
Extraction of Component-Environment Interaction Model
Using State Space Traversal

Pavel Parizek
Department of Software Engineering
Faculty of Mathematics and Physics

Charles University, Malostranske namesti 25
Prague 1, 118 00, Czech Republic

parizek@dsrg.mff.cuni.cz

Nodir Yuldashev
Department of Software Engineering
Faculty of Mathematics and Physics

Charles University, Malostranske namesti 25
Prague 1, 118 00, Czech Republic
yuldashev@dsrg.mff.cuni.cz

ABSTRACT
Scalability of software engineering methods can be improved
by application of the methods to individual components in-
stead of complete systems. This is, however, possible only if
a model of interaction between each component and its envi-
ronment (rest of the system) is available. Since constructing
formal models of interaction by hand is hard and tedious,
techniques and tools for automated inference of the models
from code are needed.

We present a technique for automated extraction of mod-
els of component-environment interaction from multi-thread-
ed software systems implemented in Java, which is based on
state space traversal. Models are captured in the formal-
ism of behavior protocols, which allows to express parallel
behavior explicitly. Java PathFinder is used to perform the
state space traversal. We have implemented the technique
in the Java2BP tool and applied the tool on two non-trivial
software systems to show that our approach is feasible.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Documentation, Verification

Keywords
Software components, behavior protocols, Java PathFinder

1. INTRODUCTION
Many software systems are constructed in a modular man-

ner, using reusable components with well-defined interfaces
as basic building blocks [17]. An advantage of building soft-
ware systems from well-defined components is that scalabil-
ity of various software engineering-related methods can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

improved by application of the methods to individual com-
ponents instead of complete systems. This is important, for
example, in verification and performance analysis.

Nevertheless, software engineering-related methods typi-
cally can be applied to a single component C of a software
system only if a formal model of interaction between C and
its environment E (rest of the system) is available — we
denote it as the model of C-E interaction in this text. The
model of C-E interaction is then used as an input to tools
that implement the methods. Since construction of formal
models of C-E interaction by hand is hard and tedious, tech-
niques and tools for automated extraction (inference) of the
models are needed.

1.1 Related Work
Several techniques that can be used for automated extrac-

tion of models of C-E interaction from the code of software
systems were developed in recent years. The techniques can
be divided into five groups according to (i) the target of an
analysis — a component, an environment for the component,
or the complete system composed of a component and its en-
vironment — and (ii) the underlying approach — learning of
a finite automaton using the L∗ algorithm [4] with a model
checker as a teacher, static analysis or runtime analysis.

The first group includes techniques that use the L∗ algo-
rithm to infer a specification of valid usage of a component
by any environment. For example, the technique presented
in [2] aims at inference of a valid usage specification of a
Java class in the form of a finite automaton that captures
sequences of method calls that do not trigger an error (an
exception) in the component. The main drawback of tech-
niques in this group is that they involve invocations of a
model checker, and therefore are prone to state explosion.
On the other hand, use of model checkers as teachers allows
to create precise specifications and models with respect to
reachability of error states.

Techniques in the second group also aim at inference of a
valid usage specification of a component, but they are based
on static analysis of the component’s implementation. Into
this group belongs the technique presented in [12], which
aims at analysis of Java components. The technique infers a
set of predicates over the state of a component and history
of method calls that determines how the component should
be used in order to avoid an error state.

Techniques in the third group (e.g., [15]) use static anal-
ysis of the code of component’s environments to extract an
approximate model of component’s valid usage. The tech-

niques are based on the assumption that prevailing ways
of component’s usage by its environments are often correct
— the techniques capture only the prevailing usage of the
component, using statistical methods to identify it.

In general, techniques based on static analysis consider
all execution paths in the code, but produce approximate
models of C-E interaction due to the summarization of in-
formation from different execution paths.

The fourth group includes techniques based on runtime
analysis of the whole system (a component and its environ-
ment). The techniques typically work in the following way:
first, the set of traces of important events is recorded during
execution of the system via runtime monitoring, and then
the model in the form of a finite automaton is derived from
the traces. Like in the case of the third group, the underly-
ing assumption is that the typical usage of a component is
correct. An example of this group is a technique presented
in [3], which uses machine learning and stochastic methods
to derive the specification of correct usage of a component
from the set of traces recorded via runtime monitoring. Al-
though runtime analysis techniques monitor concrete execu-
tions of a system and therefore are very precise, they capture
only the traces that actually occured during a particular set
of runs of the system — only a subset of execution paths of
the system — and therefore suffer from limited coverage.

There are also hybrid techniques (the fifth group) that
combine static and runtime analysis. For example, the tech-
nique proposed in [20] uses runtime analysis of the whole
system to acquire traces of method calls during a program
run, and static analysis of the component’s code to identify
the traces that may cause an exception to be thrown. The
resulting model in the form of a finite automaton reflects
only traces that do not cause an exception to be thrown.

