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Abstract. While exhaustive state space traversal is not feasible in reasonable
time for complex concurrent programs, many techniques for efficient detection
of concurrency errors and testing of concurrent programs have been introduced
in recent years, such as directed search and context-bounded model checking.
We propose to use depth-first traversal with randomized backtracking, where it is
possible to backtrack from a state before all outgoing transitions have been ex-
plored, and the whole process is driven by random number choices. Experiments
with a prototype implementation in JPF on several Java programs show that, in
most cases, fewer states must be explored to find an error with our approach than
using the existing techniques.

1 Introduction

Exhaustive state space traversal is a means of software verification that is suitable es-
pecially for concurrent systems and detection of concurrency errors like deadlocks and
race conditions. It is, however, not feasible for large and complex software systems
with many threads, because the number of possible thread interleavings that must be
explored is too high. A common practice is to employ state space traversal for testing of
concurrent programs and detection of concurrency errors. Many techniques that aim to
find errors in a reasonable time have recently been proposed. Techniques in one group
are based on directed (guided) search that uses heuristics for navigation of the search
towards the error state [5–7,11,21], so that the part of the state space that is more likely
to contain error states is explored first and the rest is explored afterwards, thus making
it possible to discover errors in less time. Some other techniques use randomization or
parallel state space traversal with the goal of finding errors in less time [2, 3, 9, 11, 18].
Approaches from another category perform incomplete search with the assumption that
many important errors can be found in a particular small part of the system’s state space
and searching for the other errors is not tractable because of state explosion. This cate-
gory includes bounding of the number of thread context switches [16] in explicit-state
model checking [13] and SAT-based model checking [17], and a random partial order
sampling algorithm [20].

In this paper we propose to use randomized backtracking in explicit state depth-
first traversal for the purpose of efficient detection of concurrency errors. The key ideas
are (1) to allow backtracking also from states that still have some unexplored outgoing
transitions and (2) to use the results of random number choice in the decision whether
to backtrack from such a state (and thus prune a part of the state space) or continue
forward along some unexplored transition.
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We implemented our approach in Java PathFinder [10] and evaluated it on seven
multi-threaded Java programs that contain various concurrency errors. State space traver-
sal with randomized backtracking has better performance than existing techniques sup-
ported by JPF on six of the seven benchmark programs, i.e. fewer states are explored
by JPF before it detects an error. For the last benchmark, our approach has comparable
performance with the best existing technique. On the other hand, a consequence of ran-
domized backtracking is that an incomplete search is performed, because parts of the
state space are pruned by backtracking from a state with unexplored transitions, so it
cannot be guaranteed that all errors will be discovered.

2 Background and Related Work

We consider only explicit state space traversal, where each state is a snapshot of pro-
gram variables and threads at one point on one execution path and each transition is a
sequence of instructions executed by one thread — each transition is associated with
a specific thread. We further assume that each transition in the state space is bounded
by non-deterministic choices (e.g., thread scheduling choices). Figure 1 shows the ba-
sic algorithm for depth-first state space traversal in this context. The function enabled
returns a set of transitions enabled in the state s that must be explored.

DFS ( ) :
visited = {}
stack = [ ]
push ( stack , s0 )
explore (s0 )

procedure explore (s )
if error (s ) then

counterexample = stack
terminate

end if
transitions = order (enabled (s ) )
for tr ∈ transitions do
s′ = execute ( tr )
if s′ /∈ visited then

visited = visited ∪ s′

push ( stack , s′ )
explore (s′ )
pop ( stack )

end if
end for

end proc

Fig. 1. Algorithm for depth-first state space traversal

An important parameter of the algorithm for depth-first traversal is the search order
that determines the sequence in which the transitions leading from a state are explored.
The search order is implemented by the function order, which creates a list of transitions
with a specific ordering from the given set.
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In the rest of this section, we describe in more detail selected existing approaches
to more efficient detection of concurrency errors that are based on state space traversal.

