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ABSTRACT
Techniques and tools for verification of multi-threaded programs
must cope with the huge number of possible thread interleavings.
Tools based on systematic exploration of a program state space em-
ploy partial order reduction to avoid redundant thread interleav-
ings. The key idea is to make non-deterministic thread schedul-
ing choices only at statements that read or modify the global state
shared by multiple threads. We focus on the approach to partial
order reduction used in tools such as Java Pathfinder (JPF), which
construct the program state space on-the-fly, and therefore can use
only information available in the current program state and execu-
tion history to identify statements that may be globally-relevant.

In our previous work, we developed a field access analysis that
provides information about fields that may be accessed during pro-
gram execution, and used it in JPF for more precise identification
of globally-relevant statements. We build upon that and propose a
may-happen-before analysis that computes a sound approximation
of the happens-before ordering. Partial order reduction techniques
can use the happens-before ordering to detect pairs of globally-
relevant field access statements that cannot be interleaved arbitrar-
ily (due to thread synchronization), and based on that avoid making
unnecessary thread scheduling choices. The may-happen-before
analysis combines static analysis with knowledge of information
available from the dynamic program state. Results of experiments
with several Java programs show that usage of the may-happen-
before analysis further improves the performance of JPF.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
static analysis, state space traversal, dynamic analysis, concurrency,
happens-before, Java Pathfinder
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1. INTRODUCTION
Many tools for testing and verification of multi-threaded pro-

grams are based on systematic traversal of a program state space.
Two well-known tools are Java Pathfinder [10] and CHESS [15].
They use the state space traversal to check the program behavior
under all possible thread interleavings. Each thread interleaving
corresponds to a sequence of thread scheduling decisions, and also
to a particular sequence of statements executed by program threads.
The main challenge faced by the tools and verification techniques
is the need to cope with the huge number of thread interleavings.

Tools employ partial order reduction (POR) [8, 13, 20] to avoid
exploration of redundant thread interleavings. We consider a thread
interleaving to be redundant if it corresponds to the same sequence
of globally-relevant statements as some other thread interleaving
that has been already explored during the state space traversal. A
globally-relevant statement reads or modifies the global state shared
by multiple threads, and thus represents interaction between con-
currently-running threads. Other statements are called thread-local.
The set of globally-relevant statements contains, for example, ac-
quisition of a lock, wakeup of a thread waiting on a monitor, and
field accesses on heap objects shared by multiple threads.

State space traversal with POR works as follows. The key idea
behind it is to consider thread scheduling choices only at globally-
relevant statements. Let i be the next statement (instruction) to be
executed on the currently running thread. If i is a globally-relevant
statement then the verification tool must explore the interleavings
where i is really executed next, and also the interleavings where
actions of other threads occur before i. The tool will create a non-
deterministic thread scheduling choice just before i to achieve this
and cover all the possible thread interleavings regarding i. If i is
a thread-local statement then it cannot influence the execution of
other threads and vice versa, and therefore it is sufficient to explore
only the interleavings in which i is executed next from the current
state. No thread scheduling choice has to be created before any
thread-local statement.

Existing approaches to POR (e.g., [7, 9]) conservatively over-
approximate the set of globally-relevant statements to yield sound
exploration of the program state space that covers all distinct thread
interleavings. The principal challenge is to determine precisely
which statements are globally-relevant. The number of redundant
thread interleavings explored during the state space traversal de-
pends on the number of statements that are actually thread-local
but were imprecisely identified as globally-relevant.

We focus on the approach to POR used in Java Pathfinder (JPF),
which is a framework for state space traversal of multi-threaded
Java programs, and describe important concepts in the context of
JPF. However, the concepts apply also to other tools for state space
traversal that work in a similar way to JPF, such as CHESS. In the



rest of this paper, for simplicity of presentation we use the term
"JPF" also when referring just to the POR technique inside JPF,
unless specified otherwise.

JPF constructs the program state space on-the-fly using its cus-
tom virtual machine that interprets statements (bytecode instruc-
tions). Therefore, JPF cannot look ahead in the program execution
to find what may happen in the future, and its POR technique uses
only information available in the current program state and execu-
tion history to determine whether a given statement is globally-
relevant and whether it has to make a thread scheduling choice
before execution of the given statement. An important category
of statements considered by JPF to be globally-relevant are field
accesses on heap objects that are reachable from multiple threads
according to a dynamic escape analysis [3]. JPF conservatively as-
sumes that each thread may in the future really access every field
of every heap object that it can reach in the current state. This ap-
proach is safe but not precise — a particular object may be reach-
able from multiple threads but really accessed only by a single
thread during the program execution, or the threads may access dif-
ferent fields of a given heap object. As a consequence, JPF explores
many redundant thread interleavings because it determines impre-
cisely that some field access statements may be globally-relevant
when they are actually thread-local.

In prior work [17], we designed a hybrid field access analysis,
which provides information about fields possibly accessed during
the program execution, and used its results in JPF for more pre-
cise identification of globally-relevant and thread-local statements.
Many redundant thread interleavings were avoided in this way, as
shown by the experimental results published in [17]. The field ac-
cess analysis combines static analysis with knowledge of the dy-
namic program state (thread call stacks) that is maintained by JPF
during the state space traversal. For each program point p in each
thread T , the hybrid analysis computes the set of fields possibly
accessed by thread T after the point p on any execution path. The
static phase is a backward flow-sensitive context-insensitive data
flow analysis performed over the full inter-procedural control flow
graph (ICFG) of a given thread. Knowledge of the dynamic call
stack of each thread is used to improve precision of the analysis
results — the hybrid analysis considers only those return edges in
the ICFG that can be actually taken during the program execution.
Nevertheless, a limitation of the field access analysis is that it con-
siders the whole lifetime of each thread from the current program
state to its end. In practice, threads are usually synchronized to
disable certain interleavings, and therefore particular sequences of
globally-relevant field access statements will not happen during the
actual program execution. Thread scheduling choices and inter-
leavings that correspond to such sequences of field access state-
ments are still redundant, and could be safely eliminated.