A drawback common to all the techniques we are aware
of is that they do not capture parallel execution of meth-
ods in multiple threads and therefore cannot be used to ex-
tract precise models of C-E interaction from multi-threaded
software systems. One of the reasons is that they extract
models and specifications in finite state machine-based for-
malisms, which cannot express parallel behavior explicitly.
Formalisms based on finite automata allow to express par-
allelism only implicitly, e.g. via an automaton that accepts
a language (a set of traces) of words (traces) corresponding
to all interleavings of threads running in parallel.

1.2 Contribution
We present a technique for extraction of models of C-

E interaction from multi-threaded Java programs (software
systems implemented in Java), which is based on explicit
traversal of the programs’ state space. The extracted models
of C-E interaction are expressed in the formalism of behavior
protocols [14], which allows to capture parallel behavior of
multiple threads explicitly. Java PathFinder (JPF) [19] is
used to perform the state space traversal of Java programs.

The advantages of state space traversal with JPF over
the existing techniques are: comparable precision to runtime
analysis and comparable coverage to static analysis-based
techniques. On the other hand, state space traversal suffers
from state explosion when applied to software systems that
involve high number of threads running concurrently.

We focus on Java programs that are built from compo-
nents with a well-defined boundary in the form of Java in-
terfaces — this is the case, for example, of Java classes that

implement some Java interfaces or large Java libraries with
well-defined API. We also distinguish between a component
(component instance) and a component type.

2. RUNNING EXAMPLE
Key concepts of the proposed technique will be illustrated

on a simple MediaPlayer application (Fig. 1) that is im-
plemented in Java. The application consists of three Java
components: Player, LocalFS, and ZipFS. The Player com-
ponent is responsible for presentation of media files, whose
content it retrieves from the other two components. The
LocalFS component provides access to a local file system on
a harddisk and the ZipFS component provides access to the
contents of a zip archive.

Player

LocalFS

FileSrv

ZipFS

FileSrv

Figure 1: Architecture of MediaPlayer

The LocalFS and ZipFS components are of the same type
FileSystem, and, in particular, both of them provide the
FileSrv interface with the signature presented on Fig. 2.

public interface FileSrv {

File openFile(String fileName);

void closeFile(File f);

String[] readDir(String dirName);

}

Figure 2: Java signature of the FileSrv interface

A fragment of a simplified implementation of the Player

component in Java is on Fig. 3. The key characteristic of
the implementation is that selection of files to be played is
performed in the main thread, while each file is played in
a separate thread (instance of the PlayThread class). Note
also that at most two media files can be played concurrently.

3. BACKGROUND

3.1 Behavior Protocols
Behavior protocols [14] is a formalism for modeling of in-

teraction between a software component and its environment
(rest of a system) in terms of sequences and parallel inter-
leavings of method calls. Data, including method parame-
ters and return values, are neglected by the formalism.

A behavior protocol prot is an expression that specifies
a set L(prot) of finite traces of method call-related events
on component interfaces. Four kinds of atomic events are
supported — ?i.m^ (acceptance of invocation of method m

on interface i), !i.m^ (emit of a method invocation), ?i.m$
(acceptance of a return from a method), and !i.m$ (emit of

public class Player {

public void run() {

while (!exit) {

String[] curDir = new String[]{"/"};

String path = selectPathInGUI(curDir);

while (isDir(path)) {

if (isZip(path))

curDir = zipFS.readDir(path);

else curDir = localFS.readDir(path);

path = selectPathInGUI(curDir);

}

while (numberOfPlayThreads > 2) wait();

if (isZip(path))

new PlayThread(zipFS, path).start();

else new PlayThread(localFS, path).start();

}

}

}

class PlayThread {

public void run() {

File f = fs.openFile(fileName);

// load all data from file

fs.closeFile(f);

}

}

Figure 3: Implementation of the Player component

a return). More complex protocols can be constructed from
the atomic events using the standard regular operators — ;

(sequence), + (choice), and * (repetition) — and the paral-
lel composition operator |, which generates all interleavings
of event traces defined by its operands. Several shortcuts
that enhance readability are also supported: ?i.m stands
for ?i.m^ ; !i.m$ and ?i.m{prot} stands for ?i.m^ ; prot
; !i.m$. An empty protocol is denoted by NULL.
For example, interaction of the LocalFS component with

its environment from the perspective of LocalFS can be
specified in the formalism of behavior protocols in this way:

?FileSrv.readDir*

|

(

(?FileSrv.openFile ; ?FileSrv.closeFile)

+

NULL

)*

|

(

(?FileSrv.openFile ; ?FileSrv.closeFile)

+

NULL

)*

The protocol states that methods of LocalFS can be called
in three parallel threads. A finite number of calls to the
readDir method can be performed in one thread, and the
methods openFile and closeFile can be called in the cor-
rect sequence in the other two threads.

