generator (BEG) [12]. Sect. 4 starts with an overview of
behavior protocols [9] and then presents the key contribution - the description of
our approach to specification and generation of environment based on behavior
protocols. Sect. 5 provides comparison of the two approaches and briefly mentions
our proof of concept implementation. The rest of the paper contains related work
and a conclusion.

2 Motivation

In order to illustrate how an environment can be created, we present a simple ex-
ample - a Java class DatabaseImpl and a handwritten environment for this class,
assuming DatabaseImpl is the intended subject to model checking. The class im-
plements one interface and requires one internal reference of an interface type to
be set. Therefore, it can be also looked upon as a Database component with one
provided and one required interface.

Key fragments of source code of the DatabaseImpl class look as follows:

public interface IDatabase {
public void start();
public void stop();
public void insert(int key, String value);
public String get(int key);

}

public class DatabaseImpl implements IDatabase {
private ILogger log;

public void start() {
log.start();

}

public void stop() {
log.stop();

}

44

public void insert(int key, String value) {
...

}

public String get(int key) {
...

}
}

In general, an environment should allow the model checker (i) to search for concur-
rency errors (typically reflected by introducing several threads that are executed in
parallel), and (ii) to check all the control flow paths (usually addressed by a random
choice of parameter values for all methods).

Captured by “the important” fragments of its source code, such environment
could take the following form:

public class EnvThread extends Thread {
IDatabase db;
...

public void run() {
db.insert(getRandomInt(), getRandomString());
String val = db.get(getRandomInt());
...

}
}

public static void main(String[] args) {
IDatabase db = new DatabaseImpl();
db.setLogger(new LoggerImpl());

db.start();

new EnvThread(db).start();
new EnvThread(db).start();
...

db.stop();
}

In the example, two threads of control, which enable the model checker to search
for concurrency errors, are created. A random choice of parameter values for the
purpose of checking all the control flow paths is employed as well (getRandom...
calls).

Obviously, creating an environment by hand is hard and tedious work even in
simple cases. A straightforward solution to this problem is to automatically generate
the environment from a higher-level abstraction than the code provides. In Sect. 3
and 4, we present two solutions based on this idea.

45

3 Environment Generator in Bandera

3.1 Bandera

Bandera [6] is a tool set designed for model checking of complete Java programs,
i.e. those featuring a main method. It is composed of several modules - model
extractor, model translator, environment generator, and model checker, to name
the key of them. The model extractor extracts a (finite) internal model from Java
source code and the model translator translates the internal model into the input
language of a target model checker. Here, the Bandera tool set supported the Spin
and Java PathFinder model checkers originally, but currently it is intended mainly
for a Bandera specific model checker (Bogor [11]).

3.2 Bandera Environment Generator

The Bandera Environment Generator (BEG) [12] is a tool for automated generation
of environment for Java classes. Given a complete Java program, the user of the
BEG tool has to decompose the program into two parts - the tested unit, i.e. the
classes to be tested, and its environment. Since the environment part is usually
too complex for the purpose of model checking, it is necessary to create an abstract
environment. This abstract environment can be generated from a model created

• either from assumptions the user provided, or
• from a result of code analysis of environment classes (if available).

The model can specify, for example, that a certain method should be called five times
in a row, or that it should be executed in parallel with another specific method.

Since, usually, there exist no environment classes in case of software components,
we will further consider only the first option - i.e. that the abstract environment
is generated from user-specified assumptions. For this purpose, the BEG tool pro-
vides two formal notations - LTL and regular expressions. The actual specification
(“environment specification” in the rest of this section) takes the form of program
action patterns (method calls, assignments, etc), illustrated below.

An environment specification for the DatabaseImpl class presented in Sect. 2,
written in the input language of the BEG tool, could be as follows:

environment
{

instantiations
{
1 LoggerImpl log;
IDatabase db = new DatabaseImpl();
db.setLogger(log);
int x = 5;

}

-- high level specification of the environment behavior
regular assumptions
{

46

T0: (db.get() | db.insert())*
T1: (db.get(x) | db.insert(5, "abcd"))*

}
}

The instantiations section allows the user to specify how many instances of
a certain type should be created and under which names they can be referenced.
In this example, two objects are instantiated - the log instance of the LoggerImpl
class and the db instance of the DatabaseImpl class.

The regular assumptions section contains regular expressions describing the
behavior of the environment with respect to the tested classes. Each regular ex-
pression defines a sequence of actions that should be performed by a single thread
of control. In our example, two threads of control are defined, both modeling a
sequence of calls to the insert and get methods on the IDatabase interface.

Notice that the whole execution is characterized by the specified threads (T0,
T1) - there is no “main” thread. Consequently, calls to the start and stop methods
on the IDatabase interface cannot be reasonably modeled in such an environment
specification.

The BEG tool also allows to specify parameter values of method calls on the
tested classes. If the value of a parameter is not specified, as in the thread T0 above,
then it is non-deterministically selected from all the available values of a given type
(e.g. from all allocated instances of a given class in the case of a reference type)
during model checking. As a parameter to a method call, it is even possible to use
a variable defined in the instantiations section (such as x above).

As the BEG tool is not intended specifically for software components, but rather
for plain Java classes, it is necessary to manually specify the environment for the
classes that implement a target component; an alternative would be to develop a tool
for automatic translation of an ADL specification of the component’s architecture
and behavior into the input language of the BEG tool.

However, since the most recent Bandera release is an alpha version only [6], not
being fully stable yet, we have decided to use the Java PathFinder model checker
(JPF) [13]. Consequently, we faced the problem to create an environment generator,
since none was available (BEG is not intended for components and, moreover, the
latest Bandera version does not allow to use the Java PathFinder as a target model
checker any more).

4 Environment Generator for Java PathFinder

We have built our own environment generator for model checking of components
implemented in the Java language. Our approach stems from the assumption that
components are during design specified in an ADL (Architecture Description Lan-
guage), which, in particular, includes specification of their provided and required
interfaces and also specification of their behavior. The latter is done via behavior
protocols [9]. In this section we show how this behavior specification can be advan-
tageously employed for generating an environment necessary for component model
checking.

47

4.1 Behavior protocols

A behavior protocol is an expression that describes the behavior of a software com-
ponent in terms of atomic events on the provided and required interfaces of the
component, i.e. in terms of accepted and emitted method call requests and re-
sponses on those interfaces.

DATABASE LOGGERd
b

l
o
g

l
o
g

Fig. 1. The DATABASE and LOGGER components, defined in Sect. 2

A protocol example for the Database component from Fig. 1 is below:

?db.start↑ ; !log.start ; !db.start↓ ; (?db.insert || ?db.get)* ;
?db.stop{!log.stop}

Since this protocol specifies the interplay on the external interfaces of Database,
it is its frame protocol [9]. Informally speaking, it specifies the Database function-
ality that starts with accepting request for start call on db. As a reaction it calls
start at log and issues response to the start call on db. This is followed by ac-
cepting insert on db in parallel with get on db finitely many times. At the end, it
accepts a request for a stop call on db and, as a reaction, it calls stop at log and
issues response to the stop call on db.

Each event has the following syntax: <prefix><interface>.<method>
<suffix> (where the suffix is optional; the events having no suffix are syntactical
shortcuts explained below). The prefix ? denotes an accept event and the prefix !
denotes an emit event. The suffix ↑ stands for a request (i.e. a method call) and
the suffix ↓ stands for a response (i.e. return from a method). An expression of
the form !i.m is a shortcut for !i.m↑;?i.m↓, an expression of the form ?i.m is a
shortcut for ?i.m↑;!i.m↓ and an expression of the form ?i.m{prot} is a shortcut
for ?i.m↑;prot;!i.m↓, where prot is a protocol. The NULL keyword denotes an
empty protocol.

The example above presents also several operators. The ; character is the se-
quence operator, * is the repetition operator and || is the or-parallel operator.
Behavior protocols support also an alternative operator + and an and-parallel op-
erator |. In fact, the or-parallel operator is only a shortcut; e.g. a || b stands for
a + b + (a | b). The | operator denotes all the possible interleavings of traces
that correspond to its operands.

A behavior protocol defines a possibly infinite set of event traces, each of them
being finite.

48

Each component has a frame protocol associated with it, and a composite compo-
nent can have also an architecture protocol [9]. The frame protocol of a component
describes its external behavior, what means that it can contain only the events on
external interfaces of the component. On the other hand, the architecture protocol
describes the behavior of a component in terms of composition of its subcomponents
at the first level of nesting.

4.2 Cooperation of Java PathFinder with the Protocol Checker

When checking a component application specified via ADL with behavior proto-
cols, it is necessary (i) for each composite component in the hierarchy to check
compositional compliance of subcomponents at the first level of nesting and also
compliance of a frame protocol with an architecture protocol (ii) and for each prim-
itive component to verify that an implementation of the component obeys its frame
protocol. For the purpose of checking compliance of protocols, we use the protocol
checker [7] developed in our research group, and for checking that a primitive com-
ponent obeys its frame protocol, we use a tool created via cooperation of JPF with
our protocol checker [8]. The tool has to be applied to a program composed of a
target component and its environment.

Communication between JPF and the protocol checker during checking of the
Database component is depicted on Fig. 2. The left part of the schema shows the
JPF traversing the code (state space) of the component and the right part shows
the state space of the protocol checker, which is determined by the frame protocol
of the component. A plugin for JPF, which we have developed, traces execution
of the invoke and return instructions that are related to methods of the provided
and required interfaces of a target component, and notifies the protocol checker of
those instructions in the form of atomic request and response events. The protocol
checker verifies that the trace constructed from the received events is compliant
with the frame protocol of the component. When the protocol checker encounters
an unexpected event or a missing event, it tells JPF to stop the state space traversal
and to report an error (counter example) to the user.

.

.

.

.
.
.

Protocol Checker

?db.start

!db.get

Java PathFinder
 ...
db.start();
 ...
db.insert(...);
db.get(...);
 ...
db.stop();
 ...

?db.start

!db.get!db.insert

.

.

.

.

.

.

Fig. 2. Communication between the Java PathFinder and Protocol Checker

49

4.3 Modeling the Environment with Inverted Frame Protocol

The environment of a component can be advantageously modeled by its inverted
frame protocol [1], constructed from the components frame protocol by replacing
all the accept events with emit events and vice versa. The inverted frame protocol
constructed this way forces the environment

• to call a certain method of a particular provided interface of the component at
the moment the component expects it, and

• to accept a certain method call issued on a particular required interface of the
component at the moment the component “wishes” to do so.

The inverted frame protocol of the Database component introduced above is:

!db.start↑ ; ?log.start ; ?db.start↓ ; (!db.insert || !db.get)* ;
!db.stop{?log.stop}

Our environment generator accepts all syntactically valid frame protocols with
the exception of protocols of the form ?a + !b and !a* ; ?b. The reason for not
supporting frame protocols of the form ?a + !b is that the environment driven by
inversion of such a protocol cannot determine how long it should wait for the !b
event to occur before it emits a call that corresponds to the ?a event and therefore
disables the other alternative (i.e. !b). Protocols of the form !a* ; ?b are not
supported for a similar reason - the environment is not able to determine when the
repetition !a* is going to finish. It is recommended to use protocols of the form
!a* ; !b instead (wherever possible) because in such case the !b event tells the
environment that the repetition has finished.

In order to minimize the size of the state space that JPF has to traverse, our
environment generator performs several transformations of the frame protocol of
the target component before creating the inverted frame protocol and generating
the code of the environment. The key goal of the transformations is to

• get as many instances of the alternative operator + as possible at the outermost
level of protocol nesting. The advantage of this approach is that all these alter-
natives can be checked in parallel by multiple instances of JPF, thus lowering the
time requirements for model checking of the target component.

• reduce the number of repetitions, and also event interleavings caused by the |
operator, even at the cost of accuracy.

For example, our generator transforms

• an iteration over some subprotocol to an alternative between an empty proto-
col and a sequence of two copies of the subprotocol (e.g. the protocol !a* is
transformed to the protocol NULL + (!a ; !a)),

• a sequence that contains some alternatives to an alternative between all possible
sequences (e.g. the protocol !a ; (!b1 + !b2) is transformed to the protocol
(!a ; !b1) + (!a ; !b2)),

• an and-parallel operator connecting two subprotocols, both of them being alter-
natives, to an alternative between selected pairs of subprotocols connected by the
| operator - the pairs are selected in a way ensuring that each element of the two

50

alternatives is present at least in one of the pairs (e.g. the protocol (!a1 + !a2)
| (!b1 + !b2) is transformed to the protocol (!a1 | !b1) + (!a2| !b2)), and

• an and-parallel operator with three or more subprotocols to an alternative be-
tween selected pairs of subprotocols, where each pair is connected by the | op-
erator and followed by a sequence of subprotocols that do not belong into the
selected pair; the pairs are selected in such a way that the first subprotocol is
paired with the second, the second with the third, and so on (e.g the protocol a
| b | c | d is transformed to the protocol ((a | b) ; c ; d) + ((b | c) ;
a ; d) + ((c | d) ; a ; b)).

4.4 Specification of Values of Method Parameters

Our solution to specification of the possible values of method parameters is based
on the idea that the user defines the set of values which are to be considered as
parameters. From the implementation point of view, these sets are to be put into
a special Java class serving as a container for all the sets of values. The value of
a method parameter of certain type is later non-deterministically selected from the
set of values considered for that type and method. In addition to the sets of values
common for the whole component, it is also possible to define sets that are specific
to a particular method or interface.

Below is a fragment of the specification of values for the Database component:

putIntSet("IDatabase", "insert", new int[]{1, 2, 5, 10});
putIntSet("", "", new int[]{1, 3, 5, 12});
putStringSet("", "", new String[]{"abcd", "EFGH1234"});

The first statement defines a set of integer values that is specific to the insert
method of the IDatabase interface. The other two statements define the sets of
integers and strings that are to be applied to all methods of the Database component
interfaces.

The main drawback of this approach is that the user has to define on his/her
own the sets of values in such a way that will force the model checker to check all
the control flow paths in the component.

5 Evaluation

In this section we compare the two approaches to modeling the environment de-
scribed above, i.e. the approach of the BEG tool and our approach based on be-
havior protocols.

The main differences between them are:

• The BEG tool allows to specify parallelism only at the outermost level of regular
expressions that specify behavior of the environment (there is no such limit in
case of behavior protocols).

• Behavior protocols have no support for method parameters, therefore the possible
values of method parameters must be specified separately in a special Java class,
while the BEG tool allows to specify the values of method parameters directly in
the expressions that specify behavior of the environment.

51

It is worth to mention that there is also a difference in that the BEG tool
targets plain Java classes with informally specified provided and required interfaces,
while our approach targets the software components having provided and required
interfaces defined in an explicit way.

As a speciality, another advantage of support for specification of parameter
values directly in expressions that specify behavior is that it enables the environment
generator to select a proper version of an overloaded method - or to generate a code
that will non-deterministically invoke all versions of the method that conform to
the specification.

We have created an implementation of the environment generator that uses the
inverted frame protocol of a component as a model of the environments behavior. It
aims at components that use the Fractal Component Model [5] and expects that the
Fractal ADL is used to define components. We have successfully applied our envi-
ronment generator to a component-based application composed of 20 components.
Transformations of the frame protocol, described in Sect. 4.3, reduce the size of the
state space determined by the protocol approximately thirty times in case of more
complex components, therefore lowering also the time required for model checking
of the components, all that at the cost of accuracy, though. Nevertheless, model
checking of more complex components with environment generated from their frame
protocols with no transformations applied is not feasible. Despite the abstractions
of the environment introduced by transformations of the frame protocol, the tech-
nique is still much more systematic than simple testing. Let us again emphasize
that model checking of a component without an environment is not possible at all,
because JPF is applicable only to complete Java programs, not isolated software
components.

6 Related work

Except for the Bandera Environment Generator [12], we are not aware of any other
approach to specification and generation of environment for model checking of soft-
ware components or parts of object-oriented programs. Nevertheless, there exist
model checkers for object-oriented programs that do not need to generate an envi-
ronment because these tools usually extract a finite model from a complete program
(featuring the main method) and then check the model - an example of such a model
checker is Zing [2].

There are also tools that solve the problem of automatic generation of environ-
ment for fragments of procedural programs (e.g. drivers, libraries, etc). An example
of such a tool is the SLAM [4] model checker, which is a part of the SDV tool for ver-
ification of device drivers for the Windows operating system. Given a program, the
checker creates a Boolean abstraction of the program (all value types approximated
by Boolean) and then checks whether some desired temporal properties hold for the
abstraction. It uses the principle of refinement to discard errors that are present in
the abstraction but not in the original program (false negatives). The environment
for device drivers is defined by the interfaces provided by the Windows kernel. The
SLAM tool models the environment via training [3]. Here, the basic principle is
that, for a certain procedure P that is to be modeled, it first takes several drivers

52

that use the procedure P, then it runs the SDV tool on those drivers and therefore
gets several Boolean abstractions of the procedure P, and finally merges all those
abstractions and puts the resulting Boolean abstraction of the kernel procedure P
into a library for future reuse.

Our tool for environment generation is partially based on [10]. The tool that
is described in the thesis, designed for the Bandera tool set, also uses the inverted
frame protocol idea; it is also focused on components compliant to the Fractal
Component Model [5]. We decided not to use this tool mainly because it generates
an environment that increases the state space size quite significantly, since it does
not employ any of transformations described in Sect. 4.3 and also does not provide
any means for specification of method parameter values - all that makes it almost
unusable in practice.

7 Conclusion

Direct model checking of isolated software components is usually not possible be-
cause model checkers can handle only complete programs. Therefore, it is necessary
to create an environment for each component subject to model checking.

In this paper, we have compared two approaches to generating environment of
components, resp. classes - namely the Bandera Environment Generator (BEG)
tool [12] in Sect. 3, and our approach that is based on behavior protocols [9] in
Sect. 4. Main differences between the two approaches lie in the level of support for
parallelism, in support for specification of parameter values, and in the fact that
the BEG tool is focused on plain Java classes while our approach targets software
components with explicitly defined provided and required interfaces.

As to future work, an automated derivation of sets of values used for nondeter-
ministic choice of method parameters is our current goal. It is motivated by the fact
that manual definition of such sets requires the user to carefully capture a way that
will let the model checker to check all the control flow paths in a target component.
A viable approach to the derivation of possible parameter values could be to use
static analysis of Java source code (or byte code).

Acknowledgments

We would like to record a special credit to Jiri Adamek and Nicolas Rivierre for
valuable comments and Jan Kofron also for many hints regarding the integration of
the protocol checker with JPF.