We propose to address this limitation by using a new hybrid
may-happen-before (MHB) analysis that computes approximation
of the happens-before ordering [14] for field accesses and thread
synchronization statements. The may-happen-before analysis, too,
is a specific combination of (1) static analysis with (2) the informa-
tion available from the dynamic program state maintained by JPF.
This combination designed to compute the happens-before order-
ing is the main new aspect of the proposed approach. Static analy-
sis provides information about possible future behavior of the pro-
gram after a particular code location, and information taken from
the dynamic program state is used to improve precision of the re-
sults. Many existing program verification techniques involve the
happens-before ordering (see, e.g., [5, 12]), but all techniques that
we know about compute it using dynamic analysis that covers only
few execution paths.

The POR technique in JPF uses the happens-before ordering to
identify pairs of globally-relevant field access statements that can-
not be interleaved arbitrarily during the actual program execution,
and based on that it avoids creating redundant thread scheduling
choices at such field access statements. Results of our experiments
show that combination of the field access analysis with the may-
happen-before analysis yields a significant improvement over the
standalone field access analysis [17] in terms of the number of elim-
inated redundant interleavings and thread scheduling choices.

2. OVERVIEW
We illustrate the whole approach on the example Java program

in Figure 1, which involves three threads — reader, writer, and no-
tifier. The reader and writer threads communicate via calls of wait
and notify on the same monitor object (lock1) and also via possi-
bly concurrent accesses to the static field Example.x. The notifier
thread calls notify on a different monitor object (lock2).

Let s be the current program state in which (i) the program counter
of each thread refers to the first instruction of its method run and
(ii) the writer thread is the active one. In this case, JPF together
with our analyses must decide whether to create a thread schedul-
ing choice before the write access to Example.x (line 23) to cover
all possible interleavings of the read and write accesses that may
occur during the rest of the program execution from the state s.
This is done in two steps:

1. The field access analysis identifies the possible future read
access to the field Example.x by the reader thread (line 35).
It means that the write access at line 23 is not a thread-local
statement. Now the question is whether the read access may
be executed before the write access in some thread interleav-
ing. The answer to this question is computed automatically
by the may-happen-before analysis (step 2).

2. The analysis determines that there is a call of wait (line 34)
before the read access to Example.x on every execution path
in the reader thread. For every call of wait before the read
access, the may-happen-before analysis determines whether
some other thread may wake up the waiting thread (via a call
of notify) before the writer thread executes the write access
to Example.x. This cannot happen in case of the example
program, because the notifier thread executes the call of no-
tify (line 45) on a different monitor object. Consequently,
the read access cannot be executed before the write access to
Example.x in any thread interleaving, and thus JPF does not
have to make a thread scheduling choice.

Note that the static field Example.x is reachable from all program
threads, and thus plain JPF would imprecisely create a thread schedul-
ing choice before every access to the field.

A very similar process is performed for programs where locks
are used to guard accesses to shared fields. In that case, JPF and
our analyses have to consider the happens-before ordering between
the lock acquisition and release statements in different threads.

The rest of this section gives more details about the whole pro-
cess — input programs, the field access analysis, main steps of the
may-happen-before analysis, and usage of the analysis results in
JPF to decide about thread scheduling choices.

Our approach targets Java programs with multiple threads that
use locks, signals (wait and notify), and thread join statements for
mutual synchronization. It supports arbitrarily nested locking op-
erations (acquisition, release) and all possible locking patterns —
most notably, also locking patterns other than nested synchronized
blocks that are used typically in Java programs, because we take



1 public class Example {
2 public static int x = 0;
3

4 public static void main(String[] args) {
5 Object lock1 = new Object();
6 Object lock2 = new Object();
7

8 Thread th1 = new Writer(lock1);
9 Thread th2 = new Reader(lock1);

10 Thread th3 = new Notifier(lock2);
11

12 th1.start(); th2.start(); th3.start();
13 th1.join(); th2.join(); th3.join();
14 }
15 }
16

17 class Writer extends Thread {
18 private Object lock1;
19

20 public Writer(Object l1) { this.lock1 = l1; }
21

22 public void run() {
23 Example.x = 1;
24 synchronized (lock1) { lock1.notify(); }
25 }
26 }
27

28 class Reader extends Thread {
29 private Object lock1;
30

31 public Reader(Object l1) { this.lock1 = l1; }
32

33 public void run() {
34 synchronized (lock1) { lock1.wait(); }
35 int v = Example.x;
36 }
37 }
38

39 class Notifier extends Thread {
40 private Object lock2;
41

42 public Notifier(Object l2) { this.lock2 = l2; }
43

44 public void run() {
45 synchronized (lock2) { lock2.notify(); }
46 }
47 }

Figure 1: Example program

acquire lock and release lock as completely independent events.
On the other hand, both JPF itself and the proposed analyses do not
support these concurrency-related features of the Java platform: the
full Java Memory Model (JMM), and spurious wakeups from the
calls of wait that may happen on some platforms. JPF does not an-
alyze those thread interleaving possible under JMM, in which the
effects of some writes in one thread are observed out-of-order by
other concurrent threads, and therefore it could miss some errors.

We propose a hybrid may-happen-before analysis that computes
sound approximation of the happens-before order for field accesses
and thread synchronization statements. The happens-before order
determines which thread interleavings cannot happen at runtime be-
cause of thread synchronization. The approximation computed by
our analysis is sound in the sense that it captures only real order-
ings between pairs of statements. Each of the identified happens-
before orderings is valid for all execution paths that involve the cor-
responding statements. Our analysis does not report any spurious
happens-before orderings.

Both hybrid analyses, i.e. the may-happen-before analysis and
the field access analysis, are computed in two steps. The first step
involves static analyses performed in advance before a JPF run —
pointer analysis, the static phase of the hybrid field access analy-
sis, and the static phase of the hybrid may-happen-before analysis.
We use an exhaustive flow-insensitive context-insensitive pointer
analysis to identify abstract heap objects and to determine possibly
aliased variables. For each program point, the static phase of the
hybrid analyses computes only partial information about the future
behavior of individual threads. We give more details in Section 4.

