
Efficient Detection of Errors in Java Components
Using Random Environment and Restarts

Pavel Parizek and Tomas Kalibera

Distributed Systems Research Group, Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University in Prague

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{parizek,kalibera}@dsrg.mff.cuni.cz

Abstract. Software model checkers are being used mostly to discover
specific types of errors in the code, since exhaustive verification of com-
plex programs is not possible due to state explosion. Moreover, typical
model checkers cannot be directly applied to isolated components such
as libraries or individual classes. A common solution is to create an ab-
stract environment for a component to be checked. When no constraints
on component’s usage are defined by its developers, a natural choice is
to use a universal environment that performs all possible sequences of
calls of component’s methods in several concurrently-running threads.
However, model checking of components with a universal environment is
prone to state explosion.
In this paper we present a method that allows to discover at least some
concurrency errors in component’s code in reasonable time. The key ideas
of our method are (i) use of an abstract environment that performs a
random sequence of method calls in each thread, and (ii) restarts of
the error detection process according to a specific strategy. We have
implemented the method in the context of Java components and the
Java PathFinder model checker. We have performed experiments on non-
trivial Java components to show that our approach is viable.

1 Introduction

The current practice in the application of model checking to real-world programs
is that model checkers are used mostly as tools for detection of specific types of
errors in the code (e.g. concurrency errors like deadlocks and race conditions),
since exhaustive verification of complex programs is not possible due to state
explosion. In this paper we focus on the detection of concurrency errors in Java
components using the Java PathFinder model checker (JPF) [17]. We use the
term component to denote an open Java program that has a well-defined interface
— this includes, for example, Java libraries and individual Java classes.

One of the problems in the application of JPF to Java components is that
it accepts only a runnable Java program with the main method on input, but
a Java component typically does not contain main. Behavior of a Java compo-
nent depends on the context (environment) in which it is used, e.g. on the order

2 P. Parizek and T. Kalibera

that component’s methods are called by its actual environment. A common so-
lution is to create an abstract environment (a model of an actual environment)
for the component subject to checking and apply a model checker (JPF) to a
runnable Java program composed of the component and its abstract environ-
ment. An abstract environment for a Java component typically has the form
of a fragment of a Java program that contains the main method. The abstract
environment performs various sequences of calls of component’s methods with
various combinations of method parameters’ values — the goal is to cover as
many control-flow paths in the component’s code as possible, and, when the
focus is on the detection of errors, to trigger as many errors in the component’s
code as possible.

When no constraints on the order of calls of component’s methods are de-
fined by the developers and no knowledge about the target environment (where
the component will be deployed) is available, then a natural choice is to use an
abstract environment that runs several threads concurrently and performs all
possible sequences of calls of component’s methods with many different input
values in each thread — a universal environment. Such an environment exercises
the component very thoroughly and therefore triggers a high percentage of er-
rors in the component’s implementation (if there are some). Nevertheless, model
checking of a non-trivial component with a universal environment is typically
infeasible due to state explosion, even if only a few threads (2-3) are run in par-
allel by the environment. JPF typically runs out of available memory quite soon
(in the order of minutes).

We propose to address this problem by model checking a component with an
abstract environment that (i) performs a randomly selected sequence of method
calls in each thread and (ii) runs exactly two threads in parallel — we use the
term random-sequence environment to denote such an abstract environment.
We restrict the number of threads to two for the reason of feasibility of model
checking, and also because a recent study [10] showed that a great majority of
concurrency errors in real-world programs involve only two threads.

The motivation behind this approach is to discover at least some errors in
the component in reasonable time, when model checking with a universal envi-
ronment is not feasible. We show that although the use of a random-sequence
environment helps to reduce the time and memory needed to find an error with
JPF in most cases, still JPF can run for a very long time for some components
and random-sequence environments due to state explosion. The cause is that
time and memory requirements of checking with JPF depend very much on the
specific random-sequence environment that is used. Moreover, a result of the
random choice of a sequence environment determines whether an error in the
component is found by JPF, since some random-sequence environments would
not trigger any errors in the component. The whole state space of the program
composed of the component and a particular random-sequence environment is
traversed by JPF in the case of an environment that does not trigger any error,
and therefore the running time of JPF can be very long.