References

[1] Adamek, J., and F. Plasil, Component Composition Errors and Update Atomicity: Static Analysis,
Journal of Software Maintenance and Evolution: Research and Practice, 17(2005), pp. 363-377

[2] Andrews, T., S. Qadeer, S. K. Rajamani, J. Rehof and Y. Xie, Zing: a model checker for concurrent
software, Technical report, Microsoft Research, 2004

[3] Ball, T., V. Levin and F. Xie, Automatic Creation of Environment Models via Training, TACAS 2004,
93-107

53

[4] Ball, T., S. K. Rajamani, The SLAM Project: Debugging System Software via Static Analysis, POPL
2002, ACM, 1-3

[5] Bruneton, E., T. Coupaye, M. Leclercq, V. Quma, and J. B. Stefani, An Open Component Model and
its Support in Java, In Proceedings of the International Symposium on Component-based Software
Engineering (ICSE 2004 - CBSE7), LNCS, 3054(2004), May 2004

[6] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby and H. Zhueng, Bandera:
Extracting Finite-state Models from Java Source Code, ICSE 2000, ACM, 439-448

[7] Mach, M., F. Plasil and J. Kofron, Behavior Protocol Verification: Fighting State Explosion,
International Journal of Computer and Information Science, 6(2005), 22-30

[8] Parizek, P., F. Plasil and J. Kofron, Model Checking of Software Components: Making Java PathFinder
Cooperate with Behavior Protocol Checker, Tech. Report No. 2006/2, Dep. of SW Engineering, Charles
University, Jan 2006

[9] Plasil, F., and S. Visnovsky, Behavior Protocols for Software Components, IEEE Transactions on
Software Engineering, 28(2002)

[10] Potrusil, T., “Specifying Missing Component Environment in Bandera”, Master Thesis, Department of
Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, 2005

[11] Robby, M. Dwyer and J. Hatcliff, Bogor: An extensible and highly-modular model checking framework,
In FSE 03: Foundations of Software Engineering, pp. 267-276, ACM, 2003

[12] Tkachuk, O., M. B. Dwyer and C. S. Pasareanu, Automated Environment Generation for Software
Model Checking, 18th IEEE International Conference on Automated Software Engineering (ASE03), p.
116, 2003

[13] Visser, W., K. Havelund, G. Brat, S. Park and F. Lerda, Model Checking Programs, Automated Software
Engineering Journal, 10(2003)

54

Chapter 7

Modeling Environment for
Component Model Checking from
Hierarchical Architecture

Pavel Paŕızek,
Frantǐsek Plášil

Contributed paper at Third International Workshop on Formal
Aspects of Component Software (FACS’06).

In Electronic Notes in Theoretical Computer Science,
published by Elsevier B.V.,
Volume 182,
pages 139–153,
ISSN 1571-0661,
June 2007.

The original version is available electronically from the publisher’s site
at http://dx.doi.org/10.1016/j.entcs.2006.09.036.

55

http://dx.doi.org/10.1016/j.entcs.2006.09.036

FACS 2006

Modeling Environment for Component Model
Checking from Hierarchical Architecture

Pavel Parizeka,1, Frantisek Plasila,b,1

a Department of Software Engineering
Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
{parizek, plasil} @ nenya.ms.mff.cuni.cz

b Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic
plasil @ cs.cas.cz

Abstract

Application of model checking to isolated software components is not directly possible because a component
does not form a complete program - the problem of missing environment occurs. A solution is to create an
environment of some form for the component subject to model checking. As the most general environment
can cause model checking of the component to be infeasible, we model the environment on the basis of
a particular context the component is to be used in. More specifically, our approach exploits hierarchical
component architecture and component behavior specification defined via behavior protocols, all that pro-
vided in ADL. This way, the environment represents the behavior of the rest of the particular application
with respect to the target component. We present an algorithm for computing the model of environment’s
behavior that is based on syntactical expansion and substitution of behavior protocols.

Keywords: Software components, behavior protocols, environment for model checking, hierarchical
component architecture

1 Introduction

Various methods of formal verification have already proven to be useful for finding
errors in large and complex software systems, and particularly in critical systems,
thus helping increase reliability of such systems. At present, one of the most pop-
ular approaches to verification of software systems is model checking [4], which is
an algorithmic technique for checking whether a finite model of a target system
satisfies a certain property. Typically, the model has the form of a finite labeled
transition system and the property can be expressed as a temporal logic expression
(LTL, CTL). Checking whether a property is satisfied in the model is based on an
exhaustive traversal of the state space determined by the model. This way, model

1 This work was partially supported by the Grant Agency of the Czech Republic (project number
201/06/0770).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

56

checking can help to find concurrency errors like deadlocks, which are very subtle
and quite hard to discover with traditional approaches such as testing. However,
the main advantage of model checking - traversal of the complete state space (i.e.
checking of the property in each state) - is also its main weakness. Especially in case
of more complex software systems, the state space may be large enough to make
model checking of a system not feasible; this is well-known as the state explosion
problem.

A completely different approach to building more reliable software systems is to
decompose large and complex systems into smaller and well-defined units - software
components. Typically, components are considered to be entities with well-defined
provided (server) and required (client) interfaces, and in some cases also with for-
mally specified behavior. A component-based application is a collection of individ-
ual components, which are interconnected via well-defined bindings between their
interfaces.

Components that have no externally observable internal structure, while hav-
ing real implementation in a certain programming language, are called primitive
components. Components containing nested subcomponents, i.e. components with
observable internal structure, are called composite components. The structure of a
composite component, commonly referred to as component architecture, is typically
defined in an Architecture Description Language (ADL) [2][8][9]. Usually, defini-
tion of a composite component in an ADL specifies also the external provided and
required interfaces of all components, bindings between the component and its sub-
components, and optionally component behavior (e.g. in an LTS-based formalism).

An example of a composite component, which will be used to illustrate the
ideas presented throughout the rest of the paper, is depicted on Fig. 1. The com-
ponent DBServer provides the db interface of type IDatabase and contains four
primitive subcomponents - Database, Logger, Transaction Manager, and Backup
Scheduler. The db interface of the DBServer component is implemented by del-
egation to the Database subcomponent. The Logger and Transaction Manager
subcomponents are bound to the required interfaces of the Database component,
and the Transaction Manager component is bound also to the required interface of
the Backup Scheduler component. In the rest of the paper, we will be interested es-
pecially in the Transaction Manager component, which provides the start, stop,
begin, commit and abort methods on its provided interface tm of type ITxMngr,
and the backup method on its provided interface bk of type IBackup.

1.1 Problem of Missing Environment

A viable approach is the application of model checking to individual software compo-
nents, for example, in order to verify that the component’s implementation satisfies
a formal specification of the component’s behavior. As an individual component
obviously generates a smaller state space than the whole application, the problem
of state explosion is also mitigated this way, at least partially.

However, considering only primitive components, the problem with model check-
ing of these components is that they are not complete programs (e.g. with main
method) - and model checkers typically analyze only complete programs. This

57

Database

Logger

db : IDatabase

tm : ITxMngr

logger : ILog

Transaction
Manager

logger : ILog

tm : ITxMngr

db : IDatabase

DBServer

bk : IBackup

Backup
Scheduler
bk : IBackup

Fig. 1. Architecture of the DBServer component

triggers the problem of missing environment. An obvious solution is to create an
environment of some form for each primitive component subject to model checking,
and then separately check the complete programs, each composed of a primitive
component and its environment.

Such an environment has to fulfill the following key requirements:

• It should be created in a way that minimizes the state space size of the program
composed from the component and its environment, while at the same time, it
should be complex enough to exercise the target component under all reasonable
behaviors (sequences and parallel interleavings of method calls) and all combina-
tions of input values.

• It should allow the model checker to search for concurrency errors; this is typically
reflected by calling methods of the component by more threads of control.

• It should force the model checker to check all the control flow paths in the com-
ponent’s code; this is usually addressed by calling each method of the component
several times with different combinations of parameter values - particular com-
bination for a method invocation being selected non-deterministically via means
provided by the model checker.

An environment for Transaction Manager (from Fig. 1) that fulfills all three
requirements could take the form depicted in Fig. 2 (only fragments of its Java code
are presented). From that it is clear that manual construction of the environment
is tedious and error-prone process. Therefore, we aim at creating a tool that would
generate the environment in an automated way, i.e. an environment generator.
As an input, the environment generator will get the specification of a component’s
environment, which has to determine all behaviors and combinations of input values.
Having the proper environment specification, the tool is able to produce a reasonable
environment for component model checking, which fulfills all the requirements stated
above.

58

public class EnvDbThread extends Thread
{

ITxMngr tm;

public void run()
{
String id = tm.begin(getRandomString());
if (getRandomBool()) tm.commit(id);
else tm.abort(id);
...

}
}

public class EnvBkThread extends Thread
{

IBackup bk;

public void run()
{
bk.backup(); ...

}
}

public static void main(String[] args)
{
TransactionMngrImpl tm = new TransactionMngrImpl();

tm.start();

new EnvDbThread(tm).start();
new EnvDbThread(tm).start();
new EnvBkThread(tm).start();

tm.stop();
}

Fig. 2. Fragments of Java code of environment for the Transaction Manager component

The specification itself may be divided into (i) a model of the environment’s
behavior and (ii) a definition of possible combinations of input values (i.e. method
parameters). All of this can be provided manually by the user or retrieved, for
example, from the ADL specification of the whole component-based application. In
this text, we focus on modeling of the environment’s behavior (our current approach
to definition of possible combinations of input values is described in [10]).

59

1.2 Goals and Structure of the Paper

The paper aims at addressing the problem of modeling the environment for model
checking of primitive software components that have their behavior specified in
the formalism of behavior protocols [13]. The main goal is to present our ap-
proach to modeling of the environment’s behavior, which exploits the definition of a
component’s architecture and specification of the component behavior via behavior
protocols provided in ADL.

The remainder of the paper is organized as follows. Sect. 2 provides an overview
of behavior protocols. Sect. 3 presents the key contribution - our solution to
computing the model of environment’s behavior from (i) the graph of bindings
between components in the architecture and (ii) the behavior specifications of all
the components (defined via behavior protocols) in the architecture. The rest of
the paper contains evaluation, related work and a conclusion.

2 Behavior Protocols

For specification and modeling of behavior of software components, we use the
formalism of behavior protocols.

A behavior protocol is an expression that specifies the behavior of a software
component in terms of specific atomic events on the component’s provided and
required interfaces, those events being accepted and emitted method call requests
and responses. Each behavior protocol defines a possibly infinite set of traces, where
each trace is a finite sequence of atomic events - we use L(prot) to denote the set of
traces specified by a protocol prot. The semantics of a behavior protocol is defined
in terms of labeled transition system (LTS), with transitions labeled by atomic
events.

Syntactically, a behavior protocol reminds a regular expression, with a set of
atomic actions working as the underlying alphabet. Each atomic event has the fol-
lowing syntax: <prefix><interface>.<method><suffix>. The prefix ? denotes
an accept event, the prefix ! denotes an emit event, the suffix ↑ denotes a re-
quest (i.e. a method call), and the suffix ↓ denotes a response (i.e. return from
a method). Several shortcuts, which make the protocols more readable, are also
defined. For example, an expression of the form ?i.m{prot} is a shortcut for the
protocol ?i.m↑;prot;!i.m↓, and an expression of the form ?i.m is a shortcut for
the protocol ?i.m↑;!i.m↓. The NULL keyword denotes an empty protocol.

In addition to standard operators ; (sequence), + (alternative), and * (repeti-
tion), behavior protocols provide the and-parallel operator |, which generates all
the possible interleavings of event traces defined by its operands, and the or-parallel
operator || (p || q stands for p + q + (p | q)).

The component’s frame protocol [13] describes the external behavior of the com-
ponent by defining all the valid sequences of events (i.e. traces) on the component’s
external interfaces. For composite components, the architecture protocol describes
the composed behavior of all subcomponents at the first level of nesting; it is gen-
erated as a parallel composition of frame protocols of the subcomponents.

The frame protocol of Transaction Manager (Sect. 1) is

60

(?tm.start ; ?tm.begin* ; (?tm.begin* | ?tm.commit* |
?tm.abort*) ; ?tm.stop) | ?bk.backup*

It is a parallel composition of two subprotocols. The first of them specifies that
the component should accept finite number of calls of backup on the bk interface.
The second subprotocol states that the component has to accept call of start on its
tm interface and then a finite number of calls of begin on tm, then it should accept
calls of begin, commit and abort on tm in parallel, and finally it should accept the
call of stop on tm.

The frame protocol of Database might be

?db.start{!logger.start ; !tm.start} ;
(

?db.add{!tm.begin ; (!tm.commit + !tm.abort)}
+
?db.get{!tm.begin ; (!tm.commit + !tm.abort)}
+
?db.remove{!tm.begin ; (!tm.commit + !tm.abort)}

)* ;
?db.stop{!logger.stop ; !tm.stop},

the frame protocol of DBServer might be

?db.start ; (?db.add + ?db.get + ?db.remove)* ; ?db.stop,

and the frame protocol of Backup Scheduler might be !bk.backup*.
An advantage of using behavior protocols for specification of component’s behav-

ior is the possibility to check whether the components equipped with frame protocols
are behaviorally compliant, i.e. whether the components communicate without er-
rors. We distinguish between (i) the horizontal compliance of components at the
same level of nesting and (ii) the vertical compliance of a frame of a composite
component with the underlying architecture (expressed by the architecture proto-
col). Nevertheless, checking of behavior compliance makes sense only under the
assumption that the implementation of each primitive component satisfies its frame
protocol (we say that the component obeys its frame protocol). This holds only
if the component accepts/issues only such method-call related event sequences on
its external provided and required interfaces that are specified by the component’s
frame protocol. An obvious approach to checking whether a component obeys its
frame protocol is to use code model checking; for that purpose we have a tool [11]
that accepts only complete programs as input, and therefore we need to create an en-
vironment that, together with the component, makes a complete program accepted
by our tool.

3 Modeling the Environment with Behavior Protocols

As indicated in Sect. 1.1, a model of the environment’s behavior has to be supplied
as a part of the environment specification that is provided to an environment gen-
erator. The model of the environment’s behavior should reflect the fact that the
resulting environment has to represent the behavior of all other components that

61

can possibly be bound to the target component. As an example, consider the com-
ponent architecture on Fig. 1; the environment for Transaction Manager should
represent at least the behavior of Database and Backup Scheduler with respect
to Transaction Manager.

Our first solution to modeling of the environment’s behavior, presented in [10],
uses the inverted frame protocol [1] of the target component, which is constructed
from the component’s frame protocol by replacing all the accept events by emit
events and vice versa. Such a model is the most general one, as the component’s
frame protocol specifies all the sequences of events the component can accept/issue
on its external (provided and required) interfaces. A drawback of this solution is that
the environment generated this way can be very complex, frequently making model
checking of the program composed of the component and its environment suffer
from state explosion. In [10] we presented an attempt to mitigate this drawback
by designing heuristic transformations and approximations of the frame protocol
that simplify the resulting environment to an extent that makes checking feasible.
However, a problem with this approach is that the resulting environment exercises
the target component only by a subset of the behaviors defined by the component’s
frame protocol; therefore, checking whether the component obeys its frame protocol
is not exhaustive in such a case.

In order to solve this problem, we propose a new approach to modeling the envi-
ronment’s behavior on the basis of a particular context - in our case, an architecture
the component is expected to be used in. More specifically, our approach exploits
(i) the definition of the architecture the target component is a part of, and (ii) the
behavior specification (defined as behavior protocols) of all the components that
form the architecture. Here, the basic idea is to use context protocol of the target
component, which specifies the actual use of the target component by the other
components of the architecture (and vice versa), as the model of the environment’s
behavior - it is an idea similar to that of using context constraints for compositional
reachability analysis of LTSs, which was presented in [3].

Using the context protocol instead of the inverted frame protocol as the model
of the environment’s behavior is useful especially in the case, where a particular
component-based application exploits only a subset of the functionality provided by
the target component - the context protocol then specifies only a subset of behaviors
determined by the inverted frame protocol, thus helping mitigate the problem of
state explosion.

To illustrate the advantage of using the context protocol instead of the inverted
frame protocol, consider again the architecture on Fig. 1, having the frame protocols
of the Transaction Manager, Database, and Backup Scheduler components as
presented in Sect. 2. Since the frame protocol of Database effectively specifies
call of begin on its required interface tm followed by an alternative between calls
to commit and abort on tm, all that repeated for a finite number of times, then,
despite the fact that the frame protocol of Transaction Manager specifies parallel
calls of those methods, the context protocol for Transaction Manager is

(!tm.start ; (!tm.begin ; (!tm.commit + !tm.abort))* ; !tm.stop)
| !bk.backup*

62

Such a context protocol for Transaction Manager obviously specifies a subset of
behaviors determined by the component’s (inverted) frame protocol, and, therefore,
model checking of Transaction Manager with the environment modeled by this
context protocol will have lower time and space requirements, than if the inverted
frame protocol was used for this purpose.

Notice also, that the behavior determined by the component’s context protocol
has to be a subset of behavior specified by the component’s inverted frame proto-
col for the checking of a component against its frame protocol to work correctly;
otherwise the model checker could report some “false errors” in addition to viola-
tions of the component’s frame protocol by its implementation, since also the traces
not allowed by the frame protocol will be defined in the context protocol (with
corresponding behavior being encoded in the generated environment) in this case.
In other words, for the inverted frame protocol IFC of the component C and its
context protocol CTXC , the formula L(CTXC) ⊆ L(IFC) must hold.

3.1 Computing the Model of Environment’s Behavior

Technically, our approach is to compute a behavior protocol that models behavior of
target component’s environment from (i) frame protocols of the other components
at the same level of nesting, (ii) the inverted frame protocol of the parent component
and (iii) the bindings between component’s interfaces; we denote the output, i.e.
the model of the environment’s behavior, to be the environment protocol of the
target component. The ideal algorithm for this purpose is the one that fulfills the
following two requirements:

• It should take only a fraction of time required by actual model checking of the
target component, as the task of environment construction is only a prerequisite
to the process of model checking, which has big time and space requirements on
its own.

• The algorithm should be precise; i.e. the resulting environment protocol should
represent exactly those behaviors that can be exercised on the target component
by other components taking part in the particular architecture, i.e. it should
specify the same behavior like the target component’s context protocol. Repre-
senting a subset of those behaviors would prevent exhaustive model checking and
representing a superset of those behaviors could possibly reduce efficiency of the
checking (by increasing the state space size).

However, for the algorithm to have low time requirements (which is our top
priority), it is necessary to make a compromise on the second requirement, as com-
puting the environment protocol that specifies exactly the same behavior as the
context protocol could be a very time- and space-consuming task for some inputs.
In such cases, the algorithm should produce an environment protocol that is a su-
perset of the context protocol (in terms of behavior specified by it) in an efficient
way. Nevertheless, considering the inverted frame protocol IFC of the component
C, its context protocol CTXC , and its environment protocol EC , then the formula
L(CTXC) ⊆ L(EC) ⊆ L(IFC) must hold. Consequently, the component’s environ-
ment protocol will specify the same behavior as its inverted frame protocol in the
worst case.

63

DBServer

Database

Transaction
ManagerLogger

DBServer::db - Database::db

Database::tm -
Transaction Manager::tm

Database::logger -
Logger::logger

DBServer

Database

DBServer::db - Database::db

a) b)
Backup

Scheduler

Backup Scheduler::bk -
Transaction Manager::bk

Backup
Scheduler

Fig. 3. a) graph of bindings between components; b) binding trees for the Transaction Manager component

3.1.1 Syntactical Approach
We designed an algorithm, which is based on syntactical expansion and substitution
of (parts of) behavior protocols. Its input consists of the frame protocols of all the
components in the architecture (except the target one) and the graph of the bindings
between the components, and its output is the environment protocol of the target
component. The algorithm is divided into three steps, described below.

The first step is the reduction of the graph of bindings to a subgraph that
contains only the paths that start at a parent component or at a component with
no provided interfaces (or with all its provided interfaces unbound) and end at
a component that is bound to the target component. In fact, the subgraph is a
set of acyclic graphs, which we call binding trees (despite the fact that some of
them may actually be DAGs) - there is one binding tree for the parent component,
if defined in the architecture, and one binding tree for each component with no
provided interfaces (or with all its provided interfaces unbound). Note that binding
trees defined in this way do not reflect bindings of the target component’s required
interfaces to provided interfaces of other components in the architecture. However,
despite that, our algorithm supports cyclic dependencies between components, since
each cycle of method calls must be initiated by a call that does not belong to the
cycle - and that call will be reflected in the resulting environment protocol (although
possibly indirectly in some cases).