3.2 Java PathFinder
Java PathFinder (JPF) [19] is an extensible and customiz-

able explicit-state model checker for Java bytecode programs.
However, in general it can be used as a tool for state space
traversal of Java bytecode programs that can gather specific
information about program’s execution during the traver-
sal. It is implemented as a special Java virtual machine
(JPF VM) that supports backtracking, state matching and
non-deterministic choice — in particular, JPF VM executes
the given Java program in all possible ways with respect to
thread scheduling.

The state space of a Java program is constructed on-the-
fly by JPF. A transition is a sequence of bytecode instruc-
tions that is terminated either by a scheduling-relevant in-
struction or by an instruction corresponding to non-deter-
ministic data choice. A bytecode instruction is scheduling-
relevant if its effects are visible to other threads in a system
— this is the case, e.g., of the PUTFIELD instruction for write
to an object field (variable on the heap). All instructions in
a single transition are executed by the same thread; how-
ever, any two adjacent transitions on any path in the state
space can be performed by two different threads — thread
context switch can occur only at a transition boundary. A
state in the state space is a snapshot of the current state
of the checked Java program at the end of a transition, as
viewed by JPF VM.

The key extension mechanisms of JPF with respect to the
technique proposed in this paper are listener API, choice
generators and scheduler factory. The listener API provides
means for monitoring of the state space traversal and exe-
cution of a Java program by JPF VM — a JPF listener is
notified about (i) state space search-level events like com-
pletion of a transition or backtracking from a state, and (ii)
VM-level events like execution of a bytecode instruction or
start of a thread. The mechanism of choice generators unifies
all possible causes for a choice among different ways of pro-
gram’s execution from a particular state, including thread
scheduling. A specific instance of choice generator is associ-
ated with each state and maintains the list of enabled and
unexplored transitions leading from the state. The choice
generator API also provides means for altering the set of
enabled and unexplored transitions — it is possible, for ex-
ample, to select specific transitions that should be explored.
Using custom choice generators and custom scheduler fac-
tory, it is possible to reduce the number of instructions that
are effectively considered as scheduling-relevant by JPF and
therefore to reduce the size of the state space of a multi-
threaded Java program.

4. EXTRACTION OF BEHAVIOR PROTO-
COL FROM JAVA CODE

In this section, we describe the state space traversal-based
technique for extraction of the model of C-E interaction in
behavior protocols from a Java program. We assume that
the program consists of two parts — a specific component
C of type TC that can be unambiguously identified among
all instances of TC in the program, and the rest of the pro-
gram, i.e. the environment E of C. Moreover, a well-defined
boundary between C and E in the form of a set of instances
of Java interfaces must exist. The assumption is obviously
fulfilled if there is only a single component of type TC in the
program. The case, when there are two or more components

of type TC in the program, is discussed in Sect. 4.3.
The input of the technique is a complete Java program

with the main method, and a list of interfaces that form
the boundary between C and E (C-E boundary), and the
output is the model of interaction between C and E in the
formalism of behavior protocols (C-E protocol). The C-E
protocol produced by the technique is expressed from the
perspective of C — calls of C from E are expressed by events
of the form ?i.m^ and !i.m$, while calls of E from C are
expressed by events of the form !i.m^ and ?i.m$.

The process of extraction of the C-E protocol from a Java
program involves JPF, which is used for traversal of the Java
program’s state space, and three extensions of JPF — two
JPF listeners and a custom scheduler. The C-E protocol is
extracted from the given Java program in two steps:

1. For each thread Ti in the program, a thread protocol
tproti expressing all sequences of actions at the C-E
boundary that can be performed by Ti is extracted.

2. The complete C-E protocol is constructed as a paral-
lel composition of thread protocols tprot1, . . . , tprotN

that reflects the interplay among threads in the given
program (e.g., synchronization).

The algorithm for extraction of a thread protocol for a single
thread is described in Sect. 4.1 — it can be used also for
extraction of the complete C-E protocol for a single-threaded
Java program. The algorithm for determination of parallel
composition of thread protocols is described in Sect. 4.2.

We have configured JPF in such a way that it does not
check any properties during the state space traversal of the
given Java program and therefore the traversal cannot be
terminated due to the occurrence of a property violation.
This way it is ensured that the extracted C-E protocol re-
flects the ”real behavior” of the Java program that can be
observed during executions of the program outside of JPF —
this means, for example, termination of the program upon
an uncaught exception on one hand, but continuation of pro-
gram’s execution upon occurrence of a race condition on the
other hand.

4.1 Extraction of Thread Protocol
A thread protocol tproti for a specific thread Ti is con-

structed by a JPF listener on-the-fly during traversal of the
Java program’s state space by JPF. Only the transitions ex-
ecuted by Ti are taken into account in construction of tproti.
All the logic of the construction algorithm is defined in han-
dlers of specific notifications from JPF. The key idea of the
algorithm is the following:

• During processing of a yet unexplored transition by
JPF, a sequence (trace) of method invocations and
returns from methods on interfaces forming the C-E
boundary (i.e. a sequence e1, ..., eN of atomic events
of the protocol) that are performed during the tran-
sition is recorded via inspection of all executed Java
bytecode instructions. When the transition is termi-
nated, the corresponding protocol of the form e1 ;

... ; eN is associated with the transition.

