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ABSTRACT
Systematic state space traversal is a popular approach for detecting
errors in multithreaded programs. Nevertheless, it is very expensive
because any non-trivial program exhibits a huge number of possi-
ble interleavings. Some kind of guided and bounded search is often
used to achieve good performance. We present two heuristics that
are based on a hybrid static-dynamic analysis that can identify pos-
sible accesses to shared objects. One heuristic changes the order
in which transitions are explored, and the second heuristic prunes
selected transitions. Results of experiments on several Java pro-
grams, which we performed using our prototype implementation in
Java Pathfinder, show that the hybrid analysis together with heuris-
tics significantly improves the performance of error detection.
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•Software and its engineering → Automated static analysis;
Dynamic analysis; Software testing and debugging;
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1. INTRODUCTION
Efficient detection of concurrency errors, such as deadlocks and

atomicity violations, has become very important especially with
the greater proliferation of software that exploits multi-core pro-
cessors. Systematic traversal of the program state space is one of
the popular approaches for detecting errors in systems with mul-
tiple threads. Its main goal is to check the program behavior un-
der all possible thread interleavings. Although full traversal is not
tractable for non-trivial multithreaded programs that exhibit huge
numbers of possible interleavings, good performance in practice
can be achieved through the use of heuristics and optimizations.

Parízek and Lhoták designed a hybrid analysis that identifies
possible accesses to shared variables and used its results to elim-
inate redundant thread scheduling choices in the context of exhaus-
tive verification [8]. The analysis combines static analysis with
dynamic analysis, symbolic interpretation of program statements,

and usage of information from dynamic program states on-the-fly
during the traversal. Here we apply the hybrid analysis in a dif-
ferent context — to accelerate detection of concurrency errors. We
present two new heuristics that guide the search based on the hybrid
analysis. The first heuristic changes the order in which transitions
are explored, and the second heuristic prunes some transitions at
each non-deterministic thread scheduling choice.

The rest of this paper is structured as follows. First we describe
important background concepts, including the hybrid analysis, and
we also provide an overview of related work. Then we present both
heuristics (Section 3), and experimental evaluation in Section 4.

2. BACKGROUND AND RELATED WORK
State Space Traversal. Figure 1 shows the basic algorithm for
depth-first traversal of a program state space. The symbol s repre-
sents a program state and ch represents a thread choice. Each tran-
sition (tr) is a sequence of executed instructions that is associated
with a specific thread and bounded by non-deterministic schedul-
ing choices. Some technique of partial order reduction (POR) [2,3]
is used to avoid redundant exploration of thread interleavings —
more specifically, it creates thread scheduling choices only before
the execution of instructions that may access the global state vis-
ible by multiple threads. The algorithm maintains also the set of
already visited states for the purpose of state matching.

visited = {}
explore(s0, ch0)

procedure explore(s, ch)
if s ∈ visited then return
visited = visited ∪ s
for tr ∈ order(filter(enabled(ch))) do

〈s′, ch′〉 = execute(s, tr)
if error(s′) then terminate
explore(s′, ch′)

end for
end proc

Figure 1: Algorithm for depth-first traversal of state space

The function enabled returns a set of transitions that are enabled
in a given choice ch and must be explored. Each transition in the
set corresponds to one thread that is runnable in state s associated
with the choice ch. The function filter may prune some transitions
leading from s, and the function order determines the search order
in which the transitions are explored. Heuristics and optimizations
typically use custom implementations of these functions.

Fast Detection of Concurrency Errors. A very popular approach
is guided search, whose basic idea is to navigate towards error
states with the help of various heuristics [4]. Randomized search is



also quite effective, especially in combination with parallel traver-
sal of different state space fragments [1]. The results of a random
number choice can be used also to identify fragments that will be
pruned [7]. Many techniques also restrict the search for errors to
a small part of the state space — their overview and experimental
comparison is provided by Thomson et al. in a recent study [11].

Closely related to the topic of this paper are the concepts of use-
less transitions and interference contexts proposed by Wehrle et
al. [13,14]. Authors define a heuristic that gives preference to tran-
sitions accessing the same variables as some previous transitions on
the current state space path. However, the respective publications
do not discuss approaches to identify such interfering transitions.

Kim et al. [6] proposed an approach to detect race conditions that
is based on heuristics and information about interfering accesses to
variables. The heuristics consider only the execution trace up to the
current dynamic state, and neglect possible future behavior.

Hybrid Analysis. The hybrid analysis provides over-approximate
description of the future behavior of program threads in terms of
accesses to shared variables [8, 10]. For each program point p in
each thread T , the analysis computes the set of object fields and
array elements possibly accessed by thread T after the point p on
any execution path. It has two phases: static and dynamic.