Considering the architecture on Fig. 1, the graph of bindings on Fig. 3a, and the
Transaction Manager component as the target one, this step of the algorithm will
produce a subgraph that is depicted at the Fig. 3b. The first binding tree of the
subgraph consists of two nodes - the root node corresponding to the DBServer com-
ponent, and its child node corresponding to the Database component - and one edge
that represents the binding between the two components, and the second binding
tree consists of one node corresponding to the Backup Scheduler component.

In the second step, a part of the environment protocol is constructed for each
binding tree via syntactical expansion of protocols during traversal of a tree in the
DFS manner. The frame protocol of the component (or inverted frame protocol in
case of a parent component) corresponding to the root node of a tree represents
the initial version of the part of the environment protocol for the particular binding

64

tree. Then, when backtracking over an edge from a node A to a node B (which
is the parent of A) during DFS, all bindings between the required interfaces of
the component CB (represented by the node B) and provided interfaces of the
component CA (represented by the node A) are taken, and for each of these bindings
all the calls on the corresponding required interface of CB (as defined in its frame
protocol) are replaced with reactions to those calls (as defined in the frame protocol
of CA) in the current version of the part of the environment protocol. If the frame
protocol of CA specifies two or more reactions to some specific method call that are
connected via the and-parallel operator, it is necessary to use all these reactions
together with the connecting and-parallel operators preserved for the purpose of
replacing the corresponding call.

a)

+

;

!db.add ?db.add

+

;

?db.add !db.add

!tm.begin

b)

+

;

?tm.abort !tm.begin ?tm.abort

!db.add ?db.addα α

γ γ

Fig. 4. a) parse tree for the frame protocol of Database; b) illustration of one step in construction of the
environment protocol for Transaction Manager - replacement of call to db.add with a reaction to the call
(specified in the frame protocol of Database)

For illustration of the syntactical expansion of protocols, consider the first bind-
ing tree on Fig. 3b and the Transaction Manager component as the target one.
Then, when backtracking over the edge that represents the binding between DBServer
and Database, the call !db.add will be expanded to a reaction to this call that is
specified in the frame protocol of Database, i.e. to a subprotocol !tm.begin ;
(!tm.commit + !tm.abort), as depicted on Fig. 4 (the figure showing only frag-
ments of parse trees of the protocols).

In the third step of the algorithm, parts of the environment protocol for all
binding trees are connected via the and-parallel operator, thus forming the resulting
environment protocol for the target component. Using the and-parallel operator is
necessary because calls delegated from the parent component (if it exists) can be
performed in parallel with calls performed by components that have no provided
interfaces (or have all of them unbound). Considering our example, there are two
binding trees, one with the DBServer component as its root node and the second
with the Backup Scheduler component as its root node; therefore, the two parts of
the environment protocol that correspond to these binding trees will be connected
with the and-parallel operator.

Finally, the environment protocol is simplified to contain only events that rep-
resent calls on the provided interfaces of the target component, as all other events
are not relevant for modeling the environment of the target component and can be
therefore safely ignored.

65

The output of our algorithm for the Transaction Manager component is de-
picted in Fig. 5. It is an environment protocol that specifies the same behavior as
the component’s context protocol presented in Sect. 3, i.e. both protocols specify
the same set of event sequences. The presence of an alternative between subproto-
cols of the form (!tm.begin ; (!tm.commit + !tm.abort)) is only a syntactical
difference, which could be handled by preprocessing of some form before the envi-
ronment is actually generated from the environment protocol. The reason for the
environment protocol to have this form, not allowing parallel invocation of methods
on the tm interface, is that the frame protocol of DBServer specifies no parallelism;
calls on db specified in the inverted frame protocol of DBServer are replaced with
reactions to those method calls that are specified in the frame protocol of Database,
when the environment protocol is constructed.

(
!tm.start ;
(
(!tm.begin ; (!tm.commit + !tm.abort))
+
(!tm.begin ; (!tm.commit + !tm.abort))
+
(!tm.begin ; (!tm.commit + !tm.abort))

)* ;
!tm.stop

)
|
!bk.backup*

Fig. 5. Environment protocol for the Transaction Manager component

Consequence of the environment protocol for Transaction Manager specifying
only repetition of alternative calls on the tm interface (i.e. real usage of the compo-
nent in the given architecture) is that the environment modeled by this environment
protocol will determine smaller state space (of the program composed of the com-
ponent and environment) than if the component’s inverted frame protocol, which
allows for parallel calls of these methods, is used for modeling of the environment’s
behavior.

4 Evaluation

As already mentioned in Sect. 3, an advantage of modeling the environment’s
behavior via environment protocol is that the environment protocol reflects the real
usage of the target component in the specific architecture the component is used
in, and, therefore, it will typically specify a subset of behaviors determined by the
inverted frame protocol of the target component. On the other hand, a drawback
of using the environment protocol is that checking of the component has to be
performed again for each architecture the component is used in, since a different
subset of behaviors defined by the component’s frame protocol may be exploited in
each component architecture. In any case, checking whether the target component

66

obeys its frame protocol is exhaustive (with respect to the specific architecture), if
the environment protocol is used - not like when the heuristic transformations of
the inverted frame protocol are applied, which make checking of the component not
exhaustive (although more feasible in most cases).

The algorithm for computing the environment protocol, which is described in
Sect. 3.1.1, works well and produces expected results; its time and space require-
ments being fractional with respect to actual checking of the component. For ex-
ample, the algorithm is able to detect that methods of the target component are
called sequentially or alternatively in the given architecture, even though the com-
ponent’s frame protocol allows for parallel calls of the methods of the component
(see the example in Sect. 3.1.1 for illustration). Nevertheless, it is hard to esti-
mate the state space reduction achieved by our approach in general, as the level
of reduction depends on each specific case (i.e. how the target component is used
in the particular architecture); a systematic analysis of this issue is subject of our
current research. We also have a proof-of-concept implementation that was tested
on several examples, including the one presented in this paper.

However, our solution has also some drawbacks. One of them is that the syntax-
based algorithm does not produce a correct environment protocol if the component
is able to perform some calls on its required interfaces autonomously. Specifically,
such calls will not be included in the resulting environment protocol, which is then
incorrect because it will not force the environment to wait for these calls to hap-
pen (i.e. wait till the component issues the calls). The reason for not including
autonomous calls on component’s required interfaces in the environment protocol
is that our algorithm does not reflect bindings of the target component’s required
interfaces to the provided interfaces of other components in the architecture.

Second problem of our approach is that syntactical expansion of protocols may
not produce a correct result in cases, when the frame protocol of a certain component
specifies more reactions to some method call that are connected via the sequence
operator. In that case, it is generally not possible to decide, in an efficient way,
which reaction is the appropriate one for the particular method call; on the other
hand, subprotocols that represent both reactions should be typically equal in terms
of behavior, since they specify the body of the same method.

Third drawback of our solution, less significant than the first two, is that our
algorithm may produce an environment protocol that specifies a superset of behav-
iors determined by the context protocol for some inputs. Nevertheless, one of our
design requirements was to develop an efficient algorithm with respect to both time
and space, and this has been achieved with designing the algorithm to produce the
environment protocol that specifies more behaviors than the context protocol in
some cases.

5 Related work

The problem of model checking of isolated software components, which form a
component-based application, can be seen as a variation of compositional model
checking [5], whose basic idea is to (i) decompose a target system into several com-
ponents, (ii) verify local properties of the components via model checking, and (iii)

67

deduce global properties of the whole system from the local properties of the com-
ponents. The key point of this approach is checking properties of a composition of
a selected component with a model of its environment, instead of checking prop-
erties of the isolated component; by using an environment, it is guaranteed that
the checked local properties are preserved also at the global level. The difference
between compositional model checking and our approach is that the former aims at
checking global properties of the whole program (or a set of processes) via checking
local properties of individual components (or processes), while our approach aims at
checking the properties specific to individual components (e.g. obeying of a frame
protocol).

For verification of properties of software components, the assume-guarantee ap-
proach [7][12] is often used. The idea is to check a component only in such envi-
ronments that satisfy certain assumptions typically provided by the user; we can
say that the assumptions model the valid environments of a component subject to
model checking. This way, the need to check the component in all possible environ-
ments (or in a universal environment), what is usually an infeasible task, is avoided.
Application of model checking to a component with an environment satisfying a cer-
tain assumption then verifies whether the component satisfies the given property
under the given assumption. If the model checker returns a positive answer, it is
guaranteed that the component, when used in an environment that satisfies the spe-
cific assumption, must satisfy the given property in this environment. In order for
the checking of a component to be of practical use, the assumptions should together
model the real environment of the component (e.g. an architecture the component
is to be used in). The most popular means for expressing the assumptions is the
temporal logic (LTL), commonly used also for specification of the properties.

However, in our specific case, we use the environment protocol as the assump-
tion about the environment for model checking of components. This way, we do
not have to check whether such an assumption holds for the environment actually
used, as the environment is generated on the basis of the environment protocol, and
therefore the assumption represented by the environment protocol holds trivially.
Typical application of the assume-guarantee paradigm also requires the assump-
tions to be manually created by the user; in our case, we have to manually define
the frame protocols of all the components in the architecture - the environment
protocol is then automatically computed from these frame protocols and bindings
between components. We are aware of only one automatic approach to generat-
ing the assumptions for compositional verification, which is based on incremental
learning [6].

6 Summary

Direct model checking of isolated software components is typically not possible
because a component does not form a complete program which is accepted as an
input by a typical program model checker (the problem of missing environment).
Therefore, a solution is to create an environment of some form for the component
that is subject to model checking.

We proposed to model the environment on the basis of a particular component

68

architecture the target component is expected to be used in; the architecture being
a context for the component. Specifically, since we aim at hierarchical component
architectures with component behavior modeled via behavior protocols, we model
the component’s environment behavior with an environment protocol computed
from frame protocols of other components taking part in the given architecture.

We have presented an algorithm for computing the environment protocol, which
is based on syntactical expansion and substitution of frame protocols. Finally, we
showed that the solution for modeling the environment’s behavior on the basis of
the environment protocol is more efficient than our previous approach [10] based
on an inverted frame protocol; the reason for this is that the environment protocol
reflects the real usage of the target component in the given architecture, while the
inverted frame protocol specifies the most general environment for the component.

As for future work, we plan to extend our current algorithm for computing
the environment protocol with support for components that call methods on their
required interfaces autonomously.

Acknowledgments

We would like to record a special credit to Jan Kofron for valuable comments re-
garding the design and implementation of the algorithm for computation of the
environment protocol.

References

[1] Adamek, J., and F. Plasil, Erroneous Architecture is a Relative Concept, Proceedings of Software
Engineering and Applications (SEA), ACTA Press, pp. 715-720, Nov 2004

[2] Allen, R., “A Formal Approach to Software Architecture”, PhD Thesis, School of Computer Science,
Carnegie Mellon University, 1997

[3] Cheung, S. C., J. Kramer, Context Constraints for Compositional Reachability Analysis, ACM
Transactions on Software Engineering and Methodology, 5(1996), pages 334-377, October 1996

[4] Clarke, E. M., O. Grumberg, and D. Peled, “Model Checking”, MIT Press, 2000

[5] Clarke, E. M., D. E. Long, and K. L. McMillan, Compositional Model Checking, In Proceedings of the
4th Symposium on Logic in Computer Science, June 1989

[6] Cobleigh, J. M., D. Giannakopoulou, and C. S. Pasareanu, Learning Assumptions for Compositional
Verification, In Proceedings of 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), April 2003

[7] Giannakopoulou, D., C. S. Pasareanu, and H. Barringer, Assumption Generation for Software
Component Verification, In Proceedings of the 17th IEEE Conference on Automated Software
Engineering (ASE), IEEE CS, 2002

[8] Magee, J., and J. Kramer, Dynamic Structure in Software Architectures, Proceedings of FSE’4, 1996

[9] Medvidovic, N., ADLs and dynamic architecture changes, Joint Proceedings SIGSOFT’1996
Workshops, ACM Press, Oct 1996

[10] Parizek, P., and F. Plasil, Specification and Generation of Environment for Model Checking of Software
Components, Accepted for publication in Proceedings of FESCA 2006, ENTCS, Mar 2006

[11] Parizek, P., F. Plasil, and J. Kofron, Model Checking of Software Components: Combining Java
PathFinder and Behavior Protocol Model Checker, Accepted for publication in Proceedings of 30th
IEEE/NASA Software Engineering Workshop (SEW-30), IEEE CS, Apr 2006

[12] Pasareanu, C. S., M. B. Dwyer, and M. Huth, Assume-Guarantee Model Checking of Software: A
Comparative Case Study, In Proceedings of the 6th SPIN Workshop, LNCS, 1680(1999), 1999

[13] Plasil, F., and S. Visnovsky, Behavior Protocols for Software Components, IEEE Transactions on
Software Engineering, 28(2002)

69

Chapter 8

Partial Verification of Software
Components: Heuristics for
Environment Construction

Pavel Paŕızek,
Frantǐsek Plášil

Contributed paper at 33rd EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications (SEAA).

In conference proceedings,
published by IEEE CS,
pages 75–82,
ISBN 0-7695-2977-1,
ISSN 1089-6503,
August 2007.

The original version is available electronically from the publisher’s
site at http://doi.ieeecomputersociety.org/10.1109/EUROMICRO.
2007.46.

70

http://doi.ieeecomputersociety.org/10.1109/EUROMICRO.2007.46
http://doi.ieeecomputersociety.org/10.1109/EUROMICRO.2007.46

Partial Verification of Software Components:
Heuristics for Environment Construction

Pavel Parizek, Frantisek Plasil

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{parizek,plasil}@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz

Academy of Sciences of the Czech Republic
Institute of Computer Science

plasil@cs.cas.cz
 http://www.cs.cas.cz

Abstract

Code model checking of software components suffers
from the well-known problem of state explosion when
applied to highly parallel components, despite the fact that
a single component typically comprises a smaller state
space than the whole system. We present a technique that
mitigates the problem of state explosion in code checking of
primitive components with the Java PathFinder in case the
checked property is absence of concurrency errors. The key
idea is to reduce parallelism in the calling protocol on the
basis of the information provided by static analysis
searching for concurrency-related patterns in the
component code; by a heuristic, some of the pattern
instances are denoted as “suspicious”. Then, the
environment (needed to be available since Java PathFinder
checks only complete programs) is generated from a
reduced calling protocol so that it exercises in parallel only
those parts of the component’s code that likely contain
concurrency errors.

Keywords: software components, model checking,
concurrency errors, Java PathFinder, static analysis

1. Introduction
For object-oriented programs, several verification and

reasoning frameworks are built around code model checkers
to check whether a finite model of the code of a target
program violates a desired property (reported by providing
a counterexample). Such a property can be predefined in the
model checker (e.g. absence of deadlocks), expressed as an
external temporal logic formula, and specified as an
assertion directly in the code of a program. Well-known
examples of such frameworks are the SLAM model checker
[3] and Java PathFinder [22], the latter being both a highly

customizable code model checker and a verification
framework, which works as a special JVM upon byte code.

Model checking of complex software systems that involve
high degree of parallelism is prone to the well-known state
explosion problem. All viable approaches to address it are
based on abstraction [5] (e.g. partial order reduction and
predicate abstraction), compositional reasoning and
heuristics. In particular, heuristics are used to direct the state
space traversal (directed model checking [6]) and to identify
the parts of the state space that are likely irrelevant with
respect to given properties. The key goal of heuristics is to
help (i) discover errors in limited time and space and (ii)
report short and easy-to-read counterexamples. Even though
this way partial verification is done in general (since some
parts of the state space are omitted), heuristics perform well
for verification against specific types of errors [6].

For hierarchical component-based systems with formal
behavior specification, various properties specific to
components can be checked, such as correctness of
composition (assembly) [11], [18], and whether the code of
a primitive component obeys the behavior specification. In
[17], we presented a technique of code model checking of
primitive software components against their behavior
specification (defined via behavior protocols [18]) that is
based on cooperation of the Java PathFinder (JPF) [22] with
the behavior protocol checker (BPChecker) [10]. Although
the approach presented in [17] typically works well, for a
heavily parallel component state explosion can still occur.

1.1. Behavior Protocols
For modeling and specification of behavior of hierarchical

software components, in our group, we use the formalism of
behavior protocols [18] (a specific process algebra). As
behavior, the set of finite traces of atomic events

71

corresponding to accepted and emitted method calls on
component interfaces is considered. A behavior protocol
prot specifies a set of traces denoted as L(prot): in
particular, the behavior of a component on its external
interfaces is defined by its frame protocol.

A behavior protocol reminds a regular expression upon
an alphabet of atomic events, syntactically written as
<prefix><interface>.<method><suffix>. The
prefix ? means accepting, ! emitting, the suffix 8 means a
request (of a method call) and 9 a response (return from a
call). Several shortcuts are defined: ?i.m is a shortcut for
?i.m8 ; !i.m9 and !i.m stands for !i.m8 ; ?i.m9. In
addition to the standard regular operators (;,+,*), there is
also | (and-parallel), which generates all interleavings of
the event traces defined by its operands.

Concepts presented in this paper will be illustrated on a
part of the component application developed in CRE project
[1] for Fractal [4] (Fig. 1). Here we are interested especially
in the TransientIpDb and IpAddressManager primitive
components that form a part of the DhcpServer composite
component. The frame protocol of TransientIpDb
(featuring the interface IIpMacDb) might be:

?IIpMacDb.Add* | ?IIpMacDb.Remove* |
?IIpMacDb.GetMacAddress* |
?IIpMacDb.GetIpAddress* |
?IIpMacDb.GetExpirationTime* |
?IipMacDb.SetExpirationTime*

It states that each method can be executed repeatedly in
parallel with other methods on the interface.

An advantage of frame protocols is the possibility to

check whether the components are behaviorally compliant
(i.e. they communicate without errors). For that purpose
behavior protocols introduce the consent operator L, a
special case of parallel composition; it supports
synchronization via merging accepting and emitting events of
a method call into internal events, and also identifies
communication errors (deadlock and no response to a call).
We have implemented the consent operator in the behavior
protocol checker (BPChecker) [10].

1.2. Model Checking of Software Components and
Behavior Protocols

At the first sight, code model checking of software
components mitigates the state explosion problem, since a
single component obviously comprises a smaller state space
than the whole system. Unfortunately, this is not directly
possible, since typical code model checkers, including the
Java PathFinder, check only a complete program (featuring
the main), which is not typical for a component - problem of
missing environment [16]. A solution to it is to construct a
software environment that, together with the component,
makes a complete program. For this purpose, we developed
the environment generator for the Java PathFinder [15]; as
input, it accepts behavior specification of an environment as
a behavior protocol (the component’s environment protocol)
and its output is a set of Java classes forming the
environment, which communicates with the component
interfaces according to the environment protocol.