Full results of the hybrid analyses are computed on demand in
the second step, using information from the dynamic program state.
The second step is therefore performed in JPF during the state space
traversal. In particular, the happens-before ordering between state-
ments from different threads is computed using (i) results of the
static analysis performed in the first step and (ii) specific informa-
tion from the current dynamic program state, including the dynamic
call stack (program counter) of each thread.

The design of the may-happen-before analysis as a hybrid one
has been motivated by the need to get the most precise results pos-
sible at a reasonable cost. For example, the dynamic call stack
represents the full and precise calling context in each state associ-
ated with a program point p, while an efficient static analysis can
only approximate the calling context for p. We provide a list of all
the information taken from the dynamic program state at the end
of Section 3 and discuss usage of this information to get precise
analysis results in Section 4.

JPF uses results of the may-happen-before analysis together with
results of the field access analysis to decide whether it must create
a thread scheduling choice before a field access statement. Let s
denote the current dynamic program state. Assuming that the next
statement in the currently executing thread Tc is an access to the
field f of a heap object o reachable from multiple threads, JPF
performs the following steps. For every other thread Tj , j 6= c in
the current state s, it queries the results of the field access analysis
for the current point pj in Tj to see whether Tj may execute a
possibly conflicting access to o.f on any execution path starting in
pj . We consider only read-write pairs of accesses to the same field
as possibly conflicting. The order of two write accesses to the same
field may affect the program execution only if the field is eventually
read, and then there exists a conflicting read-write pair.

If the results show that no other thread may access o.f in the rest
of the program execution from the state s, then the field access in Tc

is thread-local and JPF does not have to make a thread scheduling
choice before its execution. Otherwise, if there is a possible future
access to o.f in some thread Th other than Tc, JPF checks whether
the access in the other thread Th may happen before the access to
o.f in Tc on some execution path (thread interleaving). The anal-
ysis determines whether thread synchronization statements impose
a strict execution ordering between the field accesses in Tc and Th.
In that case only such thread interleavings, in which the access to
o.f in Tc precedes the access in Th, are possible starting from the
current dynamic state of the program, and thus JPF does not have
to make a thread scheduling choice before the field access in Tc.
Note that all these checks must be done for each thread other than
Tc that may access o.f on some execution path starting in s.

3. HAPPENS-BEFORE PATTERNS
Now we describe scenarios in which certain sequences of field

access statements are not possible due to synchronization between
threads, and define a list of information that the POR technique
needs in these cases from the hybrid analysis to decide whether it
has to make a thread scheduling choice before a field access.



1: write o.f ; 1: wait L1 ; 1: notify L2
2: notify L1 2: read o.f

Tc Th Tn

��
��1(a)

1: acquire L ; 1: acquire L ;
2: write o.f ; 2: read o.f ;
3: release L 3: release L

Tc Th

��
��*(b)

1: synchronized (v) { 1: synchronized (this) {
2: write v.f 2: read this.f
3: } 3: }

Tc Th

��
���

���
�:(c)

1: write o.f ; 1: join Tc ;
2: ... 2: read o.f

Tc Th

-(d)

Figure 2: Four code patterns in which the thread Th gets blocked before the future field access — (a) call of wait, (b) lock acquisition,
(c) locking patterns that involve this, and (d) thread join

Let the program be in a dynamic state s, the next statement in the
current thread Tc be an access to o.f , and let there exist a future ac-
cess to o.f in some other thread Th. Without loss of generality, we
assume that Tc performs a write access to o.f and that Th may per-
form a read access in the future. There is a strict execution ordering
between the write access to o.f in Tc and the future read access in
Th only if the other thread Th is blocked for some reason before
the future read access in every possible thread interleaving from s.
Otherwise, if Th might not get blocked before the first future read
access to o.f on some thread interleaving, then there would not be
a strict ordering between the accesses and JPF would have to make
a thread scheduling choice before the access in Tc.

We distinguish four happens-before patterns (scenarios) in which
Th may get blocked. Figure 2 shows simple code examples for all
the patterns. Arrows indicate the happens-before ordering between
events. In the code of each thread, the statement to be executed
next is underlined. We discuss each pattern separately in the rest of
this section.

Pattern 1: wait and notify (Figure 2a). The thread Th gets cer-
tainly blocked before the future read access to o.f if the following
conditions hold:

• there is a call of wait on every control-flow path between the
current point ph in Th and the future read access to o.f , and

• no thread other than Tc and Th may call notify on the same
monitor object as the target of some call of wait in Th (and
possibly wake up Th in this way).

In Figure 2a, assuming that the program counter of each thread
refers to line 1, Th gets blocked at the call of wait on the monitor
object L1. The write access to o.f in Tc is always executed be-
fore the read access in Th because the thread Tn calls notify on a
different monitor object L2.

Pattern 2: lock acquisition and release (Figure 2b). The thread
Th gets blocked also when (i) the current thread Tc holds a lock in
the current dynamic program state s just before the field access to
o.f and (ii) on every control flow path in Th there is an acquisition

statement on the same lock before the future access to o.f . Con-
sidering the Figure 2b, if the program counter of Tc is at line 2 and
therefore Tc already holds the lock L, then there is a strict execu-
tion ordering between the lock release statement in Tc (line 3) and
the lock acquisition statement in Th (line 1).

However, both threads must use the same lock object, i.e. the
same dynamic heap object, to guard accesses to o.f in every thread
interleaving and on every control flow path. JPF queries the anal-
ysis results and the current dynamic program state to determine
whether the respective lock variables used in Tc and Th are guar-
anteed to point at the same heap object upon execution of the lock
acquisition statement. The following conditions must hold:

• the points-to set for the lock variable used in Th has only a
single element,

• the allocation site as for the lock variable in Th is equal to
the allocation site of the currently held lock in Tc, and

• a single object is ever allocated at the site as during the whole
program execution.

Note that many dynamic heap objects can be allocated at a given
site in general during program execution, and therefore just com-
paring allocation sites in the points-to set is not a safe approach to
determine equality of lock objects. In Figure 2b, both threads use
the same lock object L. The benchmark programs that we use for
experiments (Section 5), and which are quite representative of typ-
ical Java programs, contain many field access statements guarded
by locks that satisfy the conditions given above. Global lock ob-
jects are typically allocated during program initialization at a site
that is executed only once.