• During backtracking, the resulting thread protocol is
created from the sequences of atomic events associ-
ated with transitions using protocol operators. The
form of the thread protocol depends on the structure

of the state space. If JPF backtracks to a state that
has only one successor then the sequence operator ; is
used, while if JPF backtracks to a state having more
than one successor (e.g. as a consequence of non-
deterministic data choice) then the choice operator +

is used — the resulting protocol will have the form
p1 + p2 + ... + pN, where symbols p1, p2, ..., pN

represent the sub-protocols associated with transitions
starting in the state to which JPF backtracks.

The idea is illustrated on Fig. 4 — Fig. 4a shows the case
of a state having just one successor, while Fig. 4b shows the
case of a state that has two successors.

Note that the repetition operator * is not used in construc-
tion of a thread protocol, since it abstracts away the number
of iterations, which may be important in some cases (e.g. for
performance analysis). A possible approach to recognition
of loops in a protocol is to detect repeated executions of the
same instruction (instruction at the same position in the
same Java method) and to capture event traces recorded
between two successive executions of such an instruction as
an operand of the * operator.

S1.protocol =

 ?FileSrv.readDir ; ?FileSrv.openFile

S1

S2

S3

?FileSrv.readDir

?FileSrv.openFile

a) b)
S1

S2

S3

S4

?FileSrv.readDir

?FileSrv.openFile

?FileSrv.readDir

S1.protocol =

 (?FileSrv.readDir ; ?FileSrv.openFile)
 +
 ?FileSrv.readDir

Figure 4: Merging of protocols associated with tran-
sitions and states

For illustration, thread protocols for threads involved in
interaction between the Player and LocalFS components
(Sect. 2) may have the form that is depicted on Fig. 5 — M

stands for the main thread, and P1 and P2 stand for instances
of the PlayThread class.

M: ?FileSrv.readDir ; ?FileSrv.readDir ;

?FileSrv.readDir

P1: ?FileSrv.openFile ; ?FileSrv.closeFile ;

?FileSrv.openFile ; ?FileSrv.closeFile

P2: ?FileSrv.openFile ; ?FileSrv.closeFile

Figure 5: Thread protocols for interaction between
the LocalFS component and its environment (Player)

Since for each thread Ti only the transitions executed by
Ti are taken into account in construction of tproti, it is suf-
ficient to traverse only those state space paths that corre-
spond to a single interleaving of all threads in the given pro-
gram in order to identify thread protocols tprot1, . . . , tprotN ,
and therefore this step is not prone to state explosion. Tech-
nically, all thread protocols are extracted in a single run of
JPF. This optimization is implemented by exploring only

one choice for each choice generator (CG) related to thread
scheduling; other choices in such a CG are ignored. The
restriction to one choice for each thread scheduling-related
CG is correct with respect to identification of actions per-
formed by individual threads, since the choices that were
not selected will be enabled at the next scheduling point
(i.e., when the next thread scheduling-related choice is to
be made). Sets of choices associated with CGs related to
non-deterministic data choice are not altered at all.

4.2 Parallel Composition of Thread Protocols
The key challenge in construction of a parallel composition

of thread protocols tprot1, . . . , tprotN is to capture the inter-
play among threads, where by interplay we mean (i) starting
and termination of other threads in one thread and (ii) syn-
chronization among multiple threads. However, in this work
we focus only on starting and termination of threads — we
do not consider synchronization among threads via monitors
and calls of the wait and notify methods.

A precise parallel composition of thread protocols with
respect to starting and termination of threads can be con-
structed only if the following information is available:

• the earliest possible start time and the latest possi-
ble termination time of each thread Ti with respect to
interplay of all threads in the program, and

• ordering of start and termination times of all threads.

This information is, as in the first step, determined by a
JPF listener during traversal of the Java program’s state
space by JPF. Nevertheless, since the interplay of threads
depends on thread scheduling, it is not sufficient to traverse
only the state space paths corresponding to a single thread
interleaving — times of thread start and termination are
computed over all paths in the state space. Whole state
space of the Java program has to be traversed and thus this
step is prone to state explosion.

The times of thread start and termination can be mea-
sured only if common clock (”reference temporal dimension”)
are available. We use virtual clocks that are defined on the
basis of flow of control in the main thread — current value
of the virtual clock on a path p in the state space is the
number of the last transition performed by the main thread
in p. A valid clock value is always available during the pro-
gram’s lifetime, since the main thread runs from the start of
the program until its termination.