An environment protocol of a primitive component can be
constructed in two ways: (i) by forming the inverted frame
protocol (derived from the frame protocol by replacing emit

Figure 1: Architecture of the DhcpServer component

72

events with accept events and vice versa) [16], and (ii) by
composition of frame protocols of other components in the
particular architecture via the consent operator [14]. For
illustration, the inverted frame protocol of TransientIpDb
(and also its environment protocol) is:

!IIpMacDb.Add* | !IIpMacDb.Remove* |
!IIpMacDb.GetMacAddress* |
!IIpMacDb.GetIpAddress* |
!IIpMacDb.GetExpirationTime* |
!IipMacDb.SetExpirationTime*

In general, an environment protocol specifies both
invocations of the component’s methods by the
environment (events of the form !m) and acceptances of
component’s calls to the environment (events of the form
?n). However, it is hard to generate environment which
accepts calls according to such a protocol, since in Java
there is no explicit construct for acceptance of a method call
depending upon history of other calls. Fortunately, for
checking the component we use JPF cooperating with
BPChecker, which verifies whether both incoming and
outcoming calls are done according to the frame protocol.
Therefore, it is enough to generate an environment which
accepts the calls in any order and just its outcoming calls
respect the environment protocol. Consequently, an
environment protocol can be restricted to method
invocations (calling protocol). For example, the
environment protocol (!a;?b) | !c;(?d+!e) |
(!b+?d;!e) is restricted to the calling protocol !a |
(!c;!e) | (!b+!e).

1.3. Goals and Structure of the Paper
The goal of this paper is to address the state explosion

problem for code model checking of primitive components
with JPF in case the checked property is absence of
concurrency errors (deadlocks, race conditions). For this
purpose, the paper proposes a technique to keep the state
space size in “reasonable” limits by heuristically reducing
the parallelism in the environment so that it exercises in
parallel only those parts of the primitive component’s code
which likely contain concurrency errors; these parts are
identified via a static code analysis (searching for
“suspicious” patterns in the component code).

An additional goal is to illustrate the feasibility of the
proposed technique and its benefits (support for discovery
of concurrency errors in limited time and space and
provision of short and easy-to-read counterexamples) on the
results of experiments performed on several primitive
components.

To reflect these goals, the remainder of the paper is
organized as follows. Sect. 2 presents details of the
proposed technique - heuristic reductions of parallelism in
the environment on the basis of information provided by a
static analysis of code. Further, Sect. 3 shows experimental

results of applying the proposed technique to several
primitive components and Sect. 4 provides an evaluation of
the technique. The rest of the paper contains related work and
a conclusion.

2. Heuristics for Environment Construction
As indicated in Sect. 1.3, the basic idea of the technique

is to reduce the parallelism in the environment of a primitive
component on the basis of static code analysis that identifies
those parts of the component code that likely contain
concurrency errors. In general, this is done in the following
4-step process which involves several heuristics:

(1) Acquiring a calling protocol of the component subject
to checking;

(2) by static code analysis, identifying those methods of
the component whose parallel executions would likely cause
concurrency errors;

(3) reducing the level of parallelism in the calling protocol
so that parallel composition is preserved only between
method calls identified in (2) - creating a reduced calling
protocol;

(4) constructing an environment corresponding to the
reduced calling protocol and applying JPF to the complete
program composed of the component and environment codes.

Here we focus only on (2) and (3), since the other steps
are described in [14] and [16].

2.1. Identification of Methods Likely Causing
Concurrency Errors

The purpose of the step (2) above is only to identify those
methods of a component subject to checking, whose parallel
executions likely cause concurrency errors. The algorithm for
methods’ identification has to fulfill the following
requirements; it has to

(i) have low time complexity,
(ii) support detection of deadlocks and race conditions,
(iii) accept isolated primitive components as input,
(iv) provide a Java API so that it can be integrated with the

existing environment generator [15].
Even though there exist solutions for detection of potential

concurrency errors in Java (e.g. Jlint [9] and FindBugs [8]),
none of them we are aware of fulfills all these requirements.
In particular, the existing solutions either accept only
complete programs [20], detect only a single type of
concurrency errors (typically race conditions) [20], or do not
provide a Java API [9]. The proposed solution is based on
searching for four concurrency-related patterns (in our
experience frequently occurring in Java applications) in the
byte code of pairs of methods and assigning weights
(likeliness of an error) to pattern instances. The patterns are
illustrated below (synch means synchronized).

The patterns (P1) and (P2) are deadlock-related.
Specifically, (P1) captures nesting of synchronized blocks in
reverse order, while (P2) identifies the calls to the

73

Object.wait and Object.notify methods that are
nested inside two synchronized blocks (i.e. call of
LB.notify is never reached after LB.wait was executed).

 m1 m2
 (P1) synch (L1) { synch (L2) {
 synch (L2) { synch (L1) {

 } }
 } }

(P2) synch (LA) { synch (LA) {
 synch (LB) { synch (LB) {
 LB.wait(); LB.notify();
 } }
 } }

 The patterns (P3) and (P4) are race conditions-related. In
particular, (P3) captures the situation when reading and
writing to the same attribute is possible simultaneously due
to synchronized blocks guarded by locks of different
objects, and (P4) identifies unsynchronized accesses to a
shared attribute, for instance via unsynchronized calls to
methods of Java collection classes (e.g. HashMap,
LinkedList, or TreeSet).

 m1 m2
 (P3) X x; Y y;
 synch (x) { synch (y) {
 this.attr = = this.attr;
 } }

(P4) List ll = .. List ll = ..
 ll.add(“abc”); ll.remove(1);
 The weight of each pattern instance reflects the

likeliness of the corresponding concurrency error
occurrence (e.g, if in P1 the types t1 of L1 and t2 of L2
differ, then an error is more likely than when they are the
same, since different types imply different objects - a
consequence of this is the nesting of synchronized blocks in
reverse order). The total weight of a pair of methods <m1,
m2> is determined as the sum of weights of all the pattern
instances identified in the method pair. The actual values of
the weights are determined by a weight function upon
classes of instances of P1-P4 providing values from the
range <0,1> (the lower the value the smaller likeliness of an
error; zero means no likeliness). The function is to be
provided by the user. Based on a series of experiments, we
have “tuned up” the function specified in Table 1, where the
classes are determined by the relation of types t1 and t2.

The algorithm, which locates a specific pattern (one of
P1-P4) in the code and assigns weights to its instances, is
further denoted as a heuristic detector. Implementation of
a detector is based on the ASM library [2].

2.2. Creating a Reduced Calling Protocol
The basic idea of the step (3) (beginning of Sect. 2) is to

reduce the number of occurrences of parallel compositions in
the calling protocol by replacing a parallel operator with an
explicit specification of method calls interleaving via
simplified sequencing. However, the reduced calling protocol
has to preserve the parallel compositions involving methods
identified in the step (2) as likely containing concurrency-
related errors (Sect. 2.1). More precisely, the proposed
technique reduces a calling protocol of the form
 InitP ; (p1 | p2 | ... | pN) ; FinishP (I)
where InitP, FinishP and all pi are calling protocols.

Three types of reduction are proposed: sensitive
composition, recursive reduction of parallelism, and parallel
prefixes. All these reductions accept as input a calling
protocol, e.g.
 !init;(!a | (!c;!e) | (!b+!e));!finish (i)
The output of each reduction of a calling protocol CP is a
reduced calling protocol CPred, which may be syntactically
very different. However, each trace in L(CPred) has to be a
prefix of a trace from L(CP) (i.e. œtred 0 L(CPred) ›t 0 L(CP)
›tsuf : t = tred tsuf) so that behavior not allowed by CP is not
present in CPred. For sensitive composition and recursive
reduction of parallelism, the prefixes correspond to complete
traces (i.e. tsuf is the empty string so that L(CPred) f L(CP)),
while for parallel prefixes, tsuf is not empty and L(CPred)
contains proper prefixes.

The key idea of the sensitive composition is as follows: (p1
| p2 | ... | pN) in (I) is replaced by

(...;pk-1;pk;pk+1;...; (pi | pj)) + (...;pk-1;pk;pk+1;...; (pi | pj)) + ...
+ (p1;...;pN) (II)
where an alternative with the parallel operator is introduced
for any protocol tuple <pi, pj> such that its cumulative weight
(explained below) is non-zero; basically, pi and pj contain
methods involving instances of patterns P1-P4. The sequence
...;pk-1;pk;pk+1;... contains all of the protocols p1, ..., pN except
for pi and pj. The last alternative, purely “sequential”, is
introduced only if there is a tuple with zero cumulative
weight. Notice that replacement of parallel composition by
sequencing is very simplified: each alternative specifies a set
of traces with a common prefix followed by interleavings of
events described by (pi | pj). This reflects the fact that the only
“sensitive” (likely producing concurrency errors) protocols in
the alternative are pi and pj. The sequence ...;pk-1;pk;pk+1;... is
intentionally chosen as a prefix (not a postfix) of (pi | pj) to
exclude this sequence from JPF backtracking triggered by
execution of all interleavings of (pi | pj). Sensitive

pattern P1
(t1 = t2)

 P1
(t1 != t2)

 P2 P3
(t1 = t2)

 P3
(t1 != t2)

 P4
(t1 = t2)

 P4
(t1 != t2)

weight 0.3 1 0.5 0.25 0.8 0.25 0.9

Table 1: Weights of concurrency-related patterns

74

composition is illustrated on the following example. Given
the protocol (i), all the tuples are:

<!a, (!c;!e)> (ii) cum. weight 1.3
 <!a, (!b+!e)> (iii) cum. weight 0.25
<(!c;!e), (!b+!e)> (iv) cum. weight 0

For each protocol tuple, all pairs of methods, whose calls
are specified in the tuple, are identified; for the tuple (ii)
those are <!a, !c> and <!a, !e>. By applying the heuristic
detectors to the code of these pairs, the weight of each pair
is acquired (0.5 for <!a, !c> and 0.8 for <!a, !e>). The
cumulative weight of a protocol tuple is determined as the
sum of weights of all its method pairs, i.e. the weight of (ii)
is 1.3. The alternatives from (II) are determined by the
cumulative weights of the tuples as follows:
 (!b+!e) ; (!a | (!c;!e)) (ii’)

(!c;!e) ; (!a | (!b+!e)) (iii’)
!a ; ((!c;!e) ; (!b+!e)) (iv’)

Thus, the reduced calling protocol takes the form
 !init;((!b+!e);(!a|(!c;!e)) + (v)
 (!c;!e);(!a|(!b+!e)) +
 !a;((!c;!e); (!b+!e));!finish

The basic idea of the recursive reduction of parallelism
is that (p1 | p2 | ... | pN) in (I) is replaced by

 pk+1;...;pN;(p1 | ... | pk) (III)
where each pm from pk+1;...;pN is removed from the parallel
composition in one step of the reduction; i.e. after the first
step of reduction (where m = N), the protocol takes the
form pN;(p1 | ... | pN-1). Reduction is performed as long as the
proportional weight of pm is lower than a user-defined
threshold; this assumes that ordering of p1 | ... | pN is
determined by their proportional weights (p1 having the
highest and pN the lowest one). The proportional weight of
pm is determined as the sum of cumulative weights of the
tuples <pi, pm> and <pm, pj>, where 1 # i,j < m, divided by
the sum of cumulative weights of all the tuples <pi, pj> over
{p1, ..., pm}, where i … j. Recursive reduction of parallelism
is illustrated on the following example. Given the protocol
(i), the proportional weights of the protocols !a, (!c;!e),
(!b+!e) have to be determined. Since (i) contains the
tuples (ii), (iii) and (iv), having cumulative weights 1.3,
0.25 and 0, the proportional weights of the protocols !a,
(!c;!e), (!b+!e) are 1, 0.84 and 0.16. Thus, (i) can be
reduced to (!b+!e);(!a | (!c;!e)) in one step, as the
proportional weight of !b+!e is lower than the threshold
set to 0.2 (on the basis of a number of experiments).

Both the sensitive composition and recursive reduction
of parallelism preserve InitP and FinishP in CPred, since
L(CPred) f L(CP) holds for these reductions. However, InitP
may be typically empty if the component has no explicit
initialization phase. The parallel prefixes reduction takes
advantage of this by considering only prefixes of traces in
L(CP) which start with interleavings of protocol tuples that
have non-zero cumulative weight. Assuming that InitP in (I)
is empty, the basic idea is to replace (p1 | ... | pN) by

 (pi | pj) + (pi | pj) + ... (IV)
where an alternative is introduced for any tuple <pi, pj> such
that its cumulative weight is non-zero (weights evaluated as
in case of sensitive composition); naturally, the “rest” of
traces in (p1 | p2 | ... | pN) ; FinishP is not considered. The
inherent assumption is that concurrency errors will be
discovered by considering only the prefixes of traces in
L(CP) (supposing InitP is empty). For illustration, consider
protocol (i). Assuming it is modified by eliminating !init,
the following protocol tuples are acquired:
 <!a, !c> (vi) cum. weight 0.5
 <!a, !e> (vii) cum. weight 0.8
<!a,!b>, <!b,!c>, <!b,!e>, <!c,!e> (viii), cum. weight 0

Since only the tuples with non-zero cumulative weight are
considered in (IV), the result is (!a|!c) + (!a|!e).

3. Tools & Experiments
This section describes the experiments that we performed

to show the impact of the proposed reductions on time and
space complexity of component checking with JPF. For that
purpose, we have created a prototype tool that supports all the
proposed reductions of parallelism and provides heuristic
detectors for all the patterns P1-P4.

In search for real-life examples of concurrency errors in
the code, we have manually examined a number of
components, ranging from those of the demo application
developed in [1] to those from the Perseus project [19].
Typically, “interesting” components contained pattern
instances in the combinations {P1, P2} and {P3, P4}. The
components are listed in Tab. 2 and Tab. 3. Since
Pessimistic Concurrency Manager was the only strong
deadlock-prone candidate, we created a testing component
(OrderProcessor) where we injected several deadlocks.

The tables show for each of these pattern combinations
and the analyzed component characteristics of several JPF
runs, each of them for the environment generated by a
different reduction (including none) of the component’s
calling protocol. For each environment, two variants of JPF
runs were measured - first, for the standard DFS algorithm for
state space traversal and, second, for the heuristic search (HS,
[6]) that maximizes thread interleavings.

The run characteristics are: the total number of states
traversed by JPF, length of the provided counterexample,
elapsed time to find the first error and size of memory.
Detailed description of the discovered errors is in [13].

The reason for not performing experiments with parallel
prefixes for IpAddressManager is that its calling protocol
has the InitP part non-empty.

4. Evaluation
Results of the experiments (in Tab. 2 and 3) show that the

proposed reductions make discovery of concurrency errors in
the code of primitive components with JPF more feasible by
lowering the time and space complexity. Moreover, shorter

75

and easy-to-read counterexamples are provided, since less
parallelism (i.e. parallel interleavings of fewer threads) has
to be modeled by JPF and therefore the path to an error
state is typically shorter than if no reduction is applied.
Surprisingly, when heuristic search was applied, JPF
reported only the last transition of the counterexample ((1)
in the tables) - likely a bug.

An obvious question is (a) which of the reductions
should be applied in the checking process and (b) in which
order. Since there is no simple relation among the languages
L(CPred_pp), L(CPred_sc) and L(CPred_rrp) for a particular CP,
an obvious answer to (a) is all of them, while as to (b) the
speed assessment indicated by the experiments from Tab. 2
and Tab. 3 might be the driving factor (CPred_pp means the
result of parallel prefixes reduction of CP, etc.). Therefore,
we recommend to apply the reductions in the following
order: (i) parallel prefixes; after no error was discovered by
a run of JPF with the environment generated from CPred_pp,
similar steps are to be taken for (ii) sensitive composition
and (iii) recursive reduction of parallelism (no particular
order of preference of these two). If an error is discovered,
after it is fixed the same reduction is to be repeated in the
checking process. In general, since traces from L(CPred) are
only prefixes of (not all) traces from L(CP), a JPF run upon
a component with the environment generated from CPred
may not find all the errors that would be identified with the
environment generated from CP; this was the case of

checking IpAddressManager for race conditions (Tab. 2b).
Therefore, (iv) “no reduction” is also to be applied, however
it might not be feasible for components with heavily parallel
behavior (Tab. 2c).

As to patterns, another question is (a) in which order and
(b) combinations they are to be applied. The answer to (a) is
easy: they do not directly depend on each other so that there
is no recommended order. As for (b), there is a trade-off: the
more patterns are applied, the higher the cumulative weights
of tuples (Sect. 2) and therefore the resulting CPred contains
more parallelism. The other side of the coin is the more
parallelism the higher the complexity of JPF checking. As a
compromise, the combinations {P1, P2} and {P3, P4} are
feasible since instances of both the patterns in a combination
are not likely to be detected at the same time.

It may seem that heuristic detectors are sufficient for
discovery of concurrency errors of specific types in the code
(i.e. there is no need to run JPF to find such errors). However,
heuristic detectors can issue both false positives and
negatives, since the pattern detection is undecidable in
general (e.g. consider that the types t1 and t2 in P1 are
available statically, while the actual instances L1 and L2 only
at runtime). Thus, JPF has to be used to decide whether there
are “real” concurrency errors in the code.

It should be emphasized that pi in (I) (Sect. 2.2) are
general calling protocols, so that if pi takes again the form
InitP ; (p1 | p2 | ... | pN) ; FinishP, the reduction can be applied

No reduction No reduction (HS) Parallel prefixes Parallel
prefixes (HS)

Sensitive
composition

Sensitive
compos. (HS)

Recursive red.
of parallelism

Recursive red. of
parallelism (HS)

a) in TransientIpDb (project: CRE, size: 65 lines of code (loc) in Java)

No. of states 1189 - 865 261355 16849 - 1189 -

Length of CE 61 - 25 no error 41 - 61 -

Time in seconds 2 - 2 165 15 - 2 -

Memory in MB 7 out of memory 7 167 8 out of memory 7 out of memory

b) in IpAddressManager (project: CRE, size: 240 loc in Java)

No. of states 105652 - - - 172245 171537 155644 156067

Length of CE 44 - - - no error no error no error no error

Time in seconds 199 - - - 332 327 264 265

Memory in MB 13 out of memory - - 19 308 14 259

c) in Pessimistic Concurrency Manager (project: Perseus, size: 400 loc in Java)

No. of states - - 877233 1129069 172 - - -

Length of CE JPF failed - no error no error 50 - JPF failed -

Time in seconds - - 505 550 1 - - -

Memory in MB - out of memory 25 500 11 out of memory - out of memory

Table 2: Detection of race conditions (patterns P3 and P4)

76

recursively. This recursive application of the reduction
technique was tested only on “toy” components, since we
found it hard to obtain any real-life component with
behavior featuring nested parallelism.

A drawback of the proposed technique is that all the
patterns P1-P4 involve just two methods, i.e. concurrency
errors that span more methods are not considered. Also, the
selected four patterns naturally do not cover all possible
concurrency problems in Java; therefore, our prototype tool
is extensible so that more patterns can be easily added.

5. Related work
In particular, we are not aware of any other technique

that addresses the state explosion in code checking of
software components via application of heuristics (for
reduction of parallelism) when constructing a component
environment (in typical code model checkers, heuristics are
used to guide state space traversal). The Bandera
Environment Generator (BEG) [21] can generate an
environment for sets of Java classes; however, the
environment’s behavior specification has to be provided by
the user (i.e. it is not derived from the component’s
behavior specification), who ad-hoc determines the level of
parallelism in the environment.