Pattern 3: locking patterns that involve this (Figure 2c). This
pattern covers a special case of the previous one. It captures the
common scenario (for Java programs) of accessing fields through
the local variable this inside a synchronized block over this (includ-
ing synchronized methods).

More specifically, the thread Th gets certainly blocked also in the
case when both threads (i) access the field f on the same dynamic



object o and (ii) guard the field access by a lock associated with o.
If the following conditions are satisfied, then Th will block before
the future access to the field o.f .

• Tc accesses the field f through the local variable v that points
to the object o in the current program state;

• Tc holds a lock over the object o (due to the synchronized
block over the variable v around the field access);

• every possible conflicting future access to f in Th is per-
formed through the local variable this (current object in the
method performing the access);

• every conflicting future access to f in Th via this outside of
any instance constructor is guarded by a synchronized block
over this, i.e. the field access is performed on the object used
also as the lock;

• for every conflicting future access to f in Th via this in some
instance constructor, the target object of the field access must
be reachable only from Th at the time of the field access;

• for each access to f via this in Th outside of instance con-
structors, the boundaries of the respective synchronized block
(i.e., the locked region) around the field access are in the
same method.

The conditions permit access to f only through the local variable
this in Th because the value of this cannot be modified inside a
given method, and thus we have the guarantee that the field access
is performed on the same object that is used as the lock. Any other
local variable can be modified inside the method, and thus at the
time of the field access the variable may point to a different object
than at the time of lock acquisition. Boundaries of the synchronized
blocks must be in the same method as the field access, because the
local variable this may obviously point to different objects during
execution of different methods.

An important difference from the pattern 2, which considers re-
sults of the pointer analysis, is that conditions specifying this pat-
tern refer to the syntactical names of local variables (v and this).
Consequently, this pattern captures also some cases when Th gets
blocked that are not covered by the pattern 2, and thus improves the
precision of our approach. Every possible future access to f in Th

must be inspected (unlike in the other patterns) to check that it is
performed through this.

Note also that the conditions permit unsynchronized accesses to
f inside constructors, which is a typical scenario (code pattern) in
Java programs. It is a safe scenario when the newly created dy-
namic heap object has not escaped from Th yet before the field
access, because then the object cannot be accessed concurrently in
Tc. To check that, we compare the allocation site of the dynamic
heap object o to be accessed next in Tc (we get the allocation site
from the dynamic program state) with abstract heap objects in the
points-to set of the local variable this in Th. The fifth condition is
violated when the newly created object escapes from Th.

If both the threads Tc and Th access the field f on the same
object o and the conditions are satisfied, then required usage of
this in Th guarantees that the same object is also used as the lock
guarding the field accesses.

We described this pattern only for accesses to instance fields via
this, but we use the same approach also for static fields accessed
inside static synchronized methods.

Pattern 4: thread join (Figure 2d). The last case that we consider
here is when the thread Th calls the join method on Tc before the

future access to o.f , and therefore gets blocked. There is a strict
ordering between every statement in Tc and the call of join in Th,
which guarantees that the access to o.f in Th cannot occur before
the access by Tc in any thread interleaving executed from the cur-
rent state s. JPF checks whether Th really executes a thread join
on the dynamic heap object representing Tc in the same way as for
locks (pattern 2), using results of the may-happen-before analysis
and information from the dynamic program state.

Detection. Considering all the happens-before patterns described
above in this section, JPF needs information both from the may-
happen-before analysis and directly from the dynamic program state
to properly detect their occurrences.

More specifically, it needs the following information about each
program point p in each thread T from the hybrid may-happen-
before analysis (Section 4).

(I1) For each field f , the set of calls of wait such that each element
appears on some control flow path starting in p before the
first future access to f .

(I2) For each field f , a boolean value saying whether on every
control-flow path starting in p there is a call of wait before
the first access to f on the path.

(I3) The set of all future calls of notify until the end of the thread’s
lifetime on any control flow path starting in p.

(I4) For each field f , the set of lock acquisition statements and
thread join statements that occur before the first access to f
on every control flow path starting in p.

(I5) The set of allocation sites on any control flow path of T that
starts in the point p.

(I6) The list of fields accessed in T on any control flow path
starting in p only through the local variable this and inside
synchronized blocks over this (with the exception of instance
constructors).

The following information is retrieved directly from the dynamic
program state or computed during the state space traversal by JPF.

(I7) The set of locks held by T in the current dynamic program
state just before the field access.

(I8) The number of dynamic heap objects allocated at each site
associated with a lock variable or a thread variable during
the program execution so far (up to the current state s).

(I9) The dynamic call stack of T , which is used also to check
whether T is executing an instance constructor on a dynamic
heap object other than the target of a specific field access.

The number of dynamic heap objects allocated at a given site is
computed by a listener plugin for JPF that tracks object allocations.
Note that information represented by the items I5 and I8 is used to
determine whether a single object is ever allocated at the given site
during program execution.

Using all this data, JPF can determine whether it has to make a
thread scheduling choice before the access to o.f in Tc, assuming
that some other thread Th may access o.f in the rest of the program
execution from the current state. There must be a thread scheduling
choice before a particular field access statement also when none of
the supported patterns apply, because in that case our may-happen-
before analysis obviously cannot guarantee that Th gets blocked
on every thread interleaving, and thus JPF has to conservatively
assume that Th may not get blocked on some execution path.



Remarks. We do not claim that our list of happens-before patterns
is complete. There may exist other more complicated scenarios,
in which thread Th gets blocked before the future field access on
every execution path. In that case, the may-happen-before analysis
will not detect a strict execution ordering and therefore the POR
technique in JPF will make a redundand thread scheduling choice.

Note also that we do not have to consider any pattern involving
calls of the start method on some thread object, because it is not a
possibly blocking operation.

