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Abstract. Dynamic analysis is a popular approach to detecting possible runtime
errors in software and for monitoring program behavior, which is based on precise
inspection of a single execution trace. It has already proved to be useful especially
in the case of multithreaded programs and concurrency errors, such as race condi-
tions. Nevertheless, usage of dynamic analysis requires good tool support, e.g. for
program code instrumentation and recording important events. While there exist
several dynamic analysis frameworks for Java and C/C++ programs, including
RoadRunner, DiSL and Valgrind, we were not aware of any framework target-
ing the C# language and the .NET platform. Therefore, we present SharpDetect,
a new framework for dynamic analysis of .NET programs — that is, however,
focused mainly on programs compiled from the source code written in C#. We
describe the overall architecture of SharpDetect, the main analysis procedure,
selected interesting technical details, its basic usage via command-line, config-
uration options, and the interface for custom analysis plugins. In addition, we
discuss performance overhead of SharpDetect based on experiments with small
benchmarks, and demonstrate its practical usefulness through a case study that
involves application on NetMQ, a C# implementation of the ZeroMQ messaging
middleware, where SharpDetect found one real concurrency error.

1 Introduction

Dynamic analysis is a popular approach to detecting possible runtime errors in soft-
ware and for monitoring program behavior, which is applied within the scope of testing
and debugging phases of software development. A typical dynamic analysis tool, such
as Valgrind [5], records certain events and runtime values of program variables during
execution of a subject program, and based on this information it can very precisely an-
alyze behavior of the given program on the particular observed execution trace (and on
few other closely-related traces). For example, dynamic bug detectors usually look for
suspicious event sequences in the observed trace. Usage of dynamic analysis has al-
ready showed as beneficial especially in the case of multithreaded programs and search
for concurrency errors, such as race conditions and deadlocks (cf. [2] and [6]), where
the reported errors and fragments of the execution trace can be further inspected offline.

The main benefits of dynamic analysis include a very high precision and therefore
also minimal number of reported false warnings, all of that because the actual concrete
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program execution is observed. On the other hand, usage of dynamic analysis requires
good tool support, which is needed for tasks such as program code instrumentation and
processing of recorded important events. Tools should also have practical overhead with
respect to performance and memory consumption.

While robust dynamic analysis frameworks have been created for Java and C/C++
programs, including RoadRunner [3], DiSL [4], Valgrind [5] and ThreadSanitizer [7],
we were not aware of any framework targeting programs written in C# and running on
the .NET platform. For that reason, we have developed SharpDetect, a framework for
dynamic analysis of .NET programs, that we present in this paper.

SharpDetect takes executable .NET assemblies as input, performs offline instru-
mentation of the CIL (Common Intermediate Language) binary intermediate code with
API calls that record information about program behavior, and runs the actual dynamic
analysis of the instrumented subject program according to user configuration. Although
the .NET platform supports many different programming languages, when developing
and testing SharpDetect we focused mainly on programs compiled from the source
code written in C#. Still, most programs written in other popular .NET languages, such
as VB.NET and F#, should be also handled without any problems because SharpDe-
tect manipulates the intermediate CIL binary code, but we have not tested it on any
VB.NET and F# programs. In particular, the F# compiler may generate CIL code frag-
ments different from those produced by C# compilers. We also want to emphasize that
SharpDetect targets the modern cross-platform and open-source implementation of the
.NET platform, which is called .NET Core. It runs on all major operating systems that
are supported by .NET Core, that means recent distributions of Windows, Linux and
Mac OS X. The output of SharpDetect includes a log of recorded events and a report of
possibly discovered errors. Note, however, that SharpDetect is primarily a framework
responsible for the dynamic analysis infrastructure. Specific custom analyses, including
bug detectors, are actually performed by plugins that are built on top of the core frame-
work. In order to demonstrate that the core framework (and its plugin API) is mature
and can be used in practice, we have implemented two well-known algorithms for de-
tecting concurrency errors, Eraser [6] and FastTrack [2], as plugins for SharpDetect. We
have used the Eraser plugin in a case study that involves the NetMQ messaging middle-
ware. Nevertheless, despite our focus on analyses related to concurrency, SharpDetect
is a general framework that supports many different kinds of dynamic analyses.
Contribution and Outline. The main contributions presented in this paper include:

– SharpDetect, a new general and highly extensible framework that enables dynamic
analysis of .NET programs;

– evaluation of runtime performance overhead incurred by usage of SharpDetect
based on experiments with several benchmark programs written in C#;

– realistic case study that involves NetMQ, a C# implementation of the ZeroMQ
messaging middleware, and demonstrates practical usefulness of SharpDetect for
the purpose of detecting real concurrency errors.