While there are very few techniques for component
environment generation, a lot of related research has been
done in detection of concurrency errors in the code. This
includes (i) static analysis upon an abstraction of the code
(e.g. Chord [12]), (ii) dynamic detection of errors during a
run of an instrumented program (e.g. Eraser [20]), (iii)
search for predefined bug patterns in the code (e.g. Jlint [9]
and FindBugs [8]), and (iv) model checking (e.g. SLAM [3]
and Java PathFinder [22]). In general, each technique based
on (i)-(iii) reports false positives and misses some of the
concurrency errors that are discovered by other such

techniques. Specifically, static analysis suffers from over-
abstraction of the code and reporting false positives (spurious
errors). Even though (ii) reports no false positives, it checks
only selected execution paths, consequently not discovering
all errors. Despite that tools searching for predefined bug
patterns (iii) typically report false positives and fail to
identify all errors, they are used in practice because of their
low time and space complexity. Short characteristics of the
selected tools based on (i)-(iii) are below.

The Chord tool [12] is a static detector of race conditions
that combines four different techniques of static analysis (e.g.
call graph construction and lock analysis) in order to
minimize the number of false positives it reports.

Popular dynamic detector of race conditions is Eraser [20],
which uses the well-known lockset algorithm. This tool can
be applied only to binary executables.

The generic FindBugs tool [8] locates predefined patterns
via a combination of linear byte code scan and data- and
control-flow analysis. It aims at detection of all kinds of
errors in Java code (e.g. null pointer dereference), but it has
a limited support for concurrency errors - it is focused rather
on incorrect usage of Java concurrency-related API (e.g.
Thread.run() is used instead of Thread.start()). In a
similar vein, the generic Jlint tool [9] searches for instances
of predefined bug patterns in byte code; unlike FindBugs, it
can detect potential deadlocks and race conditions within the
inherent limits of static pattern analysis.

A technique similar to what we proposed in Sect. 2 and 3
is the combination of runtime analysis with model checking
[7], where the purpose of runtime analysis is to detect
potential race conditions and deadlocks. The model checker
(JPF) is used to check whether the potential errors detected
by runtime analysis are real or not. While our technique is
based on a specific generation of environment (needed to
make a component complete program anyway) focused on

No reduction No reduction (HS) Parallel prefixes Parallel
prefixes (HS)

Sensitive
composition

Sensitive
compos. (HS)

Recursive red.
of parallelism

Recursive red. of
parallelism (HS)

a) in OrderProcessor (testing component, size: 100 loc in Java)

No. of states 77133 29713 359 788 1526 8428 1527 1361

Length of CE 52 (1) 19 (1) 36 (1) 37 (1)

Time in seconds 28 14 1 3 2 7 2 2

Memory in MB 6 86 5 5 5 8 5 7

b) in Pessimistic Concurrency Manager (project: Perseus, size: 400 loc in Java)

No. of states 142 - 54 4990 90 25449 93 7372

Length of CE 121 - 33 (1) 69 (1) 72 (1)

Time in seconds 1 - 1 5 1 44 1 11

Memory in MB 8 out of memory 5 13 11 47 10 26

Table 3: Detection of deadlocks (patterns P1 and P2)

77

concurrency errors identified by static analysis, the
technique [7] directs JPF checking of a complete program
to focus on particular concurrency errors identified in a
specific preceding run.

6. Conclusion and future work
In this paper, we addressed the state explosion problem

encountered in JPF code model checking of primitive
software components in case the checked property is
absence of concurrency errors. Since JPF checks only
complete programs, an environment has to be provided for
a component to make it a complete program. In [16, 14], we
described how such an environment can be generated from
the behavior specification of the component and of its
deployment context (specifically, from its calling protocol).
The key idea is to reduce parallelism in the calling protocol
on the basis of the information provided by static analysis
of the component code, searching for concurrency-related
patterns; by a heuristic, some of these patterns are denoted
as “suspicious”. Then, the environment is generated in such
a way that it exercises in parallel only those parts of the
component’s code that likely contain concurrency errors.

By results of several experiments, we have shown that
the main benefit of the proposed three reductions of calling
protocol is the possibility to generate an environment
allowing discovery of concurrency errors via JPF with
reasonably low time and space complexity. Even though
use of these reductions may prevent discovery of some of
the errors (which would be detected when no reduction was
employed), there is a trade-off: checking with no reduction
likely provides no result, since state explosion occurs.

As a future work, we plan to generalize the proposed
technique with support for byte code patterns involving an
arbitrary number of parallel methods; this way, the static
code analysis should be able to detect more potential
concurrency errors. In addition, we will focus on more
elaborated definition of the weight function - with respect
to (i) specific code features (like the number of attributes
shared by methods), and (ii) probability of parallel
execution of component’s methods.

Acknowledgments
This work was partially supported by the Grant Agency

of the Czech Republic (project number 201/06/0770).
Special credit also goes to Pavel Jezek for his key role in
designing the demo application in [1].

References

[1] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P.
Parizek, and F. Plasil: Component Reliability
Extensions for Fractal Component Model,
http://kraken.cs.cas.cz/ft/public/public_index.phtml

[2] ASM: Java bytecode manipulation framework,
http://asm.objectweb.org

[3] T. Ball, S. K. Rajamani: The SLAM Project: Debugging
System Software via Static Analysis, POPL 2002, ACM

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.
B. Stefani: The FRACTAL component model and its
support in Java. Softw., Pract. Exper. 36(11-12), 2006

[5] E. Clarke, O. Grumberg, and D. Peled: Model Checking,
MIT Press, Jan 2000

[6] A. Groce, W. Visser: Heuristics for Model Checking Java
Programs, Proceedings of the 9th International SPIN
Workshop on Model Checking of Software, 2002

[7] K. Havelund: Using Runtime Analysis to Guide Model
Checking of Java Programs, In SPIN Model Checking
and Software Verification, LNCS 1885, 2000

[8] D. Hovemeyer, W. Pugh: Finding Bugs is Easy, ACM
SIGPLAN Notices, vol. 39, pages 92-106, Dec 2004

[9] Jlint, http://artho.com/jlint/
[10] M. Mach, F. Plasil, and J. Kofron: Behavior Protocol

Verification: Fighting State Explosion, IJCIS, Vol.6,
Number 1, ACIS, ISSN 1525-9293, pp. 22-30, 2005

[11] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer:
Specifying Distributed Software Architectures. Proc. 5th
European Software Engineering Conference

[12] M. Naik, A. Aiken, and J. Whaley: Effective Static Race
Detection for Java, In Proceedings of PLDI’06, ACM

[13] P. Parizek, F. Plasil: Heuristic Reduction of Parallelism
in Component Environment, Tech. Report No. 2007/2,
Dep. of SW Engineering, Charles University, Mar 2007

[14] P. Parizek, F. Plasil: Modeling Environment for
Component Model Checking from Hierarchical
Architecture, Accepted for publication in Proceedings of
FACS’06, ENTCS, Sep 2006

[15] P. Parizek: Environment Generator for Java PathFinder,
http://dsrg.mff.cuni.cz/projects/envgen

[16] P. Parizek, F. Plasil: Specification and Generation of
Environment for Model Checking of Software
Components, Accepted for publication in Proceedings of
FESCA 2006, ENTCS, 2006

[17] P. Parizek, F. Plasil, and J. Kofron: Model Checking of
Software Components: Combining Java PathFinder and
Behavior Protocol Model Checker, SEW’06, IEEE CS

[18] F. Plasil, S. Visnovsky: Behavior Protocols for Software
Components, IEEE Trans. on Soft. Eng. 28(11), 2002

[19] Perseus project, http://perseus.objectweb.org
[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.

Anderson: Eraser: A Dynamic Data Race Detector for
Multithreaded Programs, ACM Transactions on
Computer Systems, 1997

[21] O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu:
Automated Environment Generation for Software Model
Checking, Proceedings of ASE’03, 2003

[22] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda:
Model Checking Programs, Automated Software
Engineering Journal, vol. 10, no. 2, Apr 2003

78

Chapter 9

Modeling of Component
Environment in Presence of
Callbacks and Autonomous
Activities

Pavel Paŕızek,
Frantǐsek Plášil

Contributed paper at 46th TOOLS Conference on Objects,
Models, Components, Patterns (TOOLS EUROPE 2008).

Accepted for publication in conference proceedings,
to be published by Springer-Verlag,
LNBIP,
June 2008.

79

Modeling of Component Environment in Presence of
Callbacks and Autonomous Activities

Pavel Parizek1, Frantisek Plasil1,2

1Charles University in Prague, Faculty of Mathematics and Physics,
Department of Software Engineering, Distributed Systems Research Group

{parizek,plasil}@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

2Academy of Sciences of the Czech Republic
Institute of Computer Science

{plasil}@cs.cas.cz
 http://www.cs.cas.cz

Abstract. A popular approach to compositional verification of component-
based applications is based on the assume-guarantee paradigm, where an
assumption models behavior of an environment for each component. Real-life
component applications often involve complex interaction patterns like
callbacks and autonomous activities, which have to be considered by the
model of environment’s behavior. In general, such patterns can be properly
modeled only by a formalism that (i) supports independent atomic events for
method invocation and return from a method and (ii) allows to specify
explicit interleaving of events on component’s provided and required
interfaces - the formalism of behavior protocols satisfies these requirements.
This paper attempts to answer the question whether the model involving only
events on provided interfaces (calling protocol) could be valid under certain
constraints on component behavior. The key contribution are the constraints
on interleaving of events related to callbacks and autonomous activities,
which are expressed via syntactical patterns, and evaluation of the proposed
constraints on real-life component applications.

Key words: assume-guarantee reasoning, behavior protocols, modeling of
environment behavior, callbacks, autonomous activities

1 Introduction

Modern software systems are often developed via composition of independent
components with well-defined interfaces and (formal) behavior specification of
some sort. When reliability of a software system built from components is a critical
issue, formal verification such as program model checking becomes a necessity.
Since model checking of the whole complex (“real-life”) system at a time is prone
to state explosion, compositional methods have to be used. A basic idea of
compositional model checking [6] is the checking of (local) properties of isolated
components and inferring (global) properties of the whole system from the local

80

properties. This way, state explosion is partially addressed, since a single isolated
component typically triggers a smaller state space compared to the whole system.

A popular approach to compositional model checking of component applications
is based on the assume-guarantee paradigm [18]: For each component subject to
checking, an assumption is stated on the behavior of the component’s environment
(e.g. the rest of a particular component application); similarly, the “guarantee” are
the properties to hold if the component works properly in the assumed environment
(e.g. absence of concurrency errors and compliance with behavior specification).
Thus, a successful model checking of the component against the properties under
the specific assumption guarantees the component to work properly when put into
an environment modeled by the assumption.

Specific to program model checkers such as Java PathFinder (JPF) [21] is that
they check only complete programs (featuring main()). Thus checking of an
isolated component (its implementation, i.e. for instance of its Java code) is not
directly possible ([17], [10]), since also its environment has to be provided in the
form of a program (code). Thus, program model checking of a primitive component
is associated with the problem of missing environment [14]. A typical solution to
it in case of JPF is to construct an “artificial” environment (Java code) from an
assumption formed as a behavior model as in [14][20], where the behavior model
is based on LTS defined either directly [10], or in the formalism of behavior
protocols [19]. Then, JPF is applied to the complete program composed of the
component and environment.

In general, real-life component applications feature circular dependencies
among components involving complex interaction schemes. Nevertheless, for the
purpose of program model checking of an isolated component, these schemes have
to be abstracted down to interaction patterns between the component and its
environment pairs. Based on non-trivial case studies [1][8], we have identified the
following four patterns of interaction between a component C and its environment
E to be the most typical ones (C-E patterns):

a) synchronous callback (Fig. 1a), executed in the same thread as the call that
triggered the callback;

b) asynchronous callback (Fig. 1b), executed in a different thread than the
trigger call;

c) autonomous activity (Fig. 1c) on a required interface, which is performed by
an inner thread of the component;

d) synchronous reaction (Fig. 1d) to a call on a component’s provided interface.
In Fig. 1, each of the sequence diagrams contains activation boxes representing

threads (T1 and T2) running in the component and environment in a particular
moment of time. More specifically, in Fig. 1a, m denotes a method called on the
component by the environment, and t denotes the trigger (invoked in m) of the
callback b; note that all calls are performed by the same thread (T1). As to Fig. 1b,
the only difference is that the callback b is asynchronous, i.e. it is performed by
a different thread (T2) than the trigger t. In case of Fig. 1c, the method s called
on the component by the environment (in thread T1) starts an autonomous activity
performed by an inner thread (T2), which calls the method a of the environment.

81

The latter overlaps with the call of m issued by the environment. Finally, in Fig. 1d,
r denotes a synchronous reaction to the call of the method m issued by the
environment (both performed in the same thread).

These sequence diagrams clearly show that proper modeling of these C-E
patterns via a specific formalism is possible only if the formalism allows to
explicitly model the interleaving of method invocations and returns from methods
on C’s provided and required interfaces. Specifically, a method call as whole
cannot be modeled as an atomic event (like in [10]); instead, independent
constructs for method invocation (invocation event), return from a method (return
event) and method execution (method body) have to be supported by the formalism.
We say that a model of environment’s behavior is valid if it precisely describes all
occurrences of the C-E patterns in the interaction between a component and its
environment.

The formalism of behavior protocols [19], developed in our group, supports
independent invocation and return events on C’s provided and required interfaces
(details in Sect. 2) and therefore allows to model all the C-E patterns properly. In
our former work, we introduced two specific approaches to modeling of
environment’s behavior: inverted frame protocol [14] and context protocol [15].

E C E C E C E C
T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T1 T2

T1

T1

T2

T1

T1
T2

T1

T1

T2

T1
T2

T1

T1

T1

T1

T1

a) b) c) d)

 m

t

b

b

t

m

m

t

t

b

m
b

s

s

a
m
a

m

m

r

r

m

E

C
M B

T

M B
T

m b
t

E

C
M B

T

M B
T

m b
t

E

C
M

R

M
R

m
r

E

C
S M

A

S M
A

s m
a

Legend: C
M

T
provided interface
required interface

Figure 1: Interaction patterns (C-E patterns) between a component and its environment

82

Both of them are generic, i.e. not limited to any particular communication pattern
between E and C, and valid. The key difference between these two is that the
inverted frame protocol models E that exercises C in all ways it was designed for
(maximal-calling environment), while the context protocol models the actual use
of C in the given context of a component-based application (context environment).
Specifically, the context protocol may be simpler than the inverted frame protocol,
e.g. in terms of level of parallelism (i.e. the assumption on environment behavior
is weaker), if the particular application uses only a subset of C’s functionality.

Unfortunately, the actual JPF model checking of a component combined with
an environment determined by any of these two modeling approaches is prone to
state explosion, in particular for two reasons:

(1) Java code of E is complex, since it has to ensure proper interleaving of the
events on C’s provided interfaces triggered by E with the events on C’s required
interfaces triggered by C itself. Technically, since there is no direct language
support for expressing acceptance of a method call depending upon calling history
in Java, the interleaving has to be enforced indirectly, e.g. via synchronization
tools (wait, notify) and state variables.

(2) As to the context environment, its construction is also prone to state
explosion, since the context protocol is derived from behavior specifications of the
other components in a particular component application via an algorithm similar
to the one employed in behavior compliance model checking [11]. In [15] we
presented a syntactical algorithm for derivation of a context protocol, which has
a low time and space complexity; however, it does not support autonomous
activities and does not handle cycles in architecture (and thus callbacks) properly
in general.

The issues (1) and (2) are particularly pressuring when C is designed to handle
a high level of parallel activities (threads). Then, this has to be reflected in E to
exercise C accordingly. To alleviate the state explosion problem associated with
these issues we proposed in [16] a simplified approach to modeling environment
behavior: calling protocol. Roughly speaking, a calling protocol models precisely
only the events on C’s provided interfaces, i.e. it models only the calls issued by
E, under the assumption that the calls issued by C are accepted by E at any time
(and in parallel) - this is an overapproximation of the desired behavior of E. Thus
the Java code of E is simple, since it does not have to ensure proper interleaving
of the events on C’s provided and required interfaces. On the other hand, capturing
this interleaving is necessary for an appropriate modeling of the C-E patterns in
general, and thus for validity of a calling protocol-based model of environment’s
behavior. An open question is whether there are constraints on behavior of C under
which the calling protocol-based approach could provide a valid model of E.

1.1 Goals and Structure of the Paper

The goal of this paper is to answer the question whether the calling protocol-based
approach can provide a valid model of environment behavior in the context of the

83

C-E patterns, if, in the component’s behavior specification, certain constraints are
imposed on the sequencing and interleaving of the C-E events with other events on
the component interfaces.

The structure of the paper is as follows. Sect. 2 provides an overview of the
formalism of behavior protocols and its use for modeling of environment behavior.
Sect. 3 presents the key contribution of the paper - an answer to the question of
validity of the calling protocol-based approach under certain constraints on
component behavior and an algorithm for automated construction of a valid calling
protocol-based model of environment’s behavior. Sect. 4 shows experimental
results and the rest contains evaluation, related work and a conclusion.

2 Behavior Protocols

The formalism of behavior protocols - a simple process algebra - was introduced
in [19] as a means of modeling behavior of software components in terms of traces
of atomic events on the components’ external interfaces. Specifically, a frame
protocol FPC of a component C is an expression that defines C’s behavior as a set
L(FPC) of finite traces of atomic events on its provided and required interfaces.

Syntactically, a behavior protocol reminds a regular expression over an alphabet
of atomic events of the form <prefix><interface>.<method><suffix>.
Here, the prefix ? denotes acceptance, while ! denotes emit; likewise, the suffix
8 denotes a method invocation and 9 denotes a return from a method. Thus, four
types of atomic events are supported: !i.m8 denotes emitting of a call to method
m on interface i, ?i.m8 acceptance of the call, !i.m9 emitting of return from the
method, and, finally, ?i.m9 denotes acceptance of the return. Several useful
shortcuts are also defined: !i.m{P} stands for !i.m8 ; P ; ?i.m9 (method
call), and ?i.m{P} stands for ?i.m8 ; P ; !i.m9 (method acceptance). Both
in !i.m{P} and ?i.m{P}, a protocol P models a method body (possibly empty).
As for operators, behavior protocols support the standard regular expression
operators (sequence (;), alternative (+), and repetition (*)); moreover, there are
two operators for parallel composition: (1) Operator |, which generates all the
interleavings of the event traces defined by its operands; the events do not
communicate, nor synchronize. It is used to express parallel activities in the frame
protocol of C. (2) Operator LS (“consent”), producing also all interleavings of the
event traces defined by its operands, where, however, the neighboring events from
S (with “opposite” prefix) are complementary - they synchronize and are forced to
communicate (producing internal action τ similar to CCS and CSP). An example
of such complementary events would be the pair !I.m8and ?I.m8. This operator

a) synchronous callback: FPCa = ?M.m {!T.t{?B.b}}
b) asynchronous callback: FPCb = ?M.m8;!T.t8;?T.t9;?B.b8;!M.m9;!B.b9
c) autonomous activity: FPCc = ?S.s;!A.a8;?M.m8;?A.a9;!M.m9
d) synchronous reaction: FPCd = ?M.m {!R.r}

Table 1: Frame protocols of C in Fig. 1

84

is used to produce the composed behavior of cooperating components, while S
comprises all the events on the component’s bindings. Moreover, it also indicates
communication errors (deadlock and “bad activity” - there is no complementary
event to !I.m8 in a trace, i.e. a call cannot be answered).