4. MAY-HAPPEN-BEFORE ANALYSIS
We have designed a hybrid analysis that computes the happens-

before information required by JPF. It combines static analysis with
the knowledge of information from the dynamic program state.
Static analysis is performed before the JPF run, and gives only par-
tial results. Full results are computed at the state space exploration
time (in JPF) using information from the dynamic program state.
Therefore, results are valid only for the particular dynamic state of
the given program, and, more specifically, for the current program
point of each thread. Analysis results must be computed separately
for each thread T (i.e., for its current program point p) in the dy-
namic program state s.

The whole may-happen-before analysis consists of several com-
ponents — may-wait analysis, must-lock/join analysis, must-wait
analysis, may-notify analysis, future allocations analysis, and the
lock patterns analysis. Each component provides some of the in-
formation required by JPF (items I1-I6 from the list in the previ-
ous section). All the six component analyses are processed one by
one, and their results are used to detect occurrences of the happens-
before patterns described in the previous section.

First we explain our general approach to the combination of a
static analysis with information from the dynamic program state,
which is used by all the components except the lock patterns anal-
ysis, and then we describe each individual component in the rest of
this section. We cover only the may-wait analysis and the lock pat-
terns analysis in full detail, because other analyses follow the same
principle as the may-wait analysis.

4.1 Combining Static Analysis with Dynamic
Program State

Our approach to the design of hybrid analyses, described here,
was originally proposed in [17] for the field access analysis.

The static analysis phase, which is performed in advance before
the JPF run, gives only partial information that covers behavior of
the thread T from the point p until the return from the method con-
taining p (including nested method calls transitively). We use a
backward flow-sensitive context-insensitive inter-procedural static
data flow analysis, which has specific transfer functions for the
call and return statements. The transfer function for a call state-
ment merges data for entry to the callee method M and data for
the next statement in the caller. It is formally expressed as fol-
lows: before[call M] = before[M.entry] ∪ after[call M]. The trans-
fer function for the return statement, defined as before[return] = ∅,
produces the empty set — it ensures that the set of data flow facts
for each point captures only the events that may occur before the
return from the current method.

A complete result of the given hybrid analysis for the point p in
the thread T is computed at the state space exploration time using
knowledge of the dynamic call stack of T (which is taken from the
dynamic program state). The dynamic call stack of T specifies a
sequence p0, p1, . . . , pn of program points, where p0 is the current
program counter of T (in the top stack frame) and pi for i > 0 is
a return point from which the execution of the thread would con-

tinue after the return from the previous stack frame. Having this
sequence, one just needs to merge partial results of the static anal-
ysis phase for all the points pi, i = 0...n, to get the full result for
p0 and the current dynamic calling context of p0.

The full result for a program point p in the thread T captures
the future behavior of T from p until the end of T , and also the
behavior of all threads started by T after the point p.

The main benefit of this design is that the hybrid analysis is
fully calling-context-sensitive, because it considers only those re-
turn edges in the ICFG that can be actually taken during the pro-
gram execution and ignores return edges that do not lead to the
corresponding return point pi (in the proper caller method).

4.2 May-Wait Analysis
We start our description of the individual components of the

may-happen-before analysis with the may-wait analysis, which we
cover in full detail, as indicated above.

For the program point p in the given thread T and for each field
f that may be accessed after p, the analysis identifies the set of calls
of wait that may appear between p and the future access to f . More
specifically, each element of the set is an abstract target object (al-
location site) of a call of wait that appears on some control flow path
between p and the first access to f on that path. The set of possi-
ble abstract target objects for each call of wait is determined by the
pointer analysis. We distinguish between read accesses and write
accesses to fields. This analysis is further decomposed into two
independent partial analyses, which are computed separately, and
their results are combined by a post-processor at the state space ex-
ploration time. Each of the partial analyses involves a static phase
and usage of information from the dynamic program state.
Part 1: Calls to wait before the first field access. This part of the
may-wait analysis computes for the program point p the set of calls
of wait such that each element occurs on some control flow path
starting in p before the first future field access (to any field).

Figure 3 shows transfer functions for the static analysis phase.
When the analysis encounters a call of wait, it adds every possible
target abstract monitor object o into the set. Transfer functions for
field access statements produce the empty set. The transfer func-
tions for the call and return statements are defined according to
the principle described in Section 4.1. The merge operator is a set
union, as shown in the first line. All the sets of data flow facts for
program statements are initially empty.

Instruction Transfer function
after[`] =

⋃
`′∈succ(`) before[`′]

`: wait(o) before[`] = after[`] ∪ {o}
`: v = o.f before[`] = ∅
`: o.f = v before[`] = ∅
`: return before[`] = ∅
`: call M before[`] = before[M.entry] ∪ after[`]
`: other instr. before[`] = after[`]

Figure 3: Transfer functions for the static phase of the first part
of the may-wait analysis

Part 2: All possible first field accesses. The result of this sec-
ond part of the may-wait analysis for a program point p is the set
{fa1, . . . , fan} of all the field accesses that may occur as the first
after p. For each control flow path starting in p, the first field access
on the path is in the set.

The set of data flow facts contains tuples 〈o, f, l〉, where o is
the abstract target object, f is the field name, and l is the code
location (program point). Figure 4 shows the transfer functions.



Instruction Transfer function
after[`] =

⋃
`′∈succ(`) before[`′]

`: v = o.f before[`] = { 〈o, f, `〉 }
`: o.f = v before[`] = { 〈o, f, `〉 }
`: return before[`] = { #mark# }
`: call M before[`] = before[M.entry] ∪ after[`]
`: other instr. before[`] = after[`]

Figure 4: Transfer functions for the static phase of the second
part of the may-wait analysis

When the analysis encounters a field access statement, it creates a
set that contains only a single tuple capturing the respective field
access. The transfer function for a call statement is the same as in
the first part. If there is no field access between p and return from
the method containing p on some control flow path, the analysis
puts a special mark into the resulting set to indicate this.