All the necessary time-related information is determined
by the JPF listener in the handlers of specific notifications
from JPF. The information includes the absolute time of
start and termination of each thread, which is based on the
virtual clock, and the start and termination times of each
thread Ti with respect to interplay of all threads, which are
encoded via special marks in the thread protocols. During
traversal of the program’s state space by JPF, the current
value of the virtual clock is maintained and the state space
of each thread protocol is traversed, so that it is possible to
insert the marks at proper points in the thread protocols.

At the end of exhaustive traversal of the program’s state
space, the information about the earliest possible start time
and the latest possible termination time of each thread with
respect to interplay of all threads is represented by the marks
in thread protocols. The ordering of start and termination
times of all threads may not be linear — the incomparable
times can be ordered, e.g., on the basis of thread numbers.

The thread protocols from Fig. 5 annotated with time
marks may look like those depicted on Fig. 6 and the order-
ing of events may be M_s < P1_s < P2_s < P2_t < P1_t

< M_t. A mark of the form [T_s] denotes the start time
of a thread T , and a mark of the form [T_t] denotes the
termination time of a thread T .

Although the algorithm for determination of thread start
and termination times employs exhaustive state space traver-
sal and therefore it is inherently prone to state explosion, the
size of the state space traversed by JPF can be significantly
reduced if instructions for accesses to shared variables are
not considered as scheduling-relevant. Technically, this op-
timization is implemented by a custom scheduler for JPF.

Using all the time-related information, the parallel compo-
sition of thread protocols tprot1, . . . , tprotN , i.e. the result-
ing C-E protocol, is constructed via syntactical operations
upon thread protocols in the following five steps:

1. A sequence TI of intervals is defined on the basis of the
ordering of thread start and termination times. E.g.,
for the ordering M_s < P1_s < P2_s < P2_t < P1_t <
M_t we get a sequence TI = {<M_s, P1_s>, <P1_s,

P2_s>, <P2_s, P2_t>, <P2_t, P1_t>, <P1_t, M_t>}.

2. Each thread protocol tproti annotated with marks is
decomposed into a set TPFi of thread protocol frag-
ments such that marks corresponding to elements of
TI form the boundaries of the fragments — i.e., there
can be no mark in a fragment except at its beginning
and end. Then, a union TPF of sets TPFi for all
thread protocols is formed.

3. For each interval int ∈ TI, a set TPFint of thread pro-
tocol fragments whose boundaries are formed by int is
selected from TPF . The set TPFint for an interval
int contains thread protocol fragments that specify se-
quences of method calls on the C-E boundary that can
occur in the interval int.

4. For each interval int ∈ TI, thread protocol fragments
in the set TPFint are composed using the parallel op-
erator |, yielding a fragment of the C-E protocol.

5. All fragments are composed using the sequence oper-
ator ;, yielding the resulting C-E protocol.

Given the annotated thread protocols on Fig. 6 and the or-
dering M_s < P1_s < P2_s < P2_t < P1_t < M_t, the re-
sulting C-E protocol will take the form as in Fig. 7.

?FileSrv.readDir ; (

?FileSrv.readDir

|

(?FileSrv.openFile ; ?FileSrv.closeFile)

) ; (

?FileSrv.readDir

|

(?FileSrv.openFile ; ?FileSrv.closeFile)

|

(?FileSrv.openFile ; ?FileSrv.closeFile)

)

Figure 7: C-E protocol modeling interaction be-
tween the LocalFS component and its environment

M: [M_s] ?FileSrv.readDir ; [P1_s] ?FileSrv.readDir ; [P2_s] ?FileSrv.readDir [P2_t][P1_t][M_t]
P1: [M_s][P1_s] ?FileSrv.openFile ; ?FileSrv.closeFile ; [P2_s] ?FileSrv.openFile ; ?FileSrv.closeFile [P2_t][P1_t][M_t]
P2: [M_s][P1_s][P2_s] ?FileSrv.openFile ; ?FileSrv.closeFile [P2_t][P1_t][M_t]

Figure 6: Thread protocols annotated with time marks

However, the five-step algorithm described above does not
give correct result if a thread Ti creates another thread
Tj only in some execution paths, i.e. if the thread proto-
col tproti for Ti specifies that Tj is created only in some
operands of a choice operator + occuring in tproti. In this
case, a top-level choice operator with two operands is added
to the C-E protocol such that the thread Tj is created in
one of the branches and not in the other.

4.3 Multiple Instances of Component Type
Multiple components of the same type can be represented

in the program’s architecture in two ways: (i) as undistin-
guishable elements of a single collection of components, or
(ii) as separate entities (subsystems) that are explicitly spec-
ified in the architecture. Note that the components have the
same environment in the first case and possibly different en-
vironments in the second case.

Given a system with multiple components Ci of the same
type TC , first a component instance protocol cproti has to
be extracted for each Ci separately using the algorithm de-
scribed in Sections 4.1 and 4.2, and then the C-E protocol
can be created from the component instance protocols de-
pending on the way the components are used in the system.