The source code of a stable release of SharpDetect, together with example programs, is
available at https://gitlab.com/acizmarik/sharpdetect-1.0.

Due to limited space, we provide only selected information about SharpDetect in
this paper. Additional details can be found in the master thesis of the first author [1].
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Structure. The rest of this paper is organized as follows. We describe the overall ar-
chitecture and main workflow of SharpDetect in Section 2. Then we provide a brief
user guide (Section 3), discuss the case study involving NetMQ (Section 4) and results
of performance evaluation (Section 5), and finish with an outline of current work in
progress and plans for the future.

2 Architecture and Main Workflow

SharpDetect consists of two parts, compile-time modules and runtime modules, that
also correspond to main phases of its workflow, namely offline instrumentation and
run of the dynamic analysis. The compile-time modules, Console and Injector, are re-
sponsible mainly for the offline CIL instrumentation. The runtime modules, Core and
Plugins, perform the actual dynamic analysis during execution of the subject program.
In addition, the module Common implements basic functionality, including the defini-
tions of analysis events and necessary data structures, that is used by all other modules.
Figure 1 shows a high-level overview of the architecture and workflow of SharpDetect.
Both compile-time modules are displayed in the left frame with the label ”Instrumen-
tation”, while runtime modules are displayed in the right frame with the label ”Output
Program”. A very important aspect of the architecture of SharpDetect is that dynamic
analysis runs in the same process as the subject program, in such a way that both our
tool and the subject program share their memory address spaces. Now we provide de-
tails about individual modules and phases of the whole process.

Input Program
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Analyzed Assembly          

SharpDetect.Injector           

SharpDetect.Console           

Output Program

SharpDetect.Plugins        

SharpDetect.Core        

Instrumented program         

Uses

Raises events handled by

Relays events for processing by

Results of 
Dynamic Analysis

Software errors
detected by analysis

plugins

Fig. 1. High-level architecture and workflow of SharpDetect
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The Console module is a .NET Core frontend of SharpDetect that has the form of a
console application. It parses all configuration files and the command-line (Section 3),
reads the input C# project and creates a self-contained package that includes the .NET
program to be analyzed, drives the offline instrumentation process, and finally executes
the actual dynamic analysis using the instrumented assemblies.

The Injector module uses dnlib [8] for manipulation with CIL bytecode. Its main pur-
pose is to instrument the subject program with new code (classes, methods, and fields)
that records the relevant events and other information about program state through calls
of the SharpDetect API, when the dynamic analysis is executing. Note that SharpDetect
instruments also .NET System libraries, especially the Base Class Library (BCL). This
is needed, for example, to observe usage of collections in the subject program.

During the first phase, SharpDetect also completely removes native code from all
the processed assemblies to enforce that CLR (Common Language Runtime), the virtual
machine of .NET Core, actually loads the instrumented CIL bytecode instead of native
images produced by the C# compiler based on the original CIL bytecode.

The Core module is the main component of SharpDetect that is used at runtime. It is
responsible mainly for registering event handlers and dispatching of recorded analysis
events to plugins. Like in the case of some other dynamic analysis tools, the list of
supported events includes: accesses to fields of heap objects, accesses to array elements,
dynamic allocation of new heap objects, method calls (processing invocation and return
separately), thread synchronization actions (e.g., lock acquire, lock release, wait and
notify signals), start of a new thread, and termination of a thread (e.g., via the join
operation). Information about events of all these kinds is needed especially to enable
detection of concurrency errors. Figure 2 illustrates the main event processing loop on
an example involving the CIL instruction newobj for dynamic object allocation.

Process event

Return to original
control-flow

For each plugin
or until event not

consumed

Analyze collected 
information about 

object creation

Return from analysis

NEWOBJ
<get created object>
<call SharpDetect>

Analyzed
program

(thread T1)
SharpDetect Plugins

Fig. 2. Main event-processing loop illustrated on the CIL instruction newobj
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The last part is the plugin API, an interface through which the core notifies plugins
about observed events. Developers of custom plugins have to be aware of the fact that,
due to SharpDetect running in the same process as the subject program, analysis of
each individual event is carried out by the same thread that raised it. For each recorded
event, the dynamic analysis engine takes control of the corresponding thread in the
subject program for the duration of event’s processing by all plugins. We provide more
details about the plugin API from the user’s perspective in Section 3.