Each tool for state space traversal of concurrent programs uses a specific default
search order. The basic implementation of the function enabled in most of the tools
returns a set that contains one transition for each thread runnable in the given state s.
Many optimizations aiming at efficient detection of errors can be expressed through
different implementations of the functions enabled and order.

Techniques based on directed (guided) search typically use custom implementations
of the order function, which sort transitions according to some heuristic function over
the end states of the transitions or over the transitions themselves. A useful heuristic
for detection of concurrency errors is to prefer thread context switches (thread inter-
leavings) [7] — when the state s being processed was reached by execution of thread t,
the function order puts transitions associated with threads other than t at the beginning
of the list. Another useful heuristic gives preference to transitions that may interfere
with some of the previous transitions on the current state space path [22]. Two transi-
tions can interfere, for example, if they are associated with different threads and contain
instructions that access the same shared variables.

It is also possible to use a random search order, in which the transitions leading from
a state s are explored in a random order and the order is selected separately for each state
(i.e., there is no common random order for all states). The technique described in [18]
combines guided search with a random order such that transitions with the same value
of the heuristic function are ordered randomly. Another possible use of randomization,
which was proposed in [2], is to explore the complete execution paths in a random order
during stateless search.

All techniques that use a custom implementation only for the order function still
explore the whole state space if they detect no error during traversal. For an incomplete
state space traversal, it is necessary to use a custom implementation of the enabled
function that prunes the state space according to some criteria. A very popular approach
is to bound the number of thread preemptions (context switches) on each explored state
space path [16], where preemption means that the thread associated with a previous
transition is still runnable but a transition associated with some other thread is selected.
The set returned by the customized function enabled does not contain a transition if
its selection would exceed the number of allowed preemptions. The value of the bound
determines how many errors are found and the time cost of the search, i.e. a higher
bound means that more errors are found and the search takes more time, but it was
shown that many errors are found with only two context switches [13].

3 Randomized Backtracking

We alter the standard algorithm for depth-first state space traversal with the following
two modifications.

– Rather than backtracking only from fully processed states (whose outgoing transi-
tions have all been explored) and already visited states, the modified algorithm may
also backtrack from states still containing unexplored outgoing transitions.
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– When the state s that is currently being processed has some unexplored outgoing
transitions, random number choice is used to decide whether (a) to move forward
and explore one of the outgoing transitions or (b) backtrack already and ignore the
remaining unexplored transitions.

The process of state space traversal with randomized backtracking is controlled by
three parameters, which will be explained next: (1) threshold to enable the random-
ized backtracking at some search depth, (2) strategy to determine the length of back-
track jumps, and (3) ratio to decide between going forward and backtracking from a
state with unexplored transitions. The parameters are used together to decide whether
to backtrack from a state with unexplored transitions and how the results of random
number choices are used. Specific values of the parameters make a configuration of
randomized backtracking.

Algorithm. Figure 2 shows the algorithm for depth-first state space traversal with ran-
domized backtracking. Differences from the basic algorithm in Figure 1 are highlighted
by underlining. For each unexplored transition tr from the state s, the algorithm decides
whether to execute the transition or backtrack to some earlier state on the current path.
The function call rnd(0,1) returns a random number from the interval 〈0, 1〉. After each
backtracking step, i.e. after the recursive call to explore returns, the backtrackAgain pro-
cedure is used to determine whether, according to the selected strategy, the algorithm
should backtrack further. Note that randomized backtracking does not involve custom
implementations of the functions order and enabled, and therefore our algorithm can be
combined with any existing technique that uses special versions of these functions.

Threshold. Backtracking from a state with some unexplored outgoing transitions is
enabled only if the current search depth (i.e., the number of transitions between the ini-
tial state and the current state) is greater than the value of the threshold parameter. The
algorithm will not backtrack from the state s whose depth is smaller than the threshold
until all transitions outgoing from s are explored. Setting this parameter to a specific
non-zero value is useful, for example, when the prefix of each state space path repre-
sents an initialization phase and the algorithm should not backtrack too early, pruning
the state space, before it reaches the interesting part of the state space with respect to
the presence of concurrency errors.