The static phase gives only partial results that cover the behavior
of a thread T only between the point p and return from the method
containing p. Complete results are then computed on-the-fly dur-
ing the state space traversal, using information taken from dynamic
program states. It is just needed to retrieve the current locations in
all frames on the dynamic call stack of each thread Ti and to merge
the corresponding data computed by the static analysis. Consid-
ering the dynamic state s, results for the current program points
pc1, . . . , pcn of threads T1, . . . , Tn, respectively, capture all ac-
cesses that may happen during the program execution from s.

The complete results of hybrid analysis are very precise, because
they reflect the dynamic calling context of each pci. On the other
hand, they are always valid only for the given (current) dynamic
program state. Note also that, in practice, the analysis considers
read and write accesses separately in order to enable detection of
read-write conflicts between different threads.

3. HEURISTICS
The main idea of our approach is to use the results of hybrid anal-

ysis in three ways: (1) to eliminate redundant thread choices during
the state space traversal, (2) to determine the search order for tran-
sitions, and (3) to prune transitions that likely do not lead to an error
state. A method for eliminating redundant choices has been already
proposed in [8], so here we focus on the second and third item in
the list. We describe the heuristic for reordering transitions in Sec-
tion 3.1, and the heuristic that prunes transitions in Section 3.2.
Both heuristics use the hybrid analysis results on-the-fly together
with knowledge of the current dynamic state and execution path.

When designing the heuristics, we have built upon the concepts
of useless transitions and interference contexts proposed by Wehrle
et al. [13, 14]. However, contrary to that prior work, our procedure
is applicable to programs written in mainstream object-oriented
languages (such as Java), and it can be used when the program state
space is created on-the-fly.

3.1 Reordering Transitions
Our main rationale behind this heuristic is to prioritize threads

that are more likely to trigger errors caused by race conditions over
fields and array elements. The heuristic changes the order of tran-
sitions at each choice based on two pieces of information: (1) a list

of past accesses to fields and array elements that were already per-
formed on the current state space path, and (2) results of the hy-
brid analysis that specify possible future accesses. Upon reaching
a state that is associated with a thread choice, the heuristic identifies
threads that may in the future perform actions possibly interfering
with some of the past accesses. An up-to-date list of past accesses
is maintained by the state space traversal procedure.

Let s be the current state at some point during the traversal, ch
be the thread choice associated with s, and L be the list of past ac-
cesses on the current path up to s. For each thread Ti runnable in s,
the heuristic queries the hybrid analysis results in order to retrieve
a set Fi of possible future accesses by Ti, and then computes inter-
section of L and Fi. The set of interfering threads contains every
Ti for which the intersection is not empty. All transitions associ-
ated with interfering threads are then moved to the front of the list
(order) at the choice ch, and therefore future actions of interfering
threads are explored first. Note, however, that we do not enforce
any particular order within the group of interfering threads, and we
also preserve the default order for the other threads (transitions).

We have designed this heuristics as configurable by the user. One
parameter is the percentage of the length of the current path that de-
termines the fragment from which past accesses are collected into
the set L. A small value might enable faster detection of errors
when the possibly racy accesses from different threads are per-
formed close to each other on an execution path. Note that usage of
any value of this parameter is sound because all transitions are ex-
plored eventually — this heuristic influences only the search order.

Another parameter is a boolean flag that says whether the heuris-
tic has to distinguish read and write accesses. It makes the heuristic
more precise, but possibly more expensive in terms of running time.
Otherwise, if this feature is disabled then all accesses to a particular
field or array element are considered as potentially interfering.

A configuration of the reordering heuristic is a pair (RW,P ),
where RW is the flag that says whether to distinguish read and
write accesses, and P is the percentage of the current path that is
analyzed at each choice to collect past accesses into the set L.

3.2 Pruning Transitions
The second heuristic works in a similar way to the first one, and

it has the same parameters. Just instead of reordering, it prunes all
enabled transitions that are not associated with interfering threads.
Our rationale behind this heuristic is to neglect threads that are not
likely to trigger errors caused by race conditions.

An exception to the general rule applies when all transitions en-
abled in a given state would be pruned. One transition is preserved
in such a case. This is necessary to ensure that at least some exe-
cution traces are fully explored. Note also that pruning a transition
associated with a thread T at a state s does not mean that future
actions of T are never explored. There must exist an execution
path starting in s such that (i) either T will belong to the set of
interfering threads at some point on the path or (ii) T will be a sin-
gle runnable thread at some point. Still, this heuristic is not sound.
Transitions that represent actions not considered by the hybrid anal-
ysis (e.g., starting of a new thread or releasing blocked threads) may
be pruned even if they could trigger possibly errorneous behavior.