The special marks indicating the absence of a field access must
be processed during the merge operation, when the full analysis
results are computed at the state space traversal time using knowl-
edge of the dynamic thread call stack. If the result of the static
phase for the point pi in the method mi on the dynamic call stack
contains the mark, indicating that there may not be a field access
between pi and return from mi on some control flow path, then the
analysis merges-in the first field access after the return point pi+1

in the method mi+1 that called mi.
Post-processing. Data collected in both parts must be combined
together and post-processed to get the set of calls of wait that may
occur between the point p and the first access to the field f on some
control flow path. We use the following approach.

A graph of field accesses is created from results of the second
part. For each control flow path starting in the point p, the graph
captures the sequence of field accesses on the path. Systematic
traversal of the graph yields all possible sequences of field accesses
between p and the first access to f (over all control flow paths),
where each sequence contains only accesses to fields other than f .
Then the set of calls of wait for each sequence is computed using
results of the first part. For each pair (fai, fai+1) of field accesses
in the sequence, the post-processor queries the results of the first
part for the program point corresponding to fai to get the set of
calls between fai and fai+1. Data for all the pairs make a set that
corresponds to the given sequence. At the end, sets for all the field
access sequences are merged using the union operator to get the
full set of calls of wait over all control flow paths starting in p.

4.3 Must-Lock/Join Analysis
This analysis identifies lock acquisition statements or thread join

statements, depending on the particular configuration, that appear
before the first future access to the field f on every control flow
path starting in the program point p.

We designed the must-lock/join analysis in a very similar way
to the may-wait analysis. There are two differences: (1) data flow
facts are target abstract objects of the lock acquisition statements,
respectively thread join statements, and (2) set intersection is used
as the merge operator in the first part and by the post-processor
when traversing the graph of field accesses.

4.4 Must-Wait Analysis
The must-wait analysis determines whether there is a call of wait

on every control flow path starting in p before the first access to the
field f . The result of the static phase for the point p is the set of
fields accessed only after a call of wait on every control flow path.

Field names are the data flow facts. The analysis uses set inter-
section as the merge operator. All the sets of data flow facts are
initially full. Whenever the analysis encounters a field access state-
ment, it removes the corresponding field name from the set. The
transfer function for a call of wait produces the full set.

4.5 May-Notify Analysis
This analysis collects the set of future calls of notify that may

occur after the point p on any control flow path before the end of T .
Target abstract objects for the calls of notify represent the data flow
facts in the static phase. The transfer function for a call of notify
simply adds the target object into the set. As in the other may-
analyses, the merge operator is a set union.

4.6 Future Allocations Analysis
The result of this analysis for a program point p in the thread T is

the set of allocation sites at which some dynamic heap objects may
be allocated after p on any control flow path. The sets of data flow
facts represent allocation sites in the code of the thread T . When
the analysis processes an object allocation (the new statement), it
adds the site (code location) into the set.

4.7 Lock Patterns Analysis
For each program point p, this analysis finds a set {f1, . . . , fn}

of fields where each fi must satisfy the following conditions:

• every access to fi on any control flow path starting in p is
through the local variable this;

• if the access happens outside of an instance constructor, then
it must be performed inside a synchronized block over this,
and boundaries of the synchronized block must be in the
same method as the field access.

The analysis computes the set of fields in two stages (A and B).
Stage A. This stage involves only static data flow analysis and does
not use any information from the dynamic program state. For each
method m in the program, the static analysis identifies a set of
points in m that are inside a region guarded by a lock over the
variable this associated with m. We achieve that using an intra-
procedural flow-sensitive forward static analysis. The data flow
fact is a boolean value saying whether a lock over this is currently
held or not. We designed transfer functions that toggle the boolean
value when the analysis hits a boundary of a locked region. The
merge operator for this analysis is a set intersection.
Stage B. This stage is designed according to the principle described
in Section 4.1, i.e. it involves flow-sensitive inter-procedural back-
ward static analysis and queries information from the dynamic pro-
gram state. It also uses data from the stage A, in addition to the
knowledge of dynamic thread call stacks, to compute the full result
for each program point p. We describe only the static phase here.

Data flow facts are field names. All the sets of data flow facts
are initially full (with all the bits set), and the transfer function for
a return statement also produces a full set. Set intersection is used
again as the merge operator. The transfer function for a field access
to v.f at the location ` is:

before[`] = after[`]\{ f } if (v 6= this)∨(¬locked(`)∧¬init(`))

It says that the field f is removed from the set when it is accessed
through some local variable other than this or when the analysis
encounters an unsynchronized access via this outside of an instance
constructor. The symbol locked(`) is a function expression that
captures results of the stage A — for the given location `, it says
whether ` is in a region guarded by a lock over this in the respective



method containing `. The symbol init(`) is a function expression
that says whether ` belongs to an instance constructor or not. In all
other cases, the transfer function is an identity.

The resulting set for the program point p contains also fields not
accessed after p, but these are never queried by JPF.

5. EVALUATION
We implemented static analyses using the WALA library [21].

JPF API is used to retrieve information about the dynamic pro-
gram state. We also configured JPF to use our non-standard inter-
preter of field access instructions, which creates thread schedul-
ing choices based on the analysis results. Our implementation,
experimental setup, and benchmark programs are publicly avail-
able at http://d3s.mff.cuni.cz/projects/formal_
methods/jpf-static/spin14.html.

Benchmarks. We evaluated the proposed approach on 9 multi-
threaded Java programs: CRE Demo, the Daisy file system, the El-
evator benchmark from the PJBench suite, Cache4j, and five bench-
mark programs from the CTC repository [2] (Alarm Clock, Linked
List, Producer-Consumer, RAX Extended, and Replicated Work-
ers) that involve non-trivial program logic and concurrency behav-
ior. A brief description of each program follows.

CRE Demo is a high-level prototype of a software system for
providing WiFi internet access at airports. The program consists
of modules for user authentication and management of network ad-
dresses, and it models operations like payment with a credit card.
A part of the application is a simulator that runs two threads repre-
senting clients.

Daisy is a simple file system developed as a challenge problem
for verification tools. We used it with a manually created test driver
that runs two concurrent threads that perform various operations on
files and directories.

The Elevator benchmark is a simulator of elevators running in a
building. Each elevator is modeled by one thread, and one addi-
tional thread represents people. We used a configuration with two
elevators and four operations performed by each elevator.