Strategy. When the traversal algorithm decides to backtrack from the state s, either
because it is fully processed or using the results of random choice, it uses the given
strategy to determine the number of transitions that it backtracks over (the length of
the backtrack jump). If the strategy defines a backtrack jump of a length greater than
the current search depth, the algorithm backtracks through all transitions on the current
path and the state space traversal finishes. We consider the following three strategies:
fixed, random, and Luby.

The fixed strategy corresponds to the behavior of the standard algorithm for depth-
first traversal. It means that the algorithm backtracks over a single transition and then
decides whether to go forward along some unexplored transition or backtrack again.
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DFS RB ( threshold , strategy , ratio ) :
visited = {}
stack = [ ]
push ( stack , s0 )
explore (s0 )

procedure explore (s )
if error (s ) then

counterexample = stack
terminate

end if
transitions = order (enabled (s ) )
for tr ∈ transitions do

depth = size(stack)

if depth >= threshold then
if rnd(0, 1) > ratio(depth) return

end if
s′ = execute ( tr )
if s′ /∈ visited then

visited = visited ∪ s′

push ( stack , s′ )
explore (s′ )
pop ( stack )
if backtrackAgain(strategy) return

end if
end for

end proc

Fig. 2. Algorithm for depth-first state space traversal with randomized backtracking

When the random strategy is used, the algorithm backtracks over a random number
of transitions at each occasion, i.e. each backtrack jump has a random length. This
strategy imposes no bound on the length of the backtrack jumps.

Usage of the Luby strategy [12] requires the algorithm to record the total count of
backtracking jumps already performed from the start of the state space traversal. The
length of a backtrack jump N is equal to the number at the corresponding position in
the Luby sequence l1, l2, . . ., which is defined by the following expression:

li = 2n−1, if i = 2n − 1
li = li−2n−1+1 if 2n−1 ≤ i < 2n − 1

The first few elements of the sequence are: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8. For
example, the third backtrack jump will step over two transitions. For any integer n > 0,
there are exactly 2i elements with the value 2n−i between any pair of elements with
the value 2n, and the element with the value 2n occurs for the first time at the position
2n+1 − 1. Therefore, the maximal possible length of a backtrack jump is bounded by
the number of already performed backtrack jumps.

Ratio. The ratio parameter allows to express the degree of general preference for going
forward along some unexplored transition over backtracking for decisions based on
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random number choice. Assuming that the value of this parameter is R, when the state
s that is currently being processed has some unexplored transitions, then the algorithm
backtracks from s (instead of exploring some outgoing transition) only if the randomly
selected number from the interval 〈0, 1〉 is greater than R. The ratio can be defined as a
constant number or as a function of the search depth that is represented by an expression
R = 1 − d/c, where d is the current search depth and c is an integer constant. In the
latter case, backtracking becomes more likely from states with a greater depth.

State space pruning. A consequence of the use of randomized backtracking is that an
incomplete traversal is performed, because parts of the state space are pruned by back-
tracking from a state with some unexplored transitions, and therefore errors may be dis-
covered in less time than with existing techniques (e.g., with the exhaustive search). On
the other hand, it is not guaranteed that an error state is reached when the randomized
backtracking is used, and therefore no error may be detected for some configurations
and randomly chosen numbers.

s

no
error

E

s

many
states

a) b)

C1 C2

tr1 tr2
T1: write x

T2: read x T1: write x

T2: read x

Fig. 3. State space fragments that illustrate pruning by randomized backtracking

Consider the state space fragment in Figure 3a. Assuming that the transition tr1
from the state s is explored first, randomized backtracking may prune the possibly large
part of the state space that does not contain any error state and thus avoid spending a
lot of time in traversing the error-free part. The standard algorithm would exhaustively
traverse the whole error-free part before exploring the transition tr2.