A closely related aspect, which is not specific just to SharpDetect, is that when the
analyzed program uses multiple threads, event handlers may be invoked concurrently
and, therefore, events may be received in a wrong order by the analysis plugins. Con-
sider the following example. Thread T1 releases a lock L at some point during the
program execution. But right before SharpDetect core notifies plugins about the cor-
responding event, a thread preemption happens and thread T2 now runs instead of T1.
Immediately after the preemption, T2 takes the lock L and SharpDetect notifies all plu-
gins about this event. Plugins then receive information about T2 acquiring L before the
notification from T1 about the release of L. We plan to address this challenge in future,
using an approach that we discuss in Section 6.

One important limitation of the current version of SharpDetect is that it can track
only information about user-defined threads. Specifically, it does not track analysis
events related to threads retrieved from thread pools, because almost no information
about such threads is available from the managed C# code.

3 User Guide

SharpDetect currently provides only a simple command-line interface. Figure 3 shows
all three commands that must be executed in order to analyze a given C# program.
The symbol rid in the first command stands for a runtime identifier, which needs to be
specified in order to create a fully self-contained package. A complete list of supported
runtime identifiers is provided in the official documentation for .NET Core [12].

// [optional] build the C# project and prepare it for
instrumentation by generating a self-contained package

dotnet SharpDetect.Console.dll build <path_to_csproj> \
--rid <platform_rid> --output <output_folder>

// instrument target assemblies based on the configuration
dotnet SharpDetect.Console.dll instrument <path_to_config>

// run the dynamic analysis
dotnet SharpDetect.Console.dll run \

<path_to_instrumented_assembly> \
--config <plugins_registration>

Fig. 3. Example usage of SharpDetect through its command-line interface

Configuration. Before the subject program can be analyzed, the user has to prepare
the configuration of SharpDetect. In a local configuration file, specific to a given pro-
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gram, the user can (1) disable some categories of analysis events and (2) further restrict
the set of reported events by defining patterns for names of methods and object fields
that should be tracked. Figure 4 shows an example configuration, written in the JSON
syntax, that:

– enables analysis events related to field accesses, method calls, and object allocation;
– completely disables all events related to arrays;
– restricts the set of reported field access events for the assembly MyAssembly1.dll

just to the class C1 in the namespace nsA;
– and finally restricts the set of reported method call events for the assembly just to

the class C1 in the namespace nsA and the method Mth3 in the class C2 from the
namespace nsB.

The main purpose of all these configuration options is to allow users to specify events
relevant for a particular run of dynamic analysis, so that the overall number of reported
events is significantly reduced and the output can be therefore more easily inspected.

{
"TargetAssembly" : "MyAssembly1.dll",
"FieldPatterns" : [ "nsA.C1" ],
"MethodPatterns" : [ "nsA.C1", "nsB.C2::Mth3" ],

"FieldInjectors" : true,
"MethodInjectors" : true,
"ObjectCreateInjector" : true,
"ArrayInjectors" : false

}

Fig. 4. Example content of a local configuration for a specific dynamic analysis

Users also need to decide upfront whether they want to enable JIT optimizations.
The difference can be observed, for example, in the case of programs that use multiple
threads or the Task Parallel Library (TPL) with one simple lambda function as a task
body. If the JIT optimizations are enabled, then each execution of the lambda function
might be performed by the same thread, regardless of the usage of TPL. On the other
hand, when the JIT optimizations are disabled, each execution of the lambda function
is performed by a different thread.
Plugins. We have already indicated that a very important feature of SharpDetect is the
possibility to use custom analysis plugins. Developers of such plugins need to imple-
ment the abstract class BasePlugin that belongs to the Core module. In Figure 5, we
show those methods of the abstract class that correspond to the most commonly used
analysis events. Signatures of the remaining methods follow the same design pattern.
The full source code of the BasePlugin class is available in the project repository and it
is also documented on the project web site.