Cache4j is a simple cache framework for Java objects that can
be safely used in a multi-threaded environment. We configured the
framework to use a blocking cache that prevents concurrent mod-
ification of the internal data structures and the LRU eviction algo-
rithm. A part of the application is a test driver that runs two con-
current threads, which perform several operations with the cache
(storing and retrieval of objects).

All five benchmark programs from the CTC repository involve
multiple threads, which use synchronization operations (locking,
calls of wait and notify) quite heavily.

Table 1 shows basic quantitative characteristics of all the bench-
mark programs — the total number of source code lines (Java LoC)
and the maximal number of concurrently running threads.

Experiments. The purpose of our experiments was to determine
how many redundant thread scheduling choices can be eliminated
using the may-happen-before analysis, and how much it improves
the running time of JPF. We performed experimental comparison
of the following three configurations:

1. original JPF without any hybrid analysis,

2. JPF combined only with the field access analysis, and

3. JPF combined with the may-happen-before analysis and the
field access analysis.

In the experiments, we use the fully context-sensitive field access
analysis, which is the most precise variant proposed in [17]. JPF

Table 1: Benchmark programs
Benchmark Java LoC Threads

CRE Demo 1,300 2
Daisy 800 2
Elevator 300 3
Cache4j 550 2
Alarm Clock 200 3
Linked List 180 2
Producer-Consumer 130 2
RAX Extended 150 3
Replicated Workers 400 2

traverses the whole state space in the case of every benchmark pro-
gram, as none of the programs contain any error that JPF can detect.

Table 2 provides the results of our experiments. We report the
number of thread scheduling choices created by JPF during the
state space traversal, the running time of the static analysis, and the
total running time of JPF with the proposed hybrid analyses. The
number of thread scheduling choices is equivalent to the number of
program states that are explicitly saved by JPF for the purpose of
backtracking and state matching.

The results show that usage of the may-happen-before analy-
sis allows JPF to avoid many additional redundant thread schedul-
ing choices and thread interleavings during the state space traver-
sal. More specifically, the number of thread scheduling choices
has been reduced for the following benchmarks: Daisy, Cache4j,
Alarm Clock, Producer-Consumer, RAX Extended, and Replicated
Workers. The biggest improvement has been achieved for Cache4j,
where usage of the may-happen-before analysis reduces the num-
ber of thread scheduling choices by a factor of 8.57 compared with
the standalone field access analysis, for the Producer-Consumer
benchmark (factor of 4.07), and for Replicated Workers (2.39).

On the other hand, the may-happen-before analysis does not yield
any improvement over the field access analysis for the remaining
benchmarks. In the case of CRE Demo, the field access analysis
itself eliminates all the redundant thread scheduling choices before
field access statements. The Elevator benchmark contains synchro-
nized accesses to array elements, but our analysis does not support
accesses to array elements yet and therefore cannot eliminate any
redundant thread scheduling choices in that case. Linked List is
a program where the usage of synchronization does not match the
happens-before patterns defined in Section 3.

Running times show that the cost of the may-happen-before anal-
ysis is significantly greater than the cost of the field access analy-
sis. This is evident on the results for those benchmark programs,
in which case the may-happen-before analysis does not eliminate
any additional thread scheduling choices over the field access anal-
ysis, such as CRE Demo and Elevator. However, for some other
benchmarks, the speedup of JPF achieved due to the elimination
of many additional redundant thread scheduling choices compen-
sates for the increased cost of computing the hybrid analysis. The
results for Daisy, Cache4j, and Replicated Workers show that the
may-happen-before analysis is practically useful for more complex
benchmark programs with large state spaces, as in that case it can
eliminate a sufficiently high number of redundant thread schedul-
ing choices to warrant its cost.

Precision of the may-happen-before analysis and the field access
analysis depends very much on the underlying static pointer anal-
ysis. If two dynamic heap objects o1 and o2 have the same allo-
cation site then the pointer analysis cannot distinguish them. JPF
will make an unnecessary thread scheduling choice when, for ex-



Table 2: Experimental results
original JPF JPF + field access analysis JPF + may-happen-before analysis

benchmark thread running thread running time thread running time
choices time choices static total choices static total

CRE Demo 47,114 70 s 3,736 4 s 13 s 3,736 9 s 20 s
Daisy 28,120,251 18305 s 5,438,591 3 s 5192 s 4,907,351 25 s 4965 s
Elevator 10,116,121 6929 s 2,707,528 3 s 2190 s 2,707,528 52 s 2601 s
Cache4j 9,443,577 5003 s 9,417,206 3 s 6041 s 1,099,347 36 s 1067 s
Alarm Clock 413,996 298 s 145,594 2 s 108 s 114,472 10 s 101 s
Linked List 2,893 2 s 213 2 s 3 s 213 5 s 6 s
Producer-Consumer 6,095 3 s 1,499 2 s 3 s 368 6 s 7 s
RAX Extended 19,847 12 s 5,974 2 s 6 s 3,810 5 s 10 s
Replicated Workers 8,311,425 5100 s 1,202,710 3 s 777 s 503,039 17 s 522 s

ample, one thread calls wait on o1 and another thread may call no-
tify on o2. Additional unnecessary thread scheduling choices could
be soundly eliminated for most of the benchmark programs with a
more precise pointer analysis (e.g., flow-sensitive). We found that
by manual inspection of the analysis results and thread scheduling
choices made in JPF during the state space traversal.

6. RELATED WORK
There exist several categories of related approaches: (1) using

dynamic analysis to compute the happens-before order for a par-
ticular execution path, (2) static analyses that detect conflicting ac-
cesses to heap objects, (3) static analysis-based techniques to elim-
inate redundant thread interleavings, (4) static data-flow analyses
that operate on data structures that capture behavior of multiple
threads, (5) static may-happen-in-parallel analyses, and (6) various
combinations of static and dynamic analyses. We are not aware
of any method to computing the happens-before order that uses
only static analysis, and also not aware of any technique combining
static analysis with information from the dynamic program state
like we do. In the rest of this section, we describe selected ap-
proaches from each category and compare them with our approach
proposed in this paper.