Figure 3b shows how randomized backtracking can reduce the time needed to dis-
cover a race condition, which involves a pair of unsynchronized accesses to the same
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variable x in two threads T1 and T2 such that at least one of the accesses is a write
and the accesses are performed in different orders in different thread schedules. After
exploring the state c1 on the state space path that corresponds to the schedule T1;T2,
in which the first sequence of conflicting accesses is detected, the large subtree be-
low c1 may be pruned and a different state space path that corresponds to the schedule
T2;T1 may be explored instead. In this case, the race condition is recognized when the
state c2 is reached and the second sequence of conflicting accesses with reverse order
is detected.

For each state s, the algorithm decides whether to backtrack (based on random
number choice) separately for each transition outgoing from s. A consequence of this
behavior is that each outgoing transition from s has a different probability (chance) that
it will be explored and not pruned — for the first transition in the list returned by the
order function, the probability that it will be explored is equal to the ratio R, while a
transition with the index i in the list has the probability Ri that it will be explored.

4 Evaluation

We implemented the proposed algorithm for depth-first state space traversal with ran-
domized backtracking in Java PathFinder (JPF) [10] and evaluated its performance on
seven multi-threaded Java programs: the Daisy file system [15], the Elevator bench-
mark from the PJBench suite [14], and five small programs used in a recent comparison
of tools for detection of concurrency errors [19] that are publicly available in the CTC
repository [1] — the programs are Alarm Clock, Linked List, Producer Consumer, RAX
Extended, and Replicated Workers.

Basic characteristics of the programs are provided in Table 1 — total number of
source code lines and maximal number of concurrently running threads.

Our implementation and the complete set of experimental results are available at
the web site http://plg.uwaterloo.ca/˜pparizek/jpf/spin11/. The
benchmark programs can be downloaded from web sites listed in the references.

Program Source code lines Number of threads
Daisy file system 1150 2
Elevator 320 4
Alarm Clock 180 3
Linked List 185 2
Producer Consumer 135 7
RAX Extended 150 5
Replicated Workers 430 6

Table 1. Information about benchmark programs

We designed experiments on the seven benchmark programs to answer the follow-
ing three questions about the performance of the state space traversal with randomized
backtracking. In the context of this paper, performance corresponds to the number of
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states processed before an error is found — a lower number of processed states implies
better performance.

Q1) For each benchmark, which configuration of randomized backtracking has the best
performance (i.e., processes the least number of states before finding an error), and
does it have better performance than existing techniques?

Q2) How much different is the performance of different configurations of randomized
backtracking for each individual benchmark, i.e. what is the variability of perfor-
mance over all configurations?

Q3) Is there a configuration that has reasonably good performance (better than existing
techniques) for all programs?

The rest of this section contains a description of the experimental setup and then an-
swers to the three questions. In the experimental setup and presentation of results,
we followed the general recommendations for evaluating path-sensitive error detection
techniques that are described in [4]. We provide values of system-independent metrics,
like the number of processed states and depth of the error state.

Experimental setup. For the purpose of the experiments, we manually injected con-
currency errors into those benchmark programs that did not already contain any — we
created race conditions in all benchmarks except Linked List and Daisy by modifying
the scope of synchronized blocks, and we inserted assertions into Daisy that are violated
as a consequence of complex race conditions that already existed in the code but JPF
cannot detect them directly. The Linked List benchmark already contained a race con-
dition that JPF can detect. We tried to inject such errors as to get benchmarks with low
density of error paths (as recommended in [4]), i.e., to inject hard-to-find errors, but this
was not possible in some cases without changing the benchmark design and code very
significantly. The following benchmarks have a low number of error paths: Daisy file
system (0.03 % of paths lead to the error state), Elevator (0.006 %), and RAX Extended
(3 %). Other benchmarks contain easy-to-find bugs, for which a large percentage of
state space paths lead to the error.