Using behavior protocols, a quite complex behavior can be modeled - see, e.g.,
[1] for a behavior model of a real-life component application. Advantageously, it
is possible to model the explicit interleaving of events on both the provided and
required interfaces of a component in its frame protocol. Specifically, the frame
protocol of C in Fig. 1 in the alternatives a) - d) would take the form as in Tab. 1.

2.1 Modeling Environment via Behavior Protocols

Consider again the missing environment problem and the setting on Fig. 1.
Obviously, the environment of an isolated component C can be considered as
another component E bound to C. Thus the model of E’s behavior can be a frame
protocol of E. Since a required interface is always bound to a matching provided
interface, the former issuing calls and the latter accepting calls, the corresponding
events in both frame protocols ought to be complementary. For example, the frame
protocols of E in Fig. 1 in alternatives a) - d) would have the form as in Tab. 2.

Obviously, an event issued by E (such as !M.m8) has to be accepted by C (such
as ?M.m8) at the right moment and vice versa. As an aside, this (behavior
compliance [19]) can be formally verified by parallel composition via consent, FPE

LS FPC, which should not indicate any communication error; for FPEb LS FPCb this
is obviously true, since FPEb was created by simply replacing all ? by ! and vice
versa - FPEb is the inverted frame protocol (FP-1

Cb) of Cb. Because of that and since
here S comprises all events on the interfaces M, T and B, the consent operator
produces traces composed of τ only.

In general, any protocol FPE for which FPE LS FPC does not yield any
composition error is called environment protocol of C, further denoted as EPC. In
Sect. 1, we proposed three specific techniques to construct C’s environment
protocol: (i) inverted frame protocol (EPinv

C), (ii) context protocol (EPctx
C) and

(iii) calling protocol (EPcall
C). Event though these techniques aim at “decent”

exercising of C, an environment protocol may be very simple, designed to help
check a specific property. Assume for instance that the interface M of C in Fig. 1
features also a method x and FP’Ca = ?M.m {!T.t{?B.b}} + ?M.x. Then, EP’Ca

= !M.x would be an environment protocol since EP’Ca LS FP’Ca does not yield
any composition error.

a) FPEa = !M.m{?T.t{!B.b}}
b) FPEb = !M.m8;?T.t8;!T.t9;!B.b8;?M.m9;?B.b9
c) FPEc = !S.s;?A.a8;!M.m8;!A.a9;?M.m9
d) FPEd = !M.m {?R.r}

Table 2: Frame protocols of E in Fig. 1

85

Nevertheless, the three techniques (i) - (iii) are much more of practical
importance; below, they are illustrated on a part of the component architecture
created in our group for the solution to the CoCoME assignment [8] (Fig. 2); the
solution was based on the Fractal component model [3] and behavior protocols.
Here we focus especially on the Store component, the functionality of which is
not fully used by StoreApplication that accesses Store indirectly via Data.
Specifically, the actual use of Store employs only a subset of the traces allowed
by its frame protocol FPStore (Fig. 3a); for example, FPStore states that it is possible
to call any method of the StoreQueryIf interface at most four times in parallel;
however, assume that the queryProductById and queryStockItem methods
on this interface are (indirectly) called three times in parallel by
StoreApplication and the other methods are called only twice in parallel, or
not at all in parallel. Therefore, the context protocol EPctx

Store (Fig. 3c) of Store
is much simpler in terms of level of parallelism than its inverted frame protocol
EPinv

Store (Fig. 3b). Since the Store component has no required interface, its
calling protocol EPcall

Store is equal to its context protocol, thus being obviously a
valid model of the Store’s environment behavior in this special case.

In summary, the basic idea of the techniques (i)-(iii) for construction of a model
of C’s environment (E) behavior is as follows:

Re (i) The inverted frame protocol EPinv
C of a component C is constructed

directly from the component’s frame protocol FPC by replacing all the prefixes ?
by ! and vice versa.

ReportingApplicationStoreApplication

:Data

:StoreGUI :ReportingGUI

:StoreLogic :ReportingLogic

:Enterprise:Persistence:Store

StoreQueryIf PersistenceIf EnterpriseQueryIf

StoreIf ReportingIf

* :StoreServer

CashDeskConnectorIf AccountSaleEvent

MoveGoodsIf

ProductDispatcherIf

Figure 2: Architecture of the StoreServer component

86

Re (ii) The component’s context protocol EPctx
C is derived via consent

composition of the frame protocols of all the other components bound to C at the
same level of nesting and the context protocol (or inverted frame protocol) of the
C’s parent component (if there is one).

Re (iii) The calling protocol can be derived in two ways: either via syntactical
omitting of events on required interfaces from the inverted frame protocol or
context protocol, or directly from the frame protocols of all the components in an

architecture (including the one subject to checking) via a syntactical algorithm
described in Sect. 3.2. In both cases, events on C’s required interfaces, i.e. calls of
E from C, are modeled implicitly in such a way that they are allowed to happen at
any time and in parallel with any other event on any C’s interface; technically, the
environment protocol based on a calling protocol takes the form

EPcall
C = <calling protocol> | ?m1* | ... | ?m1* | (E1)

 | ?m2* | ... | ?mN*

a) FPStore = (
 ?StoreQueryIf.queryProductById +
 ?StoreQueryIf.queryStockItem +
 # calls of other methods on StoreQueryIf follow
)*
 |
 # the fragment above repeated three more times

b) EPinv
Store = (

 !StoreQueryIf.queryProductById +
 !StoreQueryIf.queryStockItem +
 # calls of other methods on StoreQueryIf follow
)*
 |
 # the fragment above repeated three more times

c) EPctx
Store = (!StoreQueryIf.queryStockItem* ; ...)*

 |
 (
 !StoreQueryIf.queryProductById*
 +
 !StoreQueryIf.queryStockItem*
)*
 |
 !StoreQueryIf.queryProductById*
 |
 (
 ... ;
 (
 (!StoreQueryIf.queryProductById*; ...)
 +
 (... ; !StoreQueryIf.queryStockItem*)
 +
 ...
)
)*

Figure 3: a) a fragment of the frame protocol of Store; b) a fragment of the
inverted frame protocol of Store; c) a fragment of the context protocol of
Store

87

where m1, ..., mN represent methods of the component’s required interfaces
(obviously several instances of the same method can be accepted in parallel;
nevertheless, the number N and the number of appearances of each ?mi* have to
be finite). Such EPcall

C is compliant with FPC (assuming that compliance holds for
frame protocols of all components in the application, which C belongs to), i.e. there
are no communication errors, for the following reasons: (a) an environment
modeled by EPcall

C calls C only in a way allowed by FPC, since EPcall
C is derived

from the frame protocols of the components cooperating with C at the same level
of nesting (assuming their behavior is compliant); (b) an environment modeled by
EPcall

C can accept any call from C at any time and in parallel with any other event
on a C’s interface (both provided and required).

3 Calling Protocol vs. Callbacks and Autonomous Activities

As indicated at the end of Sect. 1, an environment protocol based on a calling
protocol (EPcall

C) is an imprecise model (overapproximation) of E’s behavior in
general, since it models in detail only the events on the C’s provided interfaces and
assumes a generic acceptance of calls on the required interfaces. Therefore,
specifically, it is not possible to model detailed interleaving of events on these
interfaces, which is necessary for proper modeling of callbacks and autonomous
activities.

In this section, we propose certain syntactical constraints on C’s frame protocol
FPC to ensure that no other events than those related to synchronous reactions,
triggers of callbacks, and autonomous activities take place on the required
interfaces of C; also, we answer the question whether EPcall

C can be a valid model
of E’s behavior if these constraints are satisfied.

The key idea is to express the constraints on FPC via the following syntactical
schemes (for simplicity, names of interfaces are omitted in event identifications):

(A) To express synchronous callbacks (and synchronous reactions) correctly,
the constraint is that in FPC the events corresponding to a particular callback b and
a trigger t for b have to be nested according to the scheme

FPC = α1 op1 ?m{ α2 op2 !t{?b} op3 α3} op4 α4 (A1)
where αi may involve only synchronous reactions (C-E pattern (d)) and arbitrary
behavior protocol operators except consent (L), and opi is either the sequence
operator (;) or the alternative operator (+). Specifically, the frame protocol FP’C

= α1 op1 ?m ; α2 ; !t ; α3 ; ?b op2 α4, which would be the only option
when using the LTS-based approach of [10], violates the constraint. An example
of a frame protocol that satisfies the constraint is

FP’Ca = ?m1{!r1} ; ?m2{!t{?b} + !r2} ; ?m3{!r3} (EX-A1)
(B) To express asynchronous callbacks (and (A)) correctly, the constraint on

FPC is that it is necessary to use parallel composition of the events corresponding
to a particular callback b with other events, including the trigger t of b, according
to the scheme
 FPC = β1 op1 ?m8 ; β2 ; !t8 ; ((?t9 ; β3 ; !m9 op2 β4) | ?b) (B1)

88

where βi is composed of behavior protocols satisfying the constraint A connected
via arbitrary behavior protocol operators except the consent (L), and opi is again
either ; or +. Specifically, a violation of the constraint would be to use explicit
sequencing of events like in ?m8; !t8; ?t9; ?b8; !m9; !b9 (Tab. 1b), since
an asynchronous callback runs in a different thread than the trigger and therefore
unpredictable thread scheduling has to be considered. An example of a frame
protocol that satisfies the constraint is
FP’Cb = ?m1 ; ?m28 ; !t8 ; ((?t9 ; !m29 ; ?m3{!r3}) | ?b) (EX-B1)

(C) To express autonomous activities on required interfaces (and (B)) correctly,
the constraint is that it is also necessary to use parallel composition (as in (B)),
since such activities are performed by C’ inner threads and thus non-deterministic
scheduling of the threads has to be considered. Specifically, the events
corresponding to a particular autonomous activity a have to be composed via the
and-parallel operator with other events that can occur after the start of the inner
thread (in method s). Thus, when involving autonomous activities, FPC has to
comply with the scheme

FPC = γ1 op1 ?s8 ; ((!s9 ; γ2) | !a) (C1)
where γi is composed of behavior protocols satisfying the constraint B connected
via arbitrary behavior protocol operators except the consent (L). For example, the
frame protocol FP’C = γ1 op1 ?s ; γ2 ; !a8 ; γ3 ; ?a9 ; γ4 is not valid,
since the events for the autonomous activity a are not allowed to happen before the
call to s returns (i.e. before !s9 occurs). An example of a frame protocol that
satisfies the constraint is

FP’Cc = ?m1 ; ?s8 ; ((!s9 ; (?m2 + ?m3{!r3})) | !a) (EX-C1)
In summary, to satisfy the constraints, a frame protocol has to be constructed

in a hierarchical manner, with synchronous reactions and synchronous callbacks
(compliant to the constraint A) lower than asynchronous callbacks (compliant to
B), and with autonomous activities (compliant to C) at the top.

3.1 Calling & Trigger Protocol

An important question is whether from a FPC (and frame protocols of other
components at the same level of nesting as C) satisfying the constraints A, B, and
C an EPcall

C can be derived such that it would be a valid model of behavior of C’s
environment; i.e., whether it suffices to model precisely only the interleaving of
events on C’s provided interfaces when callbacks and autonomous activities are
considered. To answer this question, it is sufficient to consider the possible
meanings of an event on a required interface in the frame protocol FPC satisfying
the constraints; such an event can be:

(1) A synchronous reaction r to a call on a provided interface, when r is not a
trigger of a callback.

(2) An autonomous activity a on a required interface, when a is not a trigger of
a callback.

(3) A trigger t of a callback b (either synchronous or asynchronous).

89

In cases (1) and (2), it is appropriate to model r, resp. a, implicitly (as in E1),
since it has no relationship with any event on C’s provided interfaces. On the other
hand, a trigger t of a callback b (case 3) cannot be modeled implicitly, since b can
be executed by E only after C invokes t - if t were modeled implicitly, then E
could execute b even before t was invoked by the component.

Therefore, the answer to the question of sufficiency of the constraints is that the
environment protocol based on a calling protocol (EPcall

C) is not a valid model of
E’s behavior if the interaction between C and E involves callbacks, since triggers
of callbacks are modeled implicitly in EPcall

C - precise interleaving of a callback
and its trigger has to be preserved in a valid model of E’s behavior.

As a solution to this problem, we propose to define the environment protocol
of a component C on the basis of a calling & trigger protocol that models a precise
interleaving of the events on C’s provided interfaces (including callbacks) and
triggers of callbacks. In principle, the environment protocol takes the form

EPtrig
C = <calling & trigger protocol> | ?m1* | ... | (E2)

 | ?m1* | ?m2* | ... | ?mN*
where m1, ..., mN are all the methods of the C’s required interfaces except triggers
of callbacks. Compliance of EPtrig

C with FPC holds for similar reasons like in case
of EPcall

C (end of Sect. 2.1) - note that although an environment modeled by EPtrig
C

can accept triggers of callbacks from a component C only at particular moments of
time, C will not invoke any trigger at an inappropriate time, since frame protocols
of C and components cooperating with C at the same level of nesting are assumed
to be compliant.

An environment protocol based on a calling & trigger protocol for (A1) has to
comply with the scheme
 EPtrig

C = (α1_prov
-1 op1 !m{α2_prov

-1 op2 ?t{!b} op3 α3_prov
-1} op4 (A2)

 op4 α4_prov
-1) | α1_req

-1 | ... | α4_req
-1

where αi_prov
-1 denotes the events on provided interfaces from αi

-1 and αi_req
-1

denotes the events on required interfaces from αi
-1 (αi

-1 contains the events from
αi with ? replaced by ! and vice versa). For illustration, the proper environment
protocol for (EX-A1) is EPtrig’Ca = (!m1 ; !m2{?t{!b}} ; !m3) | ?r1 |
?r2 | ?r3.

Similarly, an environment protocol for (B1) has to comply with the scheme
EPtrig

C = (β1_prov
-1 op1 !m8 ; β2_prov

-1 ; ?t8 ; ((!t9 ; β3_prov
-1 ; (B2)

 ; ?m9 op2 β4_prov
-1) | !b)) | β1_req

-1 | ... | β4_req
-1,

while an environment protocol for (C1) has to comply with the scheme
EPtrig

C = ((γ1_prov
-1 op1 !s ; γ2_prov

-1) | ?a) | γ1_req
-1 | γ2_req

-1. (C2)
The proper environment protocol for (EX-B1) is EPtrig’Cb = (!m1 ; !m28 ;

?t8 ; ((!t9 ; ?m29 ; !m3) | !b)) | ?r3, while the proper environment
protocol for (EX-C1) is EPtrig’Cc = (!m1 ; !s8 ; ((?s9 ; (!m2 + !m3))
| !a)) | ?r3.

90

3.2 Construction of Calling & Trigger Protocol

The algorithm for construction of a calling & trigger protocol (CTP) is based on
the syntactical algorithm for derivation of a context protocol that was presented in
[15] - the main difference is the newly added support for callbacks and
autonomous activities. Only the basic idea is described here, i.e. technical details
are omitted.

In general, the algorithm accepts frame protocols of all components (primitive
and composite) in the given application and bindings between the components as
an input, and its output are CTPs for all primitive components in the application.
The frame protocols have to be augmented with identification of events that
correspond to triggers for callbacks and autonomous activities.

The algorithm works in a recursive way: when executed on a specific composite
component C, it computes CTPCi for each of its sub-components C1, ..., CN, and
then applies itself recursively on each Ci.

More specifically, the following steps have to be performed to compute the
calling & trigger protocol CTPCk of Ck, a sub-component of C:

1) A directed graph G of bindings between C and the sub-components of C is
constructed and then pruned to form a sub-graph GCk that contains only the paths
involving Ck. The sub-graph GCk contains a node NC corresponding to C and a node
NCi for each sub-component Ci of C; in particular, it contains a node NCk for Ck.

2) An intermediate version IPCk of CTPCk is constructed via a syntactical
expansion of method call shortcuts during traversal of GCk in a DFS manner. The
traversal consists of two phases - (i) processing synchronous reactions and
autonomous activities on required interfaces, and (ii) processing callbacks.
Technically, the first phase starts at NC with CTPC of C (inverted frame protocol
is used for the top-level composite component) and ends when all the edges on all
paths between NC and NCk are processed (cycles are ignored in this phase); the
second phase starts at Ck and processes all cycles involving Ck. When processing
a specific edge Elm, which connects nodes NCl and NCm (for Cl and Cm), in the first
phase, the current version IPCk

lm (computed prior to processing of Elm) of IPCk is
expanded in the following way: assuming that a required interface Rl of Cl is bound
to a provided interface Pm of Cm, each method call shortcut on Rl in IPCk

lm is
expanded to the corresponding method body defined in the frame protocol of Cm.

For example, if IPCk
lm contains “...; !Rl.m1 ; !R1.m2 ;...” and the

frame protocol of Cm contains “...; ?Pm.m1{prot1} ; ?Pm.m2{prot2 +
prot3} ;...”, the result of one step of expansion has the form “...; prot1 ;
(prot2 + prot3) ;...”.

3) CTPCk is derived from IPCk by dropping (i) all the events related to other sub-
components of C and (ii) all events on the required interfaces of Ck with the
exception of triggers for callbacks, which have to be preserved.

91

In general, these three steps have to be performed for each sub-component of
each composite component in the given component application in order to get a
calling & trigger protocol for each primitive component.

4 Tools and Experiments

In order to show the benefits of use of the calling & trigger protocol-based
approach instead of a context protocol or an inverted frame protocol, we have
implemented construction of a context protocol (via consent composition) and a
calling & trigger protocol (Sect. 3.2), and performed several experiments.

Our implementation of construction of a calling & trigger protocol and a context
protocol does not depend on a specific component system, i.e. it can be used with
any component system that supports formal behavior specification via behavior
protocols (currently SOFA [4] and Fractal [1]). Moreover, the automated
environment generator for JPF (EnvGen for JPF) [13] is available in both SOFA
and Fractal versions, and thus we provide a complete JPF-based toolset for
checking Java implementation of isolated SOFA or Fractal primitive components
against the following properties: obeying of a frame protocol by the component’s
Java code [17] and all the properties supported by JPF out of the box (e.g.
deadlocks and assertion violations).

Inverted frame
protocol-based EP

Context protocol-
based EP

Calling & trigger
protocol-based EP

Time to
compute EP

0 s 3 s 0.1 s

Total time
(EP + JPF)

n/a 1102 s 1095 s

Total memory > 2048 MB 762 MB 748 MB

Table 3: Results for the Store component

Inverted frame
protocol-based EP

Context protocol-
based EP

Calling & trigger
protocol-based EP

Time to
compute EP

0 s 2 s 0.5 s

Total time
(EP + JPF)

n/a n/a 485 s

Total memory > 2048 MB > 2048 MB 412 MB

Table 4: Results for the ValidityChecker component

92

We have performed several experiments on the Store component (Sect. 2.1)
and the ValidityChecker component, which forms a part of the demo
component application developed in the CRE project [1] - frame protocol, context
protocol and calling & trigger protocol of ValidityChecker are in appendix A.
For each experiment, we measured the following characteristics: time needed to
compute a particular environment protocol, total time (computation of EP and JPF
checking) and total memory; the value “> 2048 MB” for total memory means that
JPF run out of available memory (2 GB) - total time is set to “n/a” in such a case.