The resulting C-E protocol has to reflect the architectural
view on the components. If the components are undistin-
guishable elements of a single collection, then they should
be used in the same (or very similar) way by the rest of a
program. The C-E protocol should model the interaction
of any component in the collection with the common envi-
ronment E in such a case. An obvious and viable solution
is to create the C-E protocol as a union of all component
instance protocols cproti, such that the set L(CEprot) of
event traces specified by the C-E protocol is a superset of
the set of traces L(cproti) for each Ci.

On the other hand, if the components are separate en-
tities in the architecture, then they are typically used in
different ways — specifically, their component instance pro-
tocols differ to a great degree. In such a case, the two most
appropriate solutions are: (i) to return a set of C-E proto-
cols (one for each component), or (ii) to create a single C-E
protocol such that individual component instance protocols
are syntactically composed using the choice operator +.

5. IMPLEMENTATION: JAVA2BP
We have implemented the proposed technique on top of

JPF in the Java2BP tool. The tool can be applied only to
complete Java programs (featuring main) with fully speci-
fied inputs, since JPF works only for closed systems. Given
a Java program whose behavior depends on external input
(e.g., on data entered by a user via GUI or received over a
network) and behavior of external entities (e.g., on sequences
of actions performed by the user via GUI), then a fragment
of Java code that provides the external input and simulates
the behavior of external entities — a simulator — has to
be provided together with the program. Methods for non-
deterministic data choice, which are provided by the Verify

Application Time Memory States
CRE demo 707 s 235 MB 120998
CoCoME 3751 s 243 MB 1987872

Table 1: Results of experiments with Java2BP

class (a part of the JPF’s API), can be used in the simulator
to capture ”random” behavior of users.

The Java2BP tool has limited support for programs that
include calls of native methods, e.g. via Java libraries for file
I/O or networking, since JPF cannot handle native meth-
ods in general and, in the current version, provides wrappers
only for selected classes from the corresponding Java pack-
ages (java.io and java.net). Given a Java program that
calls native methods for which the wrappers are not avail-
able in the current distribution of JPF, then calls of such
methods have to be abstracted before it is possible to apply
Java2BP to such a program.

5.1 Experiments
In order to find whether the proposed technique is feasi-

ble for non-trivial multi-threaded Java programs built from
components, we have applied the Java2BP tool on two ap-
plications for the Fractal component model [8] — the demo
application developed in the CRE project [1] (”CRE demo”
for short) and a software system [7] developed in our group
as a solution to the CoCoME assignment [9] (”CoCoME”).

The CRE demo (1700 loc) is a prototype of a software
system for providing WiFi internet access at airports. It
supports, for example, payment via a credit card and assign-
ment of IP addresses via DHCP. It also includes a simulator
— the Simulator class — that was developed in the CRE
project for the purpose of runtime checking of the applica-
tion. Simulator exercises the components in the application
in all ways that are allowed by their behavior specifications
and, in particular, it calls methods of the components in two
threads running in parallel. Java code of the CRE demo
does not contain any calls of native methods and therefore
Java2BP can be applied on the CRE demo directly.

CoCoME (2800 loc) is a prototype of a trading system
for supermarkets. Architecture of CoCoME has two parts:
(i) an inventory management system, which is responsible
for management of databases of products and items, and
(ii) a cash desk line formed by a set of cash desks. Each
cash desk is represented by several components that control
cash desk hardware (e.g., bar code scanner and credit card
reader). Although the number of cash desks in a system
can be arbitrary, for the purpose of experiments we used a
configuration with two cash desks. Like in the case of CRE
demo, a simulator is available that we developed for the
purpose of testing and performance evaluation, and the Java
code of CoCoME does not contain calls of native methods.
Simulator runs the main thread and one additional thread
per cash desk — that makes three threads in total in the
case of configuration with two cash desks.

The results of experiments on CRE demo and CoCoME
are listed in Table 1. Value of the ”Time” column expresses
the total time needed for extraction of a C-E protocol for
any component in an application, which is equal to the run-
ning time of the application in JPF, and value of the ”Mem-
ory”column expresses the memory needed for the extraction.
Value of the ”States” column expresses the number of states
traversed by JPF during computation of threads’ start and
termination times via state space traversal.

6. APPLICATIONS IN SOFTWARE ENGI-
NEERING

While the Java2BP tool can be applied on fully imple-
mented software systems in Java, provided that native calls
unsupported by JPF are abstracted and a simulator is avail-
able, we envisage usage of the tool during development of a
software system especially in the following way:

1. During initial stages of implementation (prototyping),
Java2BP is applied on a prototype of the software sys-
tem to extract a C-E protocol for each component.

2. C-E protocols are then used in the latter stages of the
development process as an input for tools and meth-
ods that perform various software engineering tasks
upon the full implementation of the system in a com-
positional manner, i.e. upon each fully implemented
component of the system separately.