We consider the following existing techniques that are implemented in JPF: exhaus-
tive traversal with default search order, traversal with random search order, directed
search with a heuristic that prefers thread interleavings, and context-bounded search.
The default search order of JPF means that transitions in the list are ordered by the
indices of the associated threads. For the context-bounded search, we considered the
following bounds on the number of thread preemptions: 2, 5, 10.

With randomized backtracking, we performed experiments with configurations that
correspond to all combinations of threshold values from the set {5, 10, 20, 50, 100},
values of the ratio parameter from the set {0.5, 0.75, 0.9, 0.99, 1− d/20, 1− d/50, 1−
d/100, 1− d/1000}, where d is the current search depth, and all three strategies for the
length of backtrack jump (fixed, random, and Luby). Names of configurations have the
form of tuples (threshold, strategy, ratio).

For experiments that involve randomization, we repeated JPF runs with the same
configuration until either 10 runs found an error or 100 runs were performed. The
context-bounded traversal is not complete, but it does not involve any randomization,
and thus the percentage of JPF runs that find an error is always either 100% or 0%.
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Answer to question Q1 (best configuration for each benchmark). Table 2 provides
for each benchmark program the experimental results for: (1) traversal with the default
search order, (2) the existing technique with the best performance, and (3) the configu-
ration of randomized backtracking with the best average performance from those where
100% of JPF runs found an error. For some benchmarks (Daisy file system, Alarm
Clock, Linked List, and RAX Extended), better performance can be achieved by requir-
ing only 50% of JPF runs to find an error. For these benchmarks, the table contains a
fourth row showing the best performing such configuration. Note that for the Elevator
benchmark, there was no configuration for which the number of JPF runs that found an
error is in the interval [50, 100). Each row contains values of the following metrics: the
number of states processed before an error was found (mean µ, minimum, maximum,
and standard deviation σ), and the percentage of JPF runs for the given configuration
that found an error. The running times of JPF are less than one minute for Elevator and
Replicated Workers, and a few seconds for all other benchmarks.

The results show that state space traversal with randomized backtracking has much
better performance than all of the existing techniques for six of the seven benchmarks.
For each of these benchmarks, there is a configuration of randomized backtracking
with which 100% of JPF runs find an error, yet the number of explored states is a
factor of 1.1 to 44 times lower than for the best existing technique. The exception is the
Producer Consumer benchmark, for which both complete search with random search
order and randomized backtracking have similar performance; they both explore fewer
states than the JPF default search order by a factor of over 160. Although the state
space traversal with random search order yields a lower minimal number of explored
states than randomized backtracking for the Alarm Clock and Linked List benchmarks,
randomized backtracking yields a lower average and maximum than random search
order, and therefore we claim that randomized backtracking has better performance
for these two benchmarks. Usage of randomized backtracking has significantly better
performance than existing techniques in particular for benchmark programs with deep
errors (such that a large number of states must be explored to find the error), like the
Elevator and Replicated Workers benchmarks, for which the mean number of states
explored is reduced by a factor of 8.9 and 44, respectively.

For some benchmark programs, significantly better performance can be achieved
by the appropriate configurations when it is not required that all JPF runs find an error
— see data for Daisy file system and RAX Extended, which show improvement by a
factor of 2.1 and 12, respectively, over the best configuration where 100% of JPF runs
found an error. If the percentage of JPF runs that find an error is greater than 50% and
each run finishes quickly, then an error would be found with a very high probability
(close to 100%) by performing a sequence of JPF runs with the given configuration.
The total running time of this sequence of JPF runs might be smaller than the running
time of some existing technique and also than the running time of a single JPF run with
a different configuration (for which every JPF run that we performed found an error).