The command that executes actual dynamic analysis (Figure 3) takes as one param-
eter the list of plugin names in the format plugin1 | plugin2 | ... | pluginN. SharpDetect
then looks for available plugins in the directory specified by the environment variable
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public abstract string PluginName { get; }
void AnalysisStart(MethodDescriptor entryMethod);
void AnalysisEnd(MethodDescriptor entryMethod);
void FieldRead(int threadId, object obj, FieldDescriptor fd);
void FieldWritten(int threadId, object obj, FieldDescriptor fd,

object newValue);
void LockAcquireAttempted(int threadId, MethodDescriptor mth,

object lockObj, (int, object)[] parameters);
void LockAcquireReturned(int threadId, MethodDescriptor mth,

object lockObj, bool result, (int, object)[] parameters);
void LockReleased(int threadId, MethodDescriptor mth, object

lockObj);
void MethodCalled(int threadId, (int, object)[] parameters,

MethodDescriptor mth);
void MethodReturned(int threadId, object retValue, bool valid,

(int, object)[] parameters, MethodDescriptor mth);
void ObjectCreated(int threadId, object obj);
void UserThreadStarted(int threadId, Thread thread);
void UserThreadJoined(int threadId, Thread thread);

Fig. 5. Selected methods defined by the abstract class BasePlugin

SHARPDETECT PLUGINS. During the analysis run, every observed event is dispatched
by SharpDetect to the first plugin in the chain. A plugin that received an event may con-
sume the event or forward it to the next plugin. Note that the default implementation
of all event handler methods on the abstract class BasePlugin forwards the information
about events to the next plugin in the chain, if such plugin exists.

Additional technical details regarding the development of custom plugins are il-
lustrated by two example plugins that we released together with SharpDetect, i.e. our
implementations of the algorithms Eraser and FastTrack that can be found in the module
SharpDetect.Plugins.

4 Case Study

We have applied SharpDetect to the NetMQ library [9], which is a C# implementation
of the ZeroMQ high-performance asynchronous messaging middleware, in order to see
how well it can help with debugging of concurrency issues in realistic programs. To be
more specific, the first author used SharpDetect when searching for the root cause of a
particular timing issue in NetMQ that occurred very rarely.

The source code of a test program that uses NetMQ, together with the configuration
of SharpDetect, is in the directory src/SharpDetect/SharpDetect.Examples/CaseStudy
of the repository at https://gitlab.com/acizmarik/sharpdetect-1.0.
It is a standard .NET Core console application that runs two threads (server and client).
Here we describe just a fragment of the SharpDetect’s output and a fragment of the
NetMQ source code that contains the root cause of this particular concurrency issue.

Figure 6 shows output produced by the run of dynamic analysis with the Eraser
plugin, which can detect possible data races. The last two entries in Figure 6 repre-
sent the warning reported by Eraser, which points to possible data races on the static
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// Field s_lastTime was written by thread with ID=3
21:12:57 [INF] [3] Field: System.Int64 NetMQ.Core.Utils.Clock::

s_lastTime was written with value 27266154.

// Field s_lastTsc was read by thread with ID=4
21:12:57 [INF] [4] Field: System.Int64 NetMQ.Core.Utils.Clock::

s_lastTsc was read from.

// Field s_lastTime was read by thread with ID=3
21:12:57 [INF] [3] Field: System.Int64 NetMQ.Core.Utils.Clock::

s_lastTime was read from.

// Field s_lastTsc was written by thread with ID=4
21:12:57 [INF] [4] Field: System.Int64 NetMQ.Core.Utils.Clock::

s_lastTsc was written with value 54333378824957.

21:12:57 [ERR] [Eraser] detected data-race on a static field
System.Int64 NetMQ.Core.Utils.Clock::s_lastTsc

21:12:57 [ERR] [Eraser] detected data-race on a static field
System.Int64 NetMQ.Core.Utils.Clock::s_lastTime

Fig. 6. Output produced by SharpDetect with the Eraser plugin for the program that uses NetMQ

fields s lastTsc and s lastTime defined by the class NetMQ.Core.Utils.Clock. In the cor-
responding revision of NetMQ [10], both static fields are read and written only by the
method NowMS whose source code is displayed in Figure 7. Log entries at the level INF,
which are presented in Figure 6, indicate that the method NowMS is actually executed
by multiple threads without any synchronization of the critical section.

5 Performance Evaluation

In this section we report and discuss the overhead of dynamic analysis with SharpDe-
tect, and the impact on analyzed programs, in terms of the running time and memory
consumption. For that purpose, we performed experiments with two small benchmark
programs on the following hardware and software configuration: Intel Core i7-8550U
CPU with the clock speed 1.80 GHz and 4 cores, 16 GB of memory, 64-bit version of
Windows 10, and .NET Core 2.1.