Results of experiments (in Tab. 3 and Tab. 4) show that (i) construction of a
calling & trigger protocol takes less time and memory than construction of a
context protocol for these two components and (ii) total time and memory of
environment’s behavior model construction, environment generation and checking
with JPF (against obeying of a frame protocol, deadlocks and race conditions) are
the lowest if the calling & trigger protocol-based approach is used. Time needed
to compute EPctx of both Store and ValidityChecker is also quite low, since
frame protocols of other components bound to them (in the particular applications)
do not involve very high level of parallelism and thus state explosion did not
occur. The main result is that the whole process of environment construction and,
above all, JPF checking has a lower time and space complexity for calling &
trigger protocol than if the other approaches are used.

5 Evaluation and Related work

In general, our experiments confirm that although EPtrig
C for a component C

specifies an “additional” parallelism (a parallel operator for each method of the C’s
required interfaces), the size of the JPF state space in checking C with an
environment modeled by EPtrig

C is not increased (i.e. state explosion does not
occur because of that), since the “additional” parallelism is not reflected in the
environment’s Java code explicitly via additional threads - the environment only
has to be prepared to accept the call of any method from C (except triggers of
callbacks) at any time and in parallel with other activities. On the contrary,
modeling environment by EPtrig

C has the benefit of low time and space complexity
(i) of construction of the model with respect to use of EPctx

C, and (ii) of JPF
checking of component’s Java code with respect to the use of EPinv

C.
There are many other approaches to modeling behavior of software components

and their environment that can be used to perform compositional verification of
component-based applications (e.g. [9], [10], [5] and [12]); in particular, [9] and
[10] do so on the basis of the assume-guarantee paradigm. However, to our
knowledge, none of them supports independent constructs for the following atomic
events explicitly in the modeling language: acceptance of a method invocation
(?i.m8 in behavior protocols), emitting a method invocation (!i.m8), acceptance
of a return from a method (?i.m9), and emitting a return from a method (!i.m9).
Process algebra-based approaches ([9], [5]) typically support input (acceptance)
and output (emit) actions explicitly in the modeling language, while transition

93

systems-based approaches (e.g. [10] and [12]) support general events. In any case,
it is possible to distinguish the events via usage of different names (e.g. event
names m1_invoke, resp. m1_return, for invocation of m1, resp. for return from
the method); however, an automated composition checking may fail even for
compliant behavior specifications in such a case, since the developer of each of
them can choose a different naming scheme (e.g. m1_invoke versus m18). We
believe that a formalism for modeling component behavior should support all the
four types of atomic events, since:

(a) independent constructs for method invocation and return from a method are
necessary for proper modeling of callbacks and autonomous activities, and

(b) independent input and output actions are necessary for compliance checking,
i.e. for checking the absence of communication errors between components.

Program model checking of open systems (isolated software components, device
drivers, etc) typically involves construction of an “artificial” environment - an
open system subject to checking and its environment then form a closed system (a
complete program). The environment typically has the form of a program, as in our
approach [14] and in [10], where the environment is defined in Java, or in
SLAM/SDV [2], where the model of the windows kernel (environment for device
drivers) is defined in the C language. In general, each approach to model checking
of open software systems involves a custom tool or algorithm for construction of
the environment, since each program model checker features a unique combination
of API and input modeling language (i.e. different combination than the other
program model checkers).

As for automated construction of the model of environment’s behavior, one
recent approach [7] is based on the L* algorithm for incremental learning of
regular languages. The basic idea of this approach is to iteratively refine an initial
assumption about behavior of the environment for a component subject to
checking. At each step of the iteration, model checking is used to check whether
the component satisfies the property, and if not, the assumption is modified
according to the counterexample. The iteration terminates when the component
satisfies the given property in the environment modeled by the assumption. An
advantage of our approach over [7] is lower time and memory complexity, since
use of model checking is not needed for construction of EPtrig.

6 Conclusion

In our former work, we introduced two specific approaches to modeling of
environment’s behavior: inverted frame protocol and context protocol. However,
JPF checking of a component with the environment determined by any of these
modeling approaches is prone to state explosion for the following reasons: (i) Java
code of the environment is complex, since it has to ensure proper interleaving of
invocation and return events on the component’s provided and required interfaces,
(ii) for the context protocol, the algorithm for its construction involves model
checking, while for the inverted frame protocol, the environment involves high

94

level of parallelism. To address the problem of state explosion, in [16] we
proposed to use a model of environment’s behavior based on the calling protocol.
Since the calling protocol-based approach models precisely only the events on
component’s provided interfaces, it does not allow to express C-E patterns
properly in general (it is an overapproximation of the desired behavior).

Therefore, in this paper we proposed a slightly modified idea - calling & trigger
protocol, which models precise interleaving of events on provided interfaces and
triggers of callbacks, and the “other events” models implicitly, similar to [16] with
no threat of state explosion. The key idea is to impose certain constraints on the
frame protocol of a component in terms of interleaving of C-E events with other
events and to express the constraints via syntactical patterns the frame protocol has
to follow, and then, if the constrains are satisfied, derive in an automated way the
calling & trigger protocol. The experiments confirm that the idea is viable.

As a future work, we plan to create a tool for automated recognition of those
component frame protocols that do not satisfy the constraints and to integrate it
into the SOFA runtime environment.

Acknowledgments. This work was partially supported by the Grant Agency of
the Czech Republic (project number 201/06/0770).

References

[1] Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil, F.:
Component Reliability Extensions for Fractal Component Model,
http://kraken.cs.cas.cz/ft/public/public_index.phtml, 2006

[2] Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S. K., Ustuner, A.: Thorough Static Analysis of Device
Drivers, Proceedings of EuroSys 2006, ACM Press

[3] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: The FRACTAL
component model and its support in Java, Softw. Pract. Exper., 36(11-12), 2006

[4] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model, Proceedings of SERA 2006, IEEE CS

[5] Brim, L., Cerna, I., Varekova, P., Zimmerova, B.: Component-interaction
Automata as a Verification-oriented Component-based System Specification,
Proceedings of SAVCBS 2005, ACM Press

[6] Clarke, E. M., Long, D. E., McMillan, K. L.: Compositional Model Checking,
Proceedings of LICS’89, IEEE CS

[7] Cobleigh, J. M., Giannakopoulou, D., Pasareanu, C. S.: Learning Assumptions for
Compositional Verification, Proceedings of 9th TACAS, LNCS, vol. 2619, 2003

[8] CoCoME, http://agrausch.informatik.uni-kl.de/CoCoME
[9] de Alfaro, L., Henzinger, T. A.: Interface Automata, Proceedings of 8th European

Software Engineering Conference, ACM Press, 2001
[10] Giannakopoulou, D., Pasareanu, C. S., Cobleigh, J. M.: Assume-guarantee

Verification of Source Code with Design-Level Assumptions, Proceedings of 26th
International Conference on Software Engineering (ICSE), 2004

[11] Mach, M., Plasil, F., Kofron, J.: Behavior Protocol Verification: Fighting State
Explosion, International Journal of Computer and Information Science, 6(2005)

95

[12] Ostroff, J.: Composition and Refinement of Discrete Real-Time Systems, ACM
Transactions on Software Engineering and Methodology, 8(1), 1999

[13] Parizek, P.: Environment Generator for Java PathFinder,
http://dsrg.mff.cuni.cz/projects/envgen

[14] Parizek, P., Plasil, F.: Specification and Generation of Environment for Model
Checking of Software Components, Proceedings of FESCA 2006, ENTCS, 176(2)

[15] Parizek, P., Plasil, F.: Modeling Environment for Component Model Checking
from Hierarchical Architecture, Proceedings of FACS’06, ENTCS, vol. 182

[16] Parizek, P., Plasil, F.: Partial Verification of Software Components: Heuristics for
Environment Construction, Proc. of 33rd EUROMICRO SEAA, IEEE CS, 2007

[17] Parizek, P., Plasil, F., Kofron, J.: Model Checking of Software Components:
Combining Java PathFinder and Behavior Protocol Model Checker, Proceedings of
SEW’06, IEEE CS

[18] Pasareanu, C. S., Dwyer, M., Huth, M.: Assume-guarantee model checking of
software: A comparative case study, Proceedings of the 6th SPIN workshop,
LNCS, vol. 1680, 1999

[19] Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, IEEE
Transactions on Software Engineering, 28(11), 2002

[20] Tkachuk, O., Dwyer, M. B., Pasareanu, C. S.: Automated Environment Generation
for Software Model Checking, Proceedings of ASE 2003, IEEE CS

[21] Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs,
Automated Software Engineering Journal, vol. 10, no. 2, 2003,
http://javapathfinder.sourceforge.net

Appendix A

FPValidityChecker = (
 ?IToken.SetEvidence
 |
 ?IToken.SetValidity
 |
 (
 ?IToken.SetAccountCredentials {
 !ICustomCallback.SetAccountCredentials
 }
 +
 NULL
)
)
;
?ILifetimeController.Start^
;
!ITimer.SetTimeout^
;
(
 (
 ?Timer.SetTimeout$
 ;
 !ILifetimeController.Start$
 ;
 (
 ?IToken.InvalidateAndSave {
 !ITimer.CancelTimeouts;
 (!ICustomCallback.InvalidatingToken + NULL);
 !ITokenCallback.TokenInvalidated

96

 }*
 |
 ?IToken.InvalidateAndSave {
 !ITimer.CancelTimeouts;
 (!ICustomCallback.InvalidatingToken + NULL);
 !ITokenCallback.TokenInvalidated
 }*
)
)
 |
 ?ITimerCallback.Timeout {
 (!ICustomCallback.InvalidatingToken + NULL);
 !ITokenCallback.TokenInvalidated
 }*
)

EPinv
ValidityChecker = EPctx

ValidityChecker = (
 !IToken.SetEvidence
 |
 !IToken.SetValidity
 |
 (
 !IToken.SetAccountCredentials {
 ?ICustomCallback.SetAccountCredentials
 }
 +
 NULL
)
)
;
!ILifetimeController.Start^
;
?ITimer.SetTimeout^
;
(
 (
 !Timer.SetTimeout$
 ;
 ?ILifetimeController.Start$
 ;
 (
 !IToken.InvalidateAndSave {
 ?ITimer.CancelTimeouts;
 (?ICustomCallback.InvalidatingToken + NULL);
 ?ITokenCallback.TokenInvalidated
 }*
 |
 !IToken.InvalidateAndSave {
 ?ITimer.CancelTimeouts;
 (?ICustomCallback.InvalidatingToken + NULL);
 ?ITokenCallback.TokenInvalidated
 }*
)
)
 |
 !ITimerCallback.Timeout {
 (?ICustomCallback.InvalidatingToken + NULL);
 ?ITokenCallback.TokenInvalidated
 }*
)

97

EPtrig
ValidityChecker = (

 (
 !IToken.SetEvidence
 |
 !IToken.SetValidity
 |
 (
 !IToken.SetAccountCredentials
 +
 NULL
)
)
 ;
 !ILifetimeController.Start^
 ;
 ?ITimer.SetTimeout^
 ;
 (
 (
 !Timer.SetTimeout$
 ;
 ?ILifetimeController.Start$
 ;
 (
 !IToken.InvalidateAndSave*
 |
 !IToken.InvalidateAndSave*
)
)
 |
 !ITimerCallback.Timeout*
)
)
|
?ICustomCallback.SetAccountCredentials*
|
?ITimer.CancelTimeouts*
|
?ITimer.CancelTimeouts*
|
?ICustomCallback.InvalidatingToken*
|
?ICustomCallback.InvalidatingToken*
|
?ICustomCallback.InvalidatingToken*
|
?ITokenCallback.TokenInvalidated*
|
?ITokenCallback.TokenInvalidated*
|
?ITokenCallback.TokenInvalidated*

98

Chapter 10

Evaluation and related work

10.1 Method

In this thesis, we addressed the following three challenges (Goals G1-G3 in Chap-
ter 3) related to automated formal verification of primitive components implemented
in Java:

• Modeling and construction of artificial environment for isolated components
with the goal of feasible verification via model checking (G1).

• Absence of support for high-level properties like obeying of an event trace-
based behavior specification in the state-of-the-art model checkers and verifi-
cation frameworks for Java programs (G2).

• State explosion in discovery of concurrency errors in Java code of real-life
components via model checking (G3).

The rest of this section provides a comprehensive comparison of our solution to the
challenges with related techniques proposed by other researches. Detailed evaluation
of the individual parts of our contribution was already published in the included
papers (Chapters 5-9).

Checking component implementation against behavior specification

There exist several frameworks for verification of programs that use model checking
as the core technique and static analysis or theorem proving as complementary
techniques. Most of the frameworks are based on model checkers that work only for
complete programs (with main in case of Java) and support only low-level properties
like absence of deadlocks and assertion violations by default — this is true, e.g.,
for JPF [60], Bandera [25] and SLAM [9]. Nevertheless, frameworks like JPF and
Bandera can be used for verification of isolated primitive components against the
property of obeying an event trace-based behavior specification (defined, e.g., as an
LTS), since extensions and tools that provide support for construction of an artificial
environment and property specification are available [27][59][30]. More specifically,
the Bandera toolset supports automated generation of environment from a model
of its behavior via the Bandera Environment Generator (BEG) [59] tool, and the

99

properties defined as finite state automata (regular expressions) via an extension to
its core model checker Bogor [27]. The extension is responsible for management and
traversal of an automaton, and for reporting of property violations.

In case of JPF, there is a technique [30] for checking Java code of isolated com-
ponents against behavior specifications defined in LTS; the events correspond to
method calls and locking-related operations upon objects. The technique is based
on the assume-guarantee paradigm — for a given isolated component, an assump-
tion in the form of an LTS is generated automatically via the L* algorithm [23]
and then an artificial environment (Java code) is constructed from the assumption.
According to [30], the code of the environment is written by hand, but tools like
BEG [59] and our Environment Generator for JPF [49] could be used to generate
the code automatically. Support for the property (obeying a behavior specification
defined in LTS) is provided via instrumentation of the component’s Java code —
technically, a Java class that encapsulates the LTS (i.e. keeps track of event history
and performs transitions) is added to the program and checks for validity of event
traces (histories) are encoded into assertions.

Besides JPF and Bandera, which aim at verification of Java code, there is also the
MAGIC [19] tool for verification of C procedures against behavior specifications in
the form of an LTS. As input, MAGIC accepts the C code of a procedure P subject
to verification and a behavior model of P ’s environment. The environment for P
is formed by a set of LTSs that model the behavior of other procedures invoked by
P . Verification of the procedure P consists of two steps: (i) the LTS model of P is
derived from its C code, and (ii) simulation relation between the LTSs corresponding
to implementation and specification of P is checked.

The main advantage of our approach — cooperation of JPF with the BPChecker
(Chapter 5) — over the other is that we have reused an existing tool in order to
provide support for the property (obeying a frame protocol). Contrary to [30], we
avoided the necessity to instrument the component’s Java code with mechanisms for
traversal of an LTS and detection of error states that are already implemented in
BPChecker, and we also didn’t have to create a specific extension to JPF similar to
Bogor. Moreover, our solution is portable with respect to new versions of JPF, since
it uses only the standard extension points of JPF (listeners) — no modification of
JPF’s core is necessary.

Modeling behavior of artificial environment for isolated components

The key idea behind majority of approaches to modeling behavior of component’s
environment, i.e. to specifying the assumption A in the context of the assume-
guarantee paradigm, is that a component is expected to satisfy the required prop-
erties only in the environments that behave in a specific way [3]. In particular, the
component may not satisfy the properties in a universal environment (calling each
method of the component at any time and in parallel with any other method), while
satisfying them in an environment that, e.g., reflects use of the component by a
particular application (a real environment). The approaches to construction of a
model of environment’s behavior (environment assumption) can be divided into two
groups — completely automated and (partially) manual. For example, the BEG

100

tool [59] generates an artificial environment for a Java component from a model
that can be written by hand or derived automatically from the code of a particu-
lar real environment via static analysis (if such an environment is available); the
model specifies both the control-flow (sequences of calls of component’s methods)
and values of method parameters.

Several recent approaches to automated construction of environment assumption
are based on the L∗ algorithm for learning of regular languages [6]. The basic idea,
common to all those approaches, is the iterative refinement of an initial assumption
using the teacher represented by a model checker. The initial assumption typically
expresses the available knowledge about an environment — it can be empty, corre-
sponding to a universal environment, or created by hand characterizing a particular
real environment. The output of the process is the weakest environment assumption
that guarantees satisfaction of the given properties by the component. In each iter-
ation, the two premises of the A-G rule (Sect. 2.2) are checked by a model checker
upon the current assumption (result of previous iteration); if the model checker
reports a counter-example during one of the checks, the current assumption is mod-
ified (strenghtened or weakened) on the basis of the counter-example. This way,
the current assumption becomes more precise in each iteration — the sequence of
assumptions computed during the iterative process converges to the weakest as-
sumption. If the model checker fails to provide an answer due to state explosion in
a specific iteration, the current assumption is used as a result of the whole process.

The L∗-based approaches differ mainly in the specific model checking technique
and the style of communication between a component and its environment that is
modeled. In [23], the focus is on communication via method calls and the LTSA
model checker [44] is used, while in [56] and [5] the focus is on communication via
shared variables (shared memory) and SAT-based model checking, resp. symbolic
model checking, is used.

In our case (Chapter 6), an environment assumption consists of two distinct
parts: (i) a model of interaction between a component and its environment via
sequences of method calls, which is defined in the formalism of behavior protocols,
and (ii) specification of the possible values for method parameters in the form of a
Java class. Currently only the construction of the model of interaction is automated
— the specification of values has to be created by hand.

The main advantage of our approach over [23], [56] and [5] is the low time and
space complexity — we use a syntactical algorithm for construction of the model of
interaction between a component and its environment (Chapter 9), while the other
approaches involve the use of a model checker as the teacher for L∗. Although the
number of calls of a model checker during the learning process can be significantly
reduced (see, e.g., [20] and [31]), still the model checker has to be called several
times.

Detection of concurrency errors in program code

The techniques and tools for detection of concurrency errors in software systems
can be divided into four groups based on the main paradigm they use — static
analysis, runtime analysis, model checking and testing.

101

Static analysis-based techniques typically combine several control-flow and/or
data-flow analyses. For example, the Jlint [7] and FindBugs [39] tools aim at au-
tomated detection of predefined error patterns (fragments of code that represent
potential errors) in Java code via combination of linear scan of methods’ bytecode,
several control-flow analyses (including traversal of a control-flow graph) and data-
flow analyses.

Examples of runtime error detectors are the Eraser [54] tool, which implements
the well-known lockset algorithm for discovery of race conditions, and Java PathEx-
plorer (JPaX) [36], which supports discovery of race conditions and deadlocks in
Java programs.

In case of model checking, heuristics for state space traversal (see [32] for heuris-
tics in JPF) are often used to mitigate the state explosion with the goal of discovery
of errors in reasonable time and memory - e.g. for discovery of concurrency errors
with JPF, a heuristic that prefers aggressive thread scheduling [32] can be used.

Detection of concurrency errors via testing typically involves a careful (deter-
ministic) control of thread scheduling and interaction. For example, the ConAn [41]
tool tests a predefined set of thread interleavings using synchronization via a clock.

Combination of different approaches with the goal of better precision and perfor-
mance is also very popular. Often a particular static or runtime analysis technique
is used to identify potential concurrency errors and a model checker then checks
whether the errors are real or spurious. For example, in [35], the authors proposed
a combination of runtime analysis and model checking on the basis of JPF, where
the model checker (JPF) is guided by the counter-example reported by the runtime
detector (JPF in simulation mode); more specifically, JPF focuses on those threads
that are involved in the potential errors identified by runtime analysis.