Answer to question Q2 (variability of performance by configuration). Table 3 pro-
vides for each benchmark program the experimental results for configurations of ran-
domized backtracking that yield the following extremes over the set of all JPF runs for
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Configuration
Processed states

Error found
µ min max σ

Daisy file system
default search order 282 0 100 %
thread interleavings 139 0 100 %
(10, random, 1− d/1000) 108 102 116 5 100 %
(5, fixed, 0.75) 51 22 88 19 56 %
Elevator
default search order 143373 0 100 %
random search order 2399 1062 3833 787 100 %
(50, random, 1− d/100) 270 255 293 12 100 %
Alarm Clock
default search order 188 0 100 %
random search order 192 12 380 111 100 %
(10, Luby, 1− d/1000) 44 20 165 41 100 %
(5, fixed, 1− d/20) 37 15 93 22 91 %
Linked List
default search order 328 0 100 %
random search order 186 15 234 70 100 %
(10, fixed, 1− d/50) 112 51 215 59 100 %
(10, Luby, 0.99) 58 50 71 7 59 %
Producer Consumer
default search order 9299 0 100 %
random search order 48 25 73 13 100 %
(10, fixed, 1− d/100) 57 23 157 41 100 %
RAX Extended
default search order 1617 0 100 %
thread interleavings 104 0 100 %
(10, Luby, 0.99) 97 86 113 8 100 %
(5, Luby, 0.9) 8 8 9 0 59 %
Replicated Workers
default search order 9881 0 100 %
context bound (10) 6585 0 100 %
(50, fixed, 0.9) 148 95 278 55 100 %

Table 2. Configurations with the best average performance

all configurations: minimal number of states processed by some JPF run and maximal
number of states processed by some JPF run. We consider only configurations where
50% or more of JPF runs detected some error. Moreover, the table provides also the
configuration for which the lowest percentage of JPF runs discovered an error.

Each row of the table contains values of the following metrics: number of states
processed before an error was found (mean µ, minimum, maximum, and standard devi-
ation σ), and percentage of JPF runs for the given configuration that found some error.
If no error was found by any JPF run for some configuration, then columns for all met-
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Configuration
Processed states

Error found
µ min max σ

Daisy file system
(5, fixed, 0.9) 135 19 467 165 67 %
(20, fixed, 0.5) 282 282 282 0 100 %
(5, random, 1− d/20) - - - - 0 %
Elevator
(50, fixed, 0.99) 358 253 424 49 100 %
(100, fixed, 1− d/50) 2263 2227 2338 38 100 %
(5, fixed, 0.5) - - - - 0 %
Alarm Clock
(5, fixed, 0.5) 85 13 251 74 100 %
(5, fixed, 0.9) 94 13 447 120 100 %
(5, random, 1− d/100) 57 19 112 30 19 %
Linked List
(5, fixed, 1− d/50) 74 38 133 27 56 %
(20, fixed, 0.9) 235 170 408 66 100 %
(5, Luby, 0.5) - - - - 0 %
Producer Consumer
(10, fixed, 1− d/50) 196 18 1251 355 100 %
(50, fixed, 0.5) 9299 9299 9299 0 100 %
(5, Luby, 1− d/1000) 242 242 242 0 1 %
RAX Extended
(5, fixed, 0.5) 60 8 313 88 67 %
(50, fixed, 0.5) 1617 1617 1617 0 100 %
(5, random, 1− d/50) 10 8 15 2 26 %
Replicated Workers
(50, fixed, 0.5) 339 71 1282 385 100 %
(50, Luby, 1− d/20) 6258 139 19190 5673 100 %
(5, random, 0.5) - - - - 0 %

Table 3. Configurations that yield performance extremes

rics related to the number of processed states and search depth in the table contain the
character ”-”.