The first benchmark program uses Task Parallel Library (TPL) to process a big ar-
ray in an unsafe way, such that individual threads are not synchronized and therefore
a data race may happen at each access to array elements. The second benchmark pro-
gram is a simple implementation of the producer-consumer pattern, where (i) both the
producer and consumer are implemented as separate Task objects that share a common
queue and (ii) access to the queue is guarded by a lock. Source code of both programs
is available in the SharpDetect repository in the directories src/SharpDetect/SharpDe-
tect.Examples/(Evaluation1,Evaluation2). Even though these programs are quite small,
their execution generates a lot of analysis events, which makes them useful for the pur-
pose of measuring the overhead of analysis with SharpDetect.
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public static long NowMs() {
long tsc = Rdtsc();
if (tsc == 0) return NowUs() / 1000;

/* Beginning of critical section */
if (tsc - s_lastTsc <= Config.ClockPrecision / 2

&& tsc >= s_lastTsc) {
return s_lastTime;

}

s_lastTsc = tsc;
s_lastTime = NowUs() / 1000;
return s_lastTime;
/* End of critical section */

}

Fig. 7. Source code of the method NowMS that contains root cause of the concurrency issue

Each measurement was repeated 50 times. In tables with results, we present aver-
age values together with the corresponding standard deviations. The baseline values of
running time and memory consumption, respectively, were recorded using the subject
programs before instrumentation.

Table 1 contains results for the first benchmark and several configurations of SharpDe-
tect. Data in the table show that usage of SharpDetect, together with the Eraser plugin,
is responsible for a slow-down by the factor of 4 with respect to the baseline. Memory
overhead is caused by tracking analysis information for each array element.

Configuration Results
Instrumented Plugins Time (s) Memory (KiB)
No (baseline) – 0.19± 0.01 333
Yes EmptyPlugin 0.44± 0.01 541± 5
Yes FastTrack 0.56± 0.01 4223± 37
Yes Eraser 0.79± 0.03 7216± 6

Table 1. The running time and memory consumption of the first benchmark program

Table 2 contains results for the second benchmark. In this case, we observed slow-
down at most by the factor of 3.7. Memory consumption apparently increased by the
factor of 16, but, in fact, there is a constant memory overhead of about 4000 KiB,
regardless of the configuration. The main cause is that SharpDetect needs to track a lot
of information during the program execution, such as method call arguments and return
values, even when plugins do not use much of the data.

Overall, results of our experiments indicate that SharpDetect has a relatively small
overhead that enables usage of the tool in practice. Note that baseline measurements
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Configuration Results
Instrumented Plugins Time (s) Memory (KiB)
No (baseline) – 0.145± 0.003 261.1
Yes EmptyPlugin 0.51± 0.01 4265.7± 0.5
Yes Eraser 0.53± 0.02 4267.5± 0.5
Yes FastTrack 0.54± 0.02 4268.3± 0.7

Table 2. The running time and memory consumption of the second benchmark program

of the memory consumption did not deviate at all for both programs, because non-
instrumented variants of the programs allocate very few objects on the heap.

6 Future Work

We plan to continue our work on SharpDetect in various directions, implementing new
features and improving its performance.

One way to reduce the effects of dynamic analysis with SharpDetect on the behavior
and performance of subject programs is to use the .NET Profiling API [11], which en-
ables online instrumentation at the level of CIL bytecode during execution of a subject
program. In addition, usage of the .NET Profiling API allows clients to observe specific
events raised by the .NET execution engine, CoreCLR, even without code instrumen-
tation. We are currently working on the implementation of a new version, SharpDetect
2.0, that will (1) utilize the .NET Profiling API, (2) execute dynamic analysis using the
out-of-process approach where the analysis runs in a different process than the subject
program, and (3) contain many additional improvements. The process of the subject
program will contain just the minimal necessary amount of injected code to record
events and forward them to the analysis process (which involves all the plugins, too).

Another goal is to address the issues related to possible concurrent invocation of
event handlers that we described at the end of Section 2. We plan to implement a so-
lution that will impose more strict ordering of analysis events from multiple threads,
based on some form of vector clock, such that SharpDetect could delay dispatching of
an event until all observed preceding events are processed.
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