4. EVALUATION
The main goal of our evaluation was to find how much the hy-

brid analysis and proposed heuristics improve the error detection
performance. We also wanted to check whether our results confirm
the benefits of similar heuristics designed by Wehrle et al. [13, 14].

Here, in this paper, we provide only selected results and discuss
the most significant observations. More details about our imple-



Table 1: Experiments: performance improvement over existing techniques
heap reach POR HR + hybrid dynamic POR DPOR + hybrid random search random + hybrid

benchmark states time states time states time states time time time
Daisy 493645 139 s 297523 95 s - - 266291 91 s 86 ± 57 s 59 ± 38 s
Elevator 61465 14 s 16574 7 s 1671602 511 s 485070 143 s 4 ± 4 s 3 ± 2 s
jPapaBench 457139 144 s 94567 41 s - - - - 1 ± 0 s 3 ± 0 s
CDx 383568 2870 s 48069 456 s - - - - 162 ± 115 s 63 ± 46 s
Alarm Clock 950 1 s 313 3 s 786 1 s 165 3 s 1 ± 0 s 3 ± 0 s
Rep Workers 12951140 6113 s 441253 178 s 14303 5 s 3909 4 s 2761 ± 2996 s 3 ± 0 s
QSortMT 4883 2 s 2564 2 s - - - - 1 ± 0 s 2 ± 0 s

Table 2: Experiments: different configurations of the reordering heuristic

benchmark HR + hybrid HR + hybrid + reordering heuristic
P: 100 % 10 % 25 % 50 % 75 % 90 %

Daisy states: 297523
time: 95 s RW: on states 297523 297523 297523 297523 297523 297523

time 175 s 124 s 129 s 136 s 148 s 150 s

Elevator states: 16574
time: 7 s RW: on states 16574 16574 439 439 439 439

time 8 s 8 s 3 s 3 s 3 s 3 s

jPapaBench states: 94567
time: 41 s RW: on states 94567 94567 94567 94567 94567 94567

time 88 s 53 s 57 s 66 s 75 s 80 s

CDx states: 48069
time: 456 s RW: on states 48069 29531 48069 48069 48069 48069

time 580 s 329 s 553 s 554 s 573 s 562 s

Alarm Clock states: 313
time: 3 s RW: on states 313 313 313 149 10 10

time 3 s 3 s 3 s 3 s 3 s 3 s

Rep Workers states: 441253
time: 178 s RW: on states 441253 114 441253 441253 441253 441253

time 238 s 3 s 209 s 222 s 226 s 226 s

QSortMT states: 2564
time: 2 s RW: on states 2564 2455 101 2565 2564 2564

time 4 s 4 s 3 s 4 s 4 s 4 s

mentation, the complete experimental evaluation, and more exten-
sive discussion of all the results can be found in [9].
Implementation. We implemented the hybrid analysis and heuris-
tics using Java Pathfinder (JPF) [5] and the WALA library for static
analysis [12]. The complete implementation, together with exper-
imental setup and benchmarks, is publicly available at http://d3s.
mff.cuni.cz/projects/formal_methods/jpf-static/musepat16.html.
Benchmarks. We measured the performance of hybrid analysis
and heuristics on 7 multithreaded Java programs. jPapabench, with
4500 lines of code and 7 threads, is the most complex benchmark
that we used. Some of the benchmarks already contained errors in
the form of atomicity violations caused by incorrect synchroniza-
tion of accesses to fields and array elements. For the purpose of
experiments, we injected similar errors into the other benchmarks.
Experiments. Table 1 shows the effects of hybrid analysis alone
on the error detection performance. It contains data for these con-
figurations of JPF:

• POR based on heap reachability [2] with the default search
order (table column with the label "heap reach POR"),

• POR based on heap reachability with the hybrid analysis
used to eliminate redundant choices (column "HR + hybrid"),

• dynamic POR algorithm by Flanagan and Godefroid [3] com-
bined with state matching (column "dynamic POR"),

• dynamic POR with state matching and hybrid analysis that
eliminates redundant choices (column "DPOR + hybrid"),

• random search order with POR based on heap reachability
(column "random search"), and

• random search order combined with the hybrid analysis (the
column labeled "random + hybrid").

We report the total number of states processed before JPF detects
an error, and the total running time. Note that the number of states
is equivalent to the number of thread choices. In the case of random
search, we run each experiment 10 times, and report values in the
form A±D, where A stands for the average and D is the standard
deviation. We omitted the number of states for random search in
order to save space. We used the time limit of 2 hours for all con-
figurations. The symbol "-" in a table cell represents the situation
where JPF run out of the time limit or did not find an error.