Our approach to discovery of concurrency errors in Java code of isolated com-
ponents combines static analysis (search for suspicious patterns in Java bytecode
of pairs of methods) and model checking (Chapter 8). Since the goal of the static
analysis is only to identify potential concurrency errors so that a reasonable artificial
environment can be constructed, we use an analysis technique that (i) has low time
and space complexity and (ii) may report false warnings (performance/precision
tradeoff). Nevertheless, no false warnings (spurious errors) are actually reported
to the user, since JPF precisely detects real concurrency errors in the Java code
composed of a component and its reasonable environment. The main drawback of
the technique is that it supports only pre-defined patterns involving pairs of Java
methods — naturally, the pre-defined patterns do not cover all possible concurrency
errors in Java. Currently we are working on a technique for detection of potential
errors in arbitrarily-sized sets of Java methods, which is based on a software metric
that measures degree of interaction among Java methods via concurrency-related
constructs of Java (e.g., accesses to shared variables and synchronized blocks).

Note also that we could not use runtime analysis for identification of potential
errors like it is done in [35], since runtime analysis works only for complete pro-
grams (components with artificial environment), i.e. it expects that the artificial
environment already exists — in our case the artificial environment is constructed
on the basis of the information about potential errors that is acquired via the static
analysis.

102

10.2 Tools

We have implemented all techniques proposed in this thesis — each in a standalone
tool — and integrated all the tools in the COMBAT toolset (Fig. 10.1), which is
available at http://dsrg.mff.cuni.cz/projects.phtml?p=combat. In particular, the
toolset contains:

• a plugin for JPF that allows checking of Java code against the property of
obeying a frame protocol (Chapter 5),

• the Environment Generator for Java PathFinder (EnvGen for JPF) [49] in the
SOFA and Fractal versions (Chapter 6),

• implementation of construction of all the specific models of environment’s
behavior, including calling & trigger protocol (Chapter 9), and

• a detector of potential concurrency errors in Java code that is based on search
for suspicious patterns (Chapter 8).

The tools do not depend on a particular version of JPF, and thus the most
recent stable version of JPF can be used with the toolset — nevertheless, a minor
modification of some of the tools may be necessary when porting the toolset to a
new JPF version in order to reflect changes in JPF API. Currently the COMBAT
toolset supports only the SOFA [18] and Fractal [15] component platforms, but it
can be easily ported to any component platform that uses (i) behavior protocols for
component behavior specification and (ii) Java as the implementation language.

It should also be emphasized that although the COMBAT toolset and some of
the techniques it implements are currently specific to JPF, they can easily be ported
to another model checker for Java programs like Bogor [27].

10.3 Experiments

We have successfully applied parts of the COMBAT toolset on two realistic (real-life)
component applications — the demo component application developed in the CRE
project with France Telecom [1] (”CRE demo” for short) and the solution to the
CoCoME contest [24] created in our group (”CoCoME”). Both applications involve
approximately 25 components (20 of them being primitive), where each primitive
component contains tens to hundreds lines of Java code. Since JPF does not work
for Java programs that use native code, e.g. via libraries, we did not apply the
COMBAT toolset to components that involve usage of a SQL database or GUI (in
case of CoCoME), or low-level network communication over sockets (in case of CRE
demo).

The results of experiments on selected components from CRE demo and Co-
CoME were published in the included papers (Chapters 5, 8 and 9 for CRE demo
and Chapter 9 for CoCoME) and in [16] and [17]. All the results show that the
proposed techniques in general work well and are feasible for realistic component
applications. Nevertheless, verification of Java code of a highly complex component

103

http://dsrg.mff.cuni.cz/projects.phtml?p=combat

Environment
generator for

Java PathFinder
(Chapter 6)

Java
PathFinder

Environment
protocol

Specification of
parameter values

in a Java class

Isolated primitive
component
(Java code)

Reduced
environment

protocol

Artificial environment
(Java code)

Complete
Java

program

Properties to be checked
(obeying of a frame protocol,

absence of concurrency errors)

Plugin
for JPF

(Chapter 5)

Behavior
Protocol
Checker

Detector of
potential

concurrency
errors in Java
(Chapter 8)

Architecture of
a component
application +

frame protocols

Construction
of a specific
environment

protocol
(Chapters 7,9)

Verification results

Artifact
(file, text)

Tool

Figure 10.1: COMponent Behavior Analysis Toolset (COMBAT)

104

with COMBAT (and JPF) may still be infeasible due to state explosion — in par-
ticular, if an environment calls component’s methods in a high number of parallel
threads, and/or there is a high number of control-flow paths in the component’s
code. Addressing this issue is a part of our future work, as indicated below.

Using the COMBAT toolset, we also discovered several previously unidentified
errors in the Java code of primitive components from CRE demo and CoCoME —
specifically, a race condition in the TransientIpDb component from CRE demo (see
Chapter 8 for details) and a race condition in the CashDeskApplication component
from CoCoME. The toolset was also able to find a violation of a frame protocol of
CashDeskApplication by its implementation, if the frame protocol was created
according to the informal reference specification of the component’s behavior that
was provided by organizers of CoCoME as a part of the assignment (see [16] and [17]
for details).

105

Chapter 11

Conclusion

Summary of contribution. In this thesis, we presented a set of techniques related
to behavior analysis and verification of primitive software components implemented
in Java and equipped with a behavior specification defined in the formalism of
behavior protocols. We have used the Java PathFinder model checker (JPF) as a
core verification tool and focused on the properties of obeying an event trace-based
behavior specification (frame protocol) and absence of concurrency errors (deadlocks
and race conditions).

The overall goal of the thesis was to address the key issues of formal verification of
Java components with JPF (Chapter 3): lack of support for the high-level property
of obeying a frame protocol, applicability of JPF only to complete Java programs
(problem of missing environment), and state explosion. We addressed the issues in
the following way — we have:

• created an extension to JPF that allows checking of Java code against the
property of obeying a frame protocol via combination of JPF with our model
checker for behavior protocol compliance (BPChecker);

• solved the problem of missing environment via automated generation of an
artificial environment for a primitive component from a model of the environ-
ment’s behavior (three specific models were proposed);

• addressed the state explosion problem in search for concurrency errors in Java
code with JPF via reduction of the number of parallel threads in an artificial
environment on the basis of static analysis of Java bytecode and heuristics.

We have implemented all the proposed techniques in the COMBAT toolset and
evaluated them on two real-life component applications: CRE demo [1] and Co-
CoME [17][16] — results of the experiments show that the proposed techniques in
general work well and are viable for realistic components. Moreover, we have suc-
cessfully used our extension to JPF (i.e., a part of COMBAT) in the BPEL checker
tool [48] that aims at verification of BPEL code against behavior protocols [50].

Future work. As a future work, we plan to increase the degree of automation
and performance of the whole process of verification of component’s Java code. In
particular, we would like to address (i) the necessity to manually construct the

106

specification of possible values of method parameters (a part of component’s arti-
ficial environment), and (ii) the potential infeasibility of checking Java code of a
primitive component against its frame protocol with JPF in case of highly complex
components or components that have complex environment.

Ad (i) Automated derivation of method parameter values could be done via
symbolic execution in a similar way to [40]. Nevertheless, a problem common to
state-of-the-art symbolic execution-based techniques is that they provide only lim-
ited support for complex data types (like lists and trees) and heap objects that are
accessed via references — this has to be solved too in order to make automated
derivation of values applicable to realistic Java components.

Ad (ii) In order to improve the performance of checking Java code against a
frame protocol (and further address the state explosion problem), we plan to use
static analysis of Java source code or bytecode. We have identified two options —
construction of an abstracted Java program that is verified with JPF, and direct
extraction of a behavior protocol (behavior model of the Java code) that is then
checked against the frame protocol using the BPChecker.

We would also like to extend our approach to construction of a reasonable envi-
ronment to address other kinds of errors and properties of Java code like assertion
violations. This would involve use of different static analyses and heuristics than
those used for concurrency errors — e.g. in case of assertion violations, values of
program variables are typically more important than the number of parallel threads.

107

Bibliography

[1] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P. Parizek, and F.
Plasil. Component Reliability Extensions for Fractal Component Model, http:
//kraken.cs.cas.cz/ft/public/public index.phtml, 2006.

[2] J. Adamek and F. Plasil. Component Composition Errors and Update Atomic-
ity: Static Analysis, Journal of Software Maintenance and Evolution: Research
and Practice, 17(5), 2004.

[3] L. de Alfaro and T. A. Henzinger. Interface Automata, In Proceedings of 8th
European Software Engineering Conference, ACM Press, 2001.

[4] R. Allen and D. Garlan. A Formal Basis for Architectural Connection, ACM
Transactions on Software Engineering and Methodology, vol. 6, no. 3, 1997.

[5] R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by
Learning Assumptions, In Proceedings of 17th Conference on Computer-Aided
Verification (CAV), LNCS, vol. 3576, 2005.

[6] D. Angluin. Learning Regular Sets from Queries and Counterexamples, Infor-
mation and Computation, 75(2), Nov. 1987.

[7] C. Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-
Threaded Java Programs, In Proceedings of 13th Australian Software Engi-
neering Conference (ASWEC), IEEE CS, 2001. http://artho.com/jlint

[8] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B.
Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough Static Analysis of Device
Drivers, Proceedings of EuroSys 2006, ACM Press.

[9] T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Proper-
ties of Interfaces, In Proceedings of the 8th SPIN Workshop on Model Checking
of Software, LNCS, vol. 2057, 2001. http://research.microsoft.com/slam

[10] J. A. Bergstra, A. Ponse, S. A. Smolka. Handbook of Process Algebra, Elsevier,
2001.

[11] A. Bertolino and E. Marchetti. Software Testing, Chapter 5 in the Guide to
the Software Engineering Body of Knowledge (SWEBOK), 2004 Version, IEEE
Computer Society, 2004. http://www.swebok.org

108

http://kraken.cs.cas.cz/ft/public/public_index.phtml
http://kraken.cs.cas.cz/ft/public/public_index.phtml
http://artho.com/jlint
http://research.microsoft.com/slam
http://www.swebok.org

[12] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The Software
Model Checker Blast: Applications to Software Engineering, International
Journal on Software Tools for Technology Transfer, 2007. http://mtc.epfl.ch/
software-tools/blast/

[13] S. Berezin, S. Campos, and E. Clarke. Compositional Reasoning in Model
Checking, Lecture Notes in Computer Science, vol. 1536, 1998.

[14] J.P. Bowen and M.G. Hinchey. Formal Methods, In Computer Science Hand-
book, 2nd edition, Section XI, Chapman & Hall/CRC, ACM, 2004.

[15] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J. B. Stefani. The
FRACTAL Component Model and Its Support in Java, Software - Practice
and Experience, 36(11-12), 2006.

[16] L. Bulej, T. Bures, T. Coupaye, M. Decky, P. Jezek, P. Parizek, F. Plasil, T.
Poch, N. Rivierre, O. Sery, and P. Tuma. CoCoME in Fractal, Accepted for
publication in Proceedings of the CoCoME project, LNCS, Jun 2007.

[17] T. Bures, M. Decky, P. Hnetynka, J. Kofron, P. Parizek, F. Plasil, T. Poch, O.
Sery, and P. Tuma. CoCoME in SOFA, Accepted for publication in Proceedings
of the CoCoME project, LNCS, Jun 2007.

[18] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features
in a Hierarchical Component Model, In Proceedings of SERA 2006, IEEE CS.

[19] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of
Software Components in C, Transactions on Software Engineering (TSE), vol.
30, no. 6, June 2004

[20] S. Chaki and O. Strichman. Optimized L*-based Assume-Guarantee Reasoning,
In Proceedings of the 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), LNCS, vol. 4424, 2007.

[21] E. Clarke, O. Grumberg, and D. Peled. Model Checking, MIT Press, 2000.

[22] E. Clarke, D. Long, and K. McMillan. Compositional Model Checking, In Pro-
ceedings of Fourth Annual Symposium on Logic in Computer Science, 1989.

[23] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning Assump-
tions for Compositional Verification, In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), LNCS, vol. 2619, April 2003.

[24] CoCoME: The Common Component Modeling Example, http://agrausch.
informatik.uni-kl.de/CoCoME.

[25] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zhueng. Bandera: Extracting Finite-state Models from Java Source Code,
In Proceedings of the 22nd International Conference on Software Engineering
(ICSE), June 2000. http://bandera.projects.cis.ksu.edu

109

http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://agrausch.informatik.uni-kl.de/CoCoME
http://agrausch.informatik.uni-kl.de/CoCoME
http://bandera.projects.cis.ksu.edu

[26] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints, In
4th Symposium on Principles of Programming Languages, 1977.

[27] M. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building Your Own Software
Model Checker Using The Bogor Extensible Model Checking Framework, In
Proceedings of 17th Conference on Computer-Aided Verification (CAV), LNCS,
vol. 3576, 2005. http://bogor.projects.cis.ksu.edu

[28] Enterprise Java Beans Specification, version 2.1, Sun Microsystems, Nov 2003.
http://java.sun.com/products/ejb/

[29] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption Gener-
ation for Software Component Verification, In Proceedings of the 17th IEEE
International Conference on Automated Software Engineering (ASE), 2002.

[30] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh. Assume-guarantee
Verification of Source Code with Design-Level Assumptions, In Proceedings of
the 26th International Conference on Software Engineering (ICSE), 2004.

[31] M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu. Refining Interface
Alphabets for Compositional Verification, In Proceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS, vol. 4424, 2007.

[32] A. Groce and W. Visser. Heuristics for Model Checking Java Programs, Inter-
national Journal on Software Tools for Technology Transfer (STTT), vol. 6, no.
4, December 2004

[33] J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski, and H. Zheng. A Formal Study
of Slicing for Multi-threaded Programs with JVM Concurrency Primitives, In
Proceedings of the 1999 International Symposium on Static Analysis (SAS),
LNCS, vol. 1694, September 1999.

[34] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Cadena: An In-
tegrated Development, Analysis and Verification Environment for Component-
based Systems, In Proceedings of the 25th International Conference on Software
Engineering (ICSE), 2003.

[35] K. Havelund. Using Runtime Analysis to Guide Model Checking of Java Pro-
grams, In Proceedings of the 7th SPIN Workshop on Model Checking of Soft-
ware, LNCS, vol. 1885, 2000.

[36] K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer,
In Proceedings of the 1st Workshop on Runtime Verification, ENTCS, vol. 55,
2001.

[37] C. A. R. Hoare. Communicating Sequential Processes, Prentice Hall Interna-
tional (UK) Ltd., 1985.

110

http://bogor.projects.cis.ksu.edu
http://java.sun.com/products/ejb/

[38] G. Holzmann. The Spin Model Checker, Primer and Reference Manual,
Addison-Wesley, 2003. http://spinroot.com/spin/whatispin.html

[39] D. Hovemeyer and W. Pugh. Finding Bugs is Easy, ACM SIGPLAN Notices,
vol. 39, 2004. http://findbugs.sourceforge.net

[40] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized Symbolic Execution
for Model Checking and Testing, In Proceedings of the 9th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS, vol. 2619, April 2003.

[41] B. Long, D. Hoffman, and P. Strooper. Tool Support for Testing Concurrent
Java Components, IEEE Transactions on Software Engineering, vol. 29, no. 6,
2003.

[42] M. Mach, F. Plasil, and J. Kofron. Behavior Protocol Verification: Fighting
State Explosion, International Journal of Computer and Information Science,
vol. 6, no. 1, ACIS, Mar 2005.

[43] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Soft-
ware Architectures, In Proceedings of the 5th European Software Engineering
Conference (ESEC), LNCS, vol. 989, 1995.

[44] J. Magee and J. Kramer. Concurrency - State Models and Java Programs, John
Wiley, 1999. http://www.doc.ic.ac.uk/ltsa/

[45] K. McMillan. Symbolic Model Checking, Kluwer Academic Publishers, 1993.
http://www.cs.cmu.edu/∼modelcheck/smv.html

[46] F. Nielson, H. R. Nielson, and Chris Hankin. Principles of Program Analysis,
Springer, ISBN 3-540-65410-0, 2005.

[47] OMG: CORBA Components, version 3.0, OMG document formal/02-06-65,
Jun 2002.

[48] P. Parizek. BPEL checker, http://dsrg.mff.cuni.cz/projects/bpelchecker, 2007.

[49] P. Parizek. Environment Generator for Java PathFinder, http://dsrg.mff.cuni.
cz/projects/envgen.

[50] P. Parizek and J. Adamek. Checking Session-Oriented Interactions between
Web Services, Accepted for publication in proceedings of 34th EUROMICRO
SEAA conference, IEEE Computer Society, 2008.

[51] C. Pasareanu, M. Dwyer, and M. Huth. Assume-Guarantee Model Checking of
Software: A Comparative Case Study, In Proceedings of the 6th SPIN Work-
shop, LNCS, vol. 1680, 1999.

[52] F. Plasil and S. Visnovsky. Behavior Protocols for Software Components, IEEE
Transactions on Software Engineering, vol. 28, no. 11, 2002.

111

http://spinroot.com/spin/whatispin.html
http://findbugs.sourceforge.net
http://www.doc.ic.ac.uk/ltsa/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://dsrg.mff.cuni.cz/projects/bpelchecker
http://dsrg.mff.cuni.cz/projects/envgen
http://dsrg.mff.cuni.cz/projects/envgen

[53] A. Pnueli. In Transition from Global to Modular Temporal Reasoning about
Programs, Logics and Models of Concurrent Systems, vol. 13, 1984.

[54] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs, ACM Transactions
on Computer Systems, vol. 15, issue 4, 1997.

[55] M. I. Schwartzbach. Lecture Notes on Static Analysis, BRICS, Department of
Computer Science, University of Aarhus, Denmark, 2006.

[56] N. Sinha and E. Clarke. SAT-Based Compositional Verification Using Lazy
Learning, In Proceedings of the 19th International Conference on Computer
Aided Verification (CAV), LNCS, vol. 4590, 2007.

[57] C. Szyperski. Component Software: Beyond Object-Oriented Programming,
2nd edition, Addison-Wesley, 2002.

[58] F. Tip. A Survey of Program Slicing Techniques, Journal of Programming Lan-
guages, vol. 3, no. 3, September 1995.

[59] O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu. Automated Environment Gen-
eration for Software Model Checking. In Proceedings of the 18th IEEE Inter-
national Conference on Automated Software Engineering (ASE), 2003.

[60] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking
Programs, Automated Software Engineering Journal, vol. 10, no. 2, April 2003.
http://javapathfinder.sourceforge.net

112

http://javapathfinder.sourceforge.net

	Introduction
	Formal verification
	Software components
	Formal verification of software components
	Problem statement
	Goals of the thesis
	Structure of the thesis

	Background
	Program verification frameworks
	Compositional verification
	Behavior Protocols

	Goals revisited
	Contribution: verification of Java code of primitive components
	The whole picture --- application of the assume-guarantee paradigm
	Modeling component environment via behavior protocols
	Obeying a frame protocol
	Addressing state explosion in discovery of concurrency errors
	Contribution reflected in publications

	Model Checking of Software Components: Combining Java PathFinder and Behavior Protocol Model Checker
	Specification and Generation of Environment for Model Checking of Software Components
	Modeling Environment for Component Model Checking from Hierarchical Architecture
	Partial Verification of Software Components: Heuristics for Environment Construction
	Modeling of Component Environment in Presence of Callbacks and Autonomous Activities
	Evaluation and related work
	Method
	Tools
	Experiments

	Conclusion
	References