The results show that there is great variability in performance yielded by different
configurations and different outcomes of random number choices on each benchmark
program. In particular, the minimal and maximal numbers of states processed by a JPF
run that were recorded over all configurations and JPF runs differ by an order of mag-
nitude for some benchmarks (e.g., for the Producer Consumer and Replicated Workers
benchmarks). Note that the worst configurations of randomized backtracking (that yield
maximum numbers) still have better or the same performance as the default search or-
der, but they have worse performance than other existing techniques, such as the random
search order for Producer Consumer, Linked List and RAX Extended.

The numbers of states processed before an error is found also differ significantly
among JPF runs with a single configuration for some benchmarks. Consider for example
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the Replicated Workers benchmark and the configuration (50, Luby, 1−d/20), in which
case (i) the standard deviation of the number of processed states is approximately equal
to the mean value and (ii) the maximum number of states processed by some JPF run
with that configuration is 138 times bigger than the minimum number of processed
states. Also the percentage of JPF runs that find an error varies to a great degree among
different configurations. For some benchmark programs and configurations, a small
percentage of JPF runs (or none at all) found an error (e.g. Linked List).

Answer to question Q3 (a generally good configuration). Although different con-
figurations yield the best performance for each benchmark program, reasonably good
performance for all of them is achieved by configurations with the ratio 0.9 and the ran-
dom strategy. Table 4 shows for each benchmark program the results for: (1) the existing
technique with the best performance, (2) the configuration of randomized backtracking
with the best average performance, and (3) the configuration (H , random, 0.9) with the
benchmark-specific threshold value H that achieves the best performance (for the ratio
0.9 and random strategy).

The configuration (H , random, 0.9) yields better or the same performance as the
best existing technique for all benchmarks except Producer Consumer, for which the
random search order has better performance. Note also that for some benchmarks, such
as the Daisy file system and Elevator, the performance of randomized backtracking
with the configuration (H , random, 0.9) is very close to the performance of the best
configuration for the given benchmark.

The threshold value H must be selected with regard to the given benchmark pro-
gram, since it influences (i) the chance that a JPF run will find an error and (ii) whether
randomized backtracking will have any effect on the number of states traversed. If the
threshold is too low, the error will not be found by most of the JPF runs. If the thresh-
old is too high, randomized backtracking will never occur and therefore exhaustive
state space traversal with the default search order will be performed by JPF. Table 5
illustrates how the threshold value H influences the performance of randomized back-
tracking with the configuration (H , random, 0.9) and the percentage of JPF runs that
detect an error. For each benchmark and threshold value, the table provides values of
the following metrics: the search depth at which the error was detected (mean µ and
standard deviation σ) and the percentage of JPF runs that found some error.

Different values of the threshold parameter work for different benchmarks in gen-
eral. However, the results imply the following three general properties of the perfor-
mance of randomized backtracking based on the threshold value:

– very few JPF runs may find an error in a given program if the threshold value is
too small (significantly smaller than the depth of the error state), because JPF may
often backtrack too early before reaching the error state;

– even though the usage of randomized backtracking does not guarantee that an error
is discovered, the results show that an error is discovered by all JPF runs for a given
threshold (or by a very high percentage of JPF runs), as long as the threshold value
is not too small (compared to the depth of the error state);

– if the threshold is too big, randomized backtracking does not have any effect (i.e., it
does not have better performance than the existing techniques), because JPF finds
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Configuration
Processed states