Tables 2 and 3 provide data for selected configurations of both
heuristics, used together with POR based on heap reachability. Re-
sults for the standalone hybrid analysis represent the baseline in this
case. For the configuration variable P , we picked the values {10,
25, 50, 75, 90, 100} in order to cover the whole interval evenly. We
report data only for configurations that distinguish between read
and write accesses ("RW: on"), as it is sufficient to show the depen-
dency of error-detection performance on the value of P .
Discussion. Results of our experiments show that (i) usage of the
hybrid analysis in JPF can reduce the time needed to find errors
quite significantly and (ii) the proposed heuristics help to achieve
even better performance for some configurations and benchmarks.
We observed big improvements especially for the more complex
benchmarks from our set, such as CDx, Daisy, jPapaBench, and
Rep Workers. In the rest of this section, we highlight our main
observations that are based on data in tables 1-3.

Compared to the existing approaches that we considered in our
evaluation, JPF with the hybrid analysis and heuristics needs to
explore much less states to find an error for all 7 benchmarks, and



Table 3: Experiments: different configurations of the pruning heuristic

benchmark HR + hybrid HR + hybrid + pruning heuristic
P: 100 % 10 % 25 % 50 % 75 % 90 %

Daisy states: 297523
time: 95 s RW: on states 297523 - 296782 296789 296789 296789

time 170 s - 125 s 139 s 142 s 151 s

Elevator states: 16574
time: 7 s RW: on states 16574 16574 - - - -

time 8 s 8 s - - - -

jPapaBench states: 94567
time: 41 s RW: on states 94567 94567 94567 94567 94567 94567

time 88 s 53 s 58 s 66 s 75 s 81 s

CDx states: 48069
time: 456 s RW: on states 48069 26183 39942 39942 39942 39942

time 606 s 290 s 457 s 464 s 466 s 479 s

Alarm Clock states: 313
time: 3 s RW: on states 313 274 285 149 10 10

time 4 s 4 s 4 s 4 s 4 s 4 s

Rep Workers states: 441253
time: 178 s RW: on states 441253 114 441253 441253 441253 441253

time 235 s 4 s 212 s 229 s 236 s 230 s

QSortMT states: 2564
time: 2 s RW: on states 2564 2450 101 2560 2559 2559

time 4 s 4 s 3 s 4 s 4 s 4 s

the running time is reduced by a great margin for 5 benchmarks.
Just the hybrid analysis alone improves the speed of error de-

tection by up to 35 times (for Rep Workers) over JPF with POR
based on heap reachability, and by a factor of 3.6 (for Elevator)
with respect to dynamic POR. Heuristics yield further reduction of
the running time — for example, by the factor of 60 in the case of
Rep Workers and by the factor of 1.5 for CDx. To be more specific,
the heuristic based on reordering transitions (Table 2) achieved bet-
ter performance in the case of four benchmarks (CDx, Elevator,
QSortMT, Rep Workers), but only using configurations where the
variable P has the value 10 % or 25 %. On the other hand, results
for the heuristic based on pruning transitions (Table 3) show that it
can find an error much faster in some configurations and for some
benchmarks, but it may also miss some errors. Good performance
is achieved by the pruning heuristic, in general, for configurations
where the value of P is 10 %. An exception to the pattern de-
scribed above is Alarm Clock, for which the best performance was
achieved by configurations with P in the range 50 % – 90 %.

Surprisingly, dynamic POR is much slower than POR based on
heap reachability for Elevator, and for 3 benchmarks it even did not
find any error before the time limit.

The performance of random search is improved quite signifi-
cantly by the hybrid analysis in the case of 4 benchmarks — Daisy,
Elevator, CDx, and Rep Workers. Results are comparable in all the
other cases, and the running times are very low in general.

In the technical report [9], we provide also data on scalability
for benchmarks that are parameterizable by the maximal number
of threads. Results show that JPF with the hybrid analysis and
heuristics scales quite well for the purpose of detecting errors, even
though it runs out of the time limit for some of the more complex
benchmarks (e.g., Daisy) when a higher number of threads is used.

The cost of the hybrid analysis is very low in general. However,
it may be responsible for a slight increase of the running time when
JPF has to explore only a small number of states before detecting
an error — see, for example, the data for Alarm Clock in Table 1.

The cost of both heuristics depends on the value of P . It is more
efficient to use small values of P (e.g., 10 % and 25 %), because
then JPF spends less time processing the current path at each state.
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