Category 1. Kahlon and Wang [12] recently proposed a unified
happens-before model for a single execution trace and a correct-
ness property. The model captures all possible interleavings of
events from the given execution trace that are feasible with respect
to happens-before constraints imposed by synchronization primi-
tives. In particular, the model preserves the ordering between calls
of wait and notify, and the ordering between the lock release state-
ment followed by the acquisition statement on the same lock. The
execution trace is acquired using dynamic analysis of the given pro-
gram, and then the happens-before model is inferred using an iter-
ative algorithm. A limitation of this approach is that the model
is sound and complete only when data values do not influence the
control flow of program threads and their interaction.

The happens-before ordering is computed and used also by dy-
namic approaches to partial order reduction. In the approach pro-
posed by Flanagan and Godefroid [7], the ordering is created dy-
namically for the set of all accesses to shared objects that occur
on a given execution path. A heap object is marked as shared
only when it is truly accessed by multiple threads on the execu-
tion path. Two field accesses executed by different threads are in
the happens-before relation if they access the same dynamic heap
object. Based on the happens-before ordering, the dynamic POR
algorithm decides whether to make a thread scheduling choice at
a field access or not. An advantage of the dynamic POR with the

happens-before ordering is that it can precisely distinguish individ-
ual (dynamic) heap objects, and therefore it avoids creating some
unnecessary thread scheduling choices that JPF would make. On
the other hand, the approach described in [7] does not take into
account whether a given object is reachable from multiple threads
at the time of a particular access. For example, it makes a thread
scheduling choice at a write access to some field in the object’s
constructor before the object escapes to the heap and becomes vis-
ible to multiple threads. Another limitation of this approach is that
it does not use state matching, and thus it would need much more
time than JPF to explore all distinct thread interleavings for most
benchmark programs.

Specialized dynamic detectors of race conditions also construct
the happens-before relation between events on a given execution
trace (see, e.g., [5]). It is used to decide whether two memory ac-
cesses form a possible data race or not.

Category 2. The method proposed by von Praun and Gross [18]
uses static analysis to detect shared heap objects and conflicts be-
tween field accesses on the shared objects. For each field access
statement, the analysis finds the set of lock objects held by a thread
performing the field access. Two field accesses to a heap object by
different threads are considered as conflicting if the threads do not
hold a common lock.

Category 3. The verification framework proposed by Kahlon et
al. [11] uses static analysis together with abstract interpretation
to eliminate redundant thread interleavings. As the first step, the
framework creates a transaction graph for a given program using a
simple approach to partial order reduction. The graph captures the
control-flow of all threads, possible interaction between threads,
and constraints imposed by synchronization primitives. Nodes of
the graph represent program statements at which there must be a
thread scheduling choice, and edges represent sequences of instruc-
tions that can be executed atomically. Static pointer analysis iden-
tifies shared heap objects through which threads may interact. An
iterative algorithm based on static analysis is then used to remove
nodes that represent statements that are provably not conflicting
with other threads. Some thread T is possibly conflicting with the
statement st in a given program state, if T may access the same
object as st in the future and it will not block in the meantime.
This approach supports locking operations and also signals (calls
of wait and notify), but it uses only static analysis. It does not con-
sider information from the dynamic program state, and therefore
our approach proposed in this paper is more precise.

Category 4. Farzan and Kincaid [4] proposed a compositional
static data-flow analysis for programs with nested locking. The
analysis computes pairwise reachability of code locations from dif-



ferent threads, i.e. it uses a data structure that represents combined
behavior of two threads.

Another technique in this category was proposed by Sinha and
Wang [19]. It is a staged static analysis that operates also on a
concurrent CFG that captures interactions of all program threads
(field accesses and thread synchronization). The limiting factor is
the size and complexity of the concurrent CFG for large programs.

In our approach, we perform static analysis of individual pro-
gram threads, and thus we do not have to cope with the size of
data structures representing interactions of multiple threads. The
happens-before ordering between statements in different threads is
computed on demand when JPF needs the information to decide
about thread scheduling choices.
Category 5. Naumovich et al. [16] designed and evaluated a static
data-flow analysis that computes the may-happen-in-parallel infor-
mation for program statements in different threads. Such analy-
ses provide similar information as our may-happen-before analy-
sis. However, they cannot be used as a direct replacement, because
the happens-before ordering applies also to statements that actu-
ally cannot happen in parallel during the program execution due to
synchronization between threads.
Category 6. Some tools for detecting races combine static analysis
together with dynamic analysis [1, 6]. The basic approach consists
of three steps: (1) use static analysis to identify memory accesses
that must be checked for races, (2) instrument selected memory
accesses in the given program, and (3) run the dynamic analysis that
monitors all the instrumented accesses. A happens-before ordering
between memory accesses and thread synchronization statements
is typically constructed during the dynamic analysis step, and later
used to detect the actual races.

7. CONCLUSION
The main contribution of this paper is the hybrid may-happen-

before analysis, whose results are used by JPF to avoid creating
unnecessary thread scheduling choices at field accesses. We found
that usage of the may-happen-before analysis together with the field
access analysis in JPF improves performance of the state space
traversal over the previous work for several benchmark programs.
On the other hand, there exist also multi-threaded programs for
which the may-happen-before analysis does not yield any improve-
ment over the field access analysis (when used in JPF).

In the near future, we would like to optimize our prototype im-
plementation of the may-happen-before analysis to get faster exe-
cution times and reduce its memory consumption. We will investi-
gate how much the analysis precision could be improved with usage
of a flow-sensitive pointer analysis and more information from the
dynamic program state (including execution history). Our long-
term plans include (1) design and evaluation of an analysis that
would identify globally-relevant accesses to array elements more
precisely than the current JPF, and (2) extending the may-happen-
before analysis with support for array elements. We will also eval-
uate scalability of the proposed approach on more complex bench-
marks with higher numbers of concurrent threads.

Another possible line of future work is to explore applications of
the hybrid analysis beyond JPF. This might include, for example,
efficient detectors of data races and other concurrency errors.
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