Error found
µ min max σ

Daisy file system
thread interleavings 139 0 100 %
(10, random, 1− d/1000) 108 102 116 5 100 %
(10, random, 0.9) 110 103 119 5.4 100 %
Elevator
random search order 2399 1062 3833 787 100 %
(50, random, 1− d/100) 270 255 293 12 100 %
(50, random, 0.9) 290 261 312 15 100 %
Alarm Clock
random search order 192 12 380 111 100 %
(5, fixed, 1− d/20) 37 15 93 22 91 %
(10, random, 0.9) 90 23 220 64 100 %
Linked List
random search order 186 15 234 70 100 %
(10, Luby, 0.99) 58 50 71 7 59 %
(20, random, 0.9) 197 171 266 29 100 %
Producer Consumer
random search order 48 25 73 13 100 %
(10, fixed, 1− d/100) 57 23 157 41 100 %
(10, random, 0.9) 189 22 435 133 100 %
RAX Extended
thread interleavings 104 0 100 %
(5, Luby, 0.9) 8 8 9 0 59 %
(10, random, 0.9) 100 79 119 11 100 %
Replicated Workers
context bound (10) 6585 0 100 %
(50, fixed, 0.9) 148 95 278 55 100 %
(100, random, 0.9) 522 263 905 203 100 %

Table 4. Configuration with good performance for all benchmarks

an error at a search depth lower than the threshold value and therefore it never
backtracks from a state with unexplored outgoing transitions.

For example, the threshold value 5 is too small for Daisy file system and the thresh-
old value 10 is too small for the Elevator benchmark. On the other hand, threshold
values 50 or higher are too big for the RAX Extended benchmark.

5 Conclusion

We introduced the idea of using randomized backtracking in state space traversal for
the purpose of fast error detection. Experiments with our implementation in JPF on
several multi-threaded Java programs show that randomized backtracking has better
performance than existing techniques in most cases.
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Threshold: 5 10 20 50 100
Daisy file system
States µ 30 110 282 282 282

Depth
µ 6 7 7 7 7
σ 0 0 0 0 0

Error found 1 % 100 % 100 % 100 % 100 %
Elevator
States µ - - - 290 2185

Depth
µ - - - 45 45
σ - - - 0 0

Error found 0 % 0 % 0 % 100 % 100 %
Alarm Clock
States µ 59 90 188 188 188

Depth
µ 13 13 13 13 13
σ 1.7 4.5 0 0 0

Error found 25.6 % 100 % 100 % 100 % 100 %
Linked List
States µ - 75 197 276 328

Depth
µ - 12 19 48 48
σ - 1 1.4 0 0

Error found 0 % 40 % 100 % 100 % 100 %
Producer Consumer
States µ 127 189 204 9299 9299

Depth
µ 29 19 25 23 23
σ 6.4 3.6 0 0 0

Error found 10.3 % 100 % 100 % 100 % 100 %
RAX Extended
States µ 12 100 441 1617 1617

Depth
µ 6 6 20 38 38
σ 0 0 1 0 0

Error found 35.7 % 100 % 100 % 100 % 100 %
Replicated Workers
States µ - - - 1774 522

Depth
µ - - - 62 106
σ - - - 3.2 6.2

Error found 0 % 0 % 0 % 100 % 100 %

Table 5. Performance of the configuration (H , random, 0.9) for different threshold values

In particular, randomized backtracking has better performance than existing tech-
niques in search for hard-to-find errors that are triggered only by a few paths (e.g.,
Elevator) and also in search for easy-to-find errors (e.g., Replicated Workers).

There is no single best configuration of randomized backtracking that would have
the best performance for any benchmark program. However, we recommend to use the
configuration (H , random, 0.9) with a specific threshold H , because it performs rea-
sonably well for all benchmarks and, in particular, has significantly better performance
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than existing techniques in most cases. Since the optimal threshold value is specific to
the benchmark program, a viable approach is to run several instances of JPF with the
configuration (H , random, 0.9) and different threshold values in parallel, and stop all
of them when one finds an error. The ”embarrassingly parallel” approach to search for
errors, proposed in [8, 9], could be used.

In the future, we would like to evaluate randomized backtracking on more complex
Java programs and to investigate possible approaches to determining reasonable thresh-
old values (e.g., using heuristics). There might be some relation between good threshold
values and bounds on the number of preemptions in context-bounded model checking.
Another possible application of randomized backtracking is the search for errors in pro-
grams with infinite state spaces or infinite paths (e.g., programs that involve some ever
increasing counter).
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