The advantage of applying Java2BP on prototypes is twofold:
(i) they typically contain only a few calls of native methods
(or none at all), which can be easily abstracted by hand,
and (ii) simulators and test harnesses are created anyway for
the purpose of testing and other analyses of the prototype.
Moreover, prototypes typically have smaller state space than
fully implemented systems and therefore the chance that
state explosion occurs during extraction is much lower. Nev-
ertheless, a limitation of this approach to use of Java2BP is
that both the component interfaces and interaction among
components cannot be changed during development of the
full implementation of the system, otherwise C-E protocols
extracted from a prototype of the system may not be valid.

The list of software engineering tasks, where C-E proto-
cols extracted by Java2BP could be useful, includes compo-
sitional verification and performance analysis. In composi-
tional verification, C-E protocol for a particular component
C can be used as an environment assumption of C for the
purpose of assume-guarantee reasoning [10], i.e. as a be-
havior model of the C’s abstract environment [18][13]. In
performance analysis, C-E protocol of C can be used as a
basis of the C’s usage profile — the full usage profile can
be created by manual annotation of operands (branches) of
each choice operator (+) in the C-E protocol with probabil-
ities that the branches will be taken [5].

C-E protocols extracted by Java2BP can be used also for
the purpose of code comprehension and debugging — for
example, to find which methods are actually called during
a run of a software system and at what time. This way,
unexpected or errorneous sequences of method calls in pro-
totypes of complex systems with many components can be
discovered during initial stages of implementation.

Nevertheless, we would like to emphasize that the C-E
protocols extracted by Java2BP are supposed to be used
as an input for tools, since they will not be readable by

humans except for simple Java programs. Syntactical post-
processing of some kind could be used to make protocols
more concise and readable.

7. EVALUATION
The proposed technique addresses some of the drawbacks

of existing techniques for inference of behavior specifications
and models from code (Sect. 1.1), while preserving their im-
portant advantages. Specifically, the technique

• has precision comparable to existing runtime analysis-
based techniques, since JPF performs no summariza-
tion of information from different execution paths and
also no abstraction of Java code, and

• considers all execution paths in a program, i.e. not
only those recorded in a particular run (execution) of
the program, and therefore has coverage comparable
to static analysis-based techniques.

Unlike the existing approaches, the proposed technique cap-
tures concurrent execution of multiple threads, and there-
fore can be used also for multi-threaded software systems.
The results of experiments on CRE demo and CoCoME
(Sect. 5.1) show that the Java2BP tool can be successfully
applied on non-trivial multi-threaded software systems built
from Java components.

Note also that while the proposed technique is currently
specific to behavior protocols, it can certainly be generalized
to any formalism that allows to specify a set of traces of
events (e.g., method calls) and supports sequential compo-
sition, choice and parallel composition. The list of suitable
formalisms includes various process algebras [6]. Similarly,
the idea of extraction of interaction models from code using
state space traversal is not specific to Java and JPF — it can
be applied to software systems implemented in any program-
ming language, provided there exists a tool for state space
traversal of programs written in the language that supports
monitoring of the traversal.

In the rest of this section, we discuss limitations of the
proposed technique from the perspective of the following
aspects: (i) scalability, (ii) precision, and (iii) automation.

Ad (i) The main limitation of the proposed technique from
the perspective of scalability is that it is prone to state explo-
sion. Although the technique scales better than verification
with JPF, since much smaller state space has to be traversed
by JPF during extraction than during verification due to op-
timizations described in Sect. 4, still use of the Java2BP tool
is not feasible for complex multi-threaded software systems.
Note, however, that state explosion can be avoided for most
single-threaded systems — big data domains are not a prob-
lem with respect to state explosion, if a simulator employs
the JPF’s API for non-deterministic data choice (the Verify
class) in a reasonable way.

Ad (ii) From the perspective of precision, the main lim-
itation is that C-E protocols extracted by Java2BP may
over-approximate the actual behavior of programs with re-
spect to synchronization among threads, since the algorithm
for construction of parallel composition of thread protocols
(Sect. 4.2) neglects synchronization via monitors and calls of
the wait and notify methods. This is an issue for programs,
in which some methods on the C-E boundary are called in-
side synchronized blocks — some sequences of method call-
related events on the C-E boundary are executed atomically

in such a case, while the C-E protocol specifies concurrent
execution and thus over-approximates the actual behavior
of such programs.

Ad (iii) The main limitation from the point of view of
automated application of the Java2BP tool is that the tool
can be directly applied only to complete Java programs that
have fully specified inputs and call only native methods sup-
ported by JPF — this is typically the case of prototypes,
for which test harnesses and simulators are available. Al-
though the calls of native methods that are not supported by
JPF can be abstracted manually, it is possible to automatize
the abstraction of such calls using tools based on libraries
for transformation of Java source code and bytecode (e.g.
SOOT [16]). Technically, calls of selected methods from the
system libraries (e.g., from the packages java.io, java.net
and javax.*) can be removed and non-deterministic choice
can be used at program points, where control-flow depends
on results of removed method calls.

8. CONCLUSION
We proposed a technique for automated extraction of mod-

els of component-environment interaction from multi-thread-
ed Java programs, which is based on state space traversal.
The technique uses Java PathFinder to perform the state
space traversal of Java programs. Extracted models of C-E
interaction are expressed in behavior protocols.

We have implemented the technique in the Java2BP tool
and applied the tool on two non-trivial multi-threaded Java
programs built from components. Results of experiments
show that use of Java2BP is feasible for prototypes of com-
plex multi-threaded software systems. Nevertheless, it is
still prone to state explosion when applied to programs that
involve high number of threads running in parallel. The
key benefit of our technique is that, unlike the existing ap-
proaches to inference of behavior models and specifications
from code, it captures parallel behavior of multiple threads
and therefore can be used to extract models of C-E interac-
tion from multi-threaded programs.

In future, we plan to improve the precision of extraction
by considering synchronization among threads, and to de-
sign (or use) optimizations and heuristics that would make
it possible to efficiently extract C-E interaction models from
more complex multi-threaded systems in Java. We also plan
to develop a tool for abstraction of calls of native methods
in near future and then to evaluate our approach on large
software systems. Moreover, we would like to extend the
proposed technique towards the formalism of threaded be-
havior protocols (TBP) [11], which supports also state vari-
ables and control-flow based on values of the state variables.

9. ACKNOWLEDGMENTS
This work was partially supported by the Q-ImPrESS

research project (FP-215013) by the European Union un-
der the ICT priority of the 7th Research Framework Pro-
gramme, and by the Grant Agency of the Czech Republic
project 201/08/0266.

10. REFERENCES
[1] J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl,

P. Parizek, and F. Plasil. Component Reliability
Extensions for the Fractal Model, http://kraken.cs.
cas.cz/ft/public/public_index.phtml, 2006.

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam.
Synthesis of Interface Specifications for Java Classes,
ACM SIGPLAN Notices, 40(1), 2005.

[3] G. Ammons, R. Bodik, and J. R. Larus. Mining
Specifications, In Proc. of the 29th Symposium on
Principles of Programming Languages, ACM, 2002.

[4] D. Angluin. Learning Regular Sets from Queries and
Counterexamples, Information and Computation,
75(2), 1987.

[5] S. Becker, H. Koziolek, and R. Reussner. The Palladio
Component Model for Model-Driven Performance
Prediction, J. of Systems and Software, 82(1), 2009.

[6] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook
of Process Algebra, Elsevier, 2001.

[7] L. Bulej, T. Bures, T. Coupaye, M. Decky, P. Jezek, P.
Parizek, F. Plasil, T. Poch, N. Rivierre, O. Sery, and
P. Tuma. CoCoME in Fractal, In the Common
Component Modeling Example: Comparing Software
Component Models, LNCS, vol. 5153, 2008.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J. B. Stefani. The FRACTAL Component Model
and Its Support in Java, Software - Practice and
Experience, 36(11-12), 2006.

[9] CoCoME: Common Component Modeling Example,
http://www.cocome.org, accessed in April 2009.

[10] D. Giannakopoulou, C. S. Pasareanu, and J. M.
Cobleigh. Assume-Guarantee Verification of Source
Code with Design-Level Assumptions, In Proceedings
of the 26th ICSE, IEEE CS, 2004.

[11] J. Kofron, T. Poch, and O. Sery. TBP: Code-Oriented
Component Behavior Specification, Accepted for
publication in Proceedings of SEW-32, IEEE CS, 2009.

[12] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving
Object Typestates in the Presence of Inter-object
References, In Proceedings of the 20th OOPSLA,
ACM Press, 2005.

[13] P. Parizek and F. Plasil. Modeling of Component
Environment in Presence of Callbacks and
Autonomous Activities, In Proceedings of TOOLS
EUROPE 2008, LNBIP, vol. 11, 2008.

[14] F. Plasil and S. Visnovsky, Behavior Protocols for
Software Components, IEEE Transactions on Software
Engineering, 28(11), 2002.

[15] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static
Specification Mining Using Automata-based
Abstractions, Proc. of ISSTA’07, ACM Press, 2007.

[16] Soot: a Java Optimization Framework,
http://www.sable.mcgill.ca/soot/, accessed in
April 2009.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming, 2nd edition,
Addison-Wesley, 2002.

[18] O. Tkachuk and S. P. Rajan. Application of
Automated Environment Generation to Commercial
Software, Proceedings of ISSTA’06, ACM Press, 2006.

[19] W. Visser, K. Havelund, G. Brat, S. Park, and F.
Lerda. Model Checking Programs, Automated
Software Engineering Journal, 10(2), 2003.

[20] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
Extraction of Object-Oriented Component Interfaces,
In Proceedings of ISSTA’02, ACM Press, 2002.