Efficient Detection of Errors in Components 3

In order to avoid very long running times of JPF and to ensure that errors
are found (assuming there are some in the component), we also propose to apply
restarts of the error detection process. The key idea is that if the running time of
JPF for a particular random-sequence environment exceeds a predefined limit,
then (1) JPF is stopped, (2) a new random-sequence environment is generated,
and (3) JPF is started again on the Java program composed of the component
and the new random-sequence environment. This is repeated until JPF finds an
error in the component with some random-sequence environment. Our approach
is greatly inspired by existing work on restart strategies for various long-running
software processes in general [13] and for search tree traversal in SAT solvers
specifically [5, 8] — the goal of restarts is to improve performance (e.g., to de-
crease the response time). We show that the application of restarts to the error
detection process significantly reduces the time and memory needed to find an
error in a component, and, in particular, helps to avoid the long running times
of JPF. Using our approach, errors in components’ code are discovered by JPF
in a reasonable time.

The rest of the paper is structured as follows. In Section 2 we describe Java
components used for experiments and in Section 3 we provide information rel-
evant to all experiments that we performed. We provide technical details of
checking with universal environment and present the results of experiments in
Section 4. Then we present the technical details and experimental results for
checking with random-sequence environments and for application of restarts, re-
spectively, in Sections 5 and 6. We evaluate our approach in Section 7, and then
we discuss related work (Section 8) and conclude in Section 9.

2 Example Components

We have used three Java components of different complexity for the purpose of
experiments: AccountDatabase, ConcurrentHashMap, and GenericObjectPool.
All the three components contained known concurrency errors — either already
present in the code or manually injected by us before the experiments. A short
description of each component follows.

The ConcurrentHashMap component (2000 loc in Java) is a part of the
java.util.concurrent package from the standard Java class library, as im-
plemented in GNU Classpath (version 0.98) [20]. The component is an imple-
mentation of a map data structure that allows concurrent accesses and updates.
We have manually injected a race condition into the Java code of the component.

The GenericObjectPool component (500 loc in Java) is a part of the Apache
Commons Pool library (version 1.4) [19]. It represents a robust and configurable
pool for arbitrary Java objects. Again, we have manually injected a race condi-
tion into the component’s Java code.

The AccountDatabase component (170 loc in Java) is a part of the demo
component application developed in the CRE project [1]. It works as a sim-
ple in-memory database for user accounts. The code of the component already
contained a race condition.

4 P. Parizek and T. Kalibera

3 General Notes on Experiments

Here we provide information that applies to all the experiments whose results
are presented in Sections 4-7.

For each experiment, we provide total running time of the error detection
process in seconds and, if it is relevant for the experiment, also the number of
runs of the process and memory needed by the process in MBs. We have repeated
each experiment several times to average out the effects of randomness. The
values of numerical variables in the tables (except the number of runs) have the
form M +- CI, where M stands for the mean of measured data and CI is the
half-width of the 90% confidence interval.

All the experiments were performed on the following configuration (HW &
SW): PC with 2xQuadCore CPU (Intel Xeon) at 2.3 GHz and 8 GB RAM,
Gentoo Linux, Sun Java SE 6 Hotspot 64-bit Server VM. We have used the
current version of Java PathFinder as of June 2009 and we limited the available
memory for verification to 6 GB.

4 Checking Components with Universal Environment

In our approach, we have used a restricted form of a universal environment
where only two threads run concurrently. Each thread performs a potentially
infinite loop (termination of the loop depends on non-deterministic choice) and
calls a non-deterministically selected method of the component in each iteration.
The Java code of each thread corresponds to the template in Figure 1a. Since
JPF explores the options of a non-deterministic choice in a fixed order from
the lowest to the highest (from 1 to N in case of code on Figure 1a, where
N is the number of component’s methods), we eliminate the dependence of
results of checking with JPF on a specific order of component’s methods by
randomization — the method to be called for a particular value of the non-
deterministic choice (via Verify.getInt(X)) is determined randomly during
generation of the environment’s code.

Input data for the components (e.g., method parameters) are specified in a
Java class that works as a container for the data values [15]. The environment
then retrieves the parameter values from the Java class when it calls methods of
the component. A user has to create the specification of data values manually
such that for each method m of the component, all paths in the control-flow
graph (CFG) of m are covered (explored by JPF) — for each path p in the CFG
of m, at least one combination of values of m’s parameters should be specified
that triggers p when m is called by the environment.

The results of experiments for checking components with a universal envi-
ronment of the restricted form, where only two threads run concurrently, are
listed in Table 1. JPF run out of available memory (6 GB) in all experiments
and therefore it found no errors — this clearly illustrates that JPF checking even

Efficient Detection of Errors in Components 5

while (Verify.getBoolean()) int len = Random.getInt(2*N);

{ for (int i = 1; i <= len; i++) {

int idx = Verify.getInt(X); int idx = Random.getInt(N);

if (idx == 1) comp.method1(..); if (idx == 1) comp.method1(..);

if (idx == 2) comp.method2(..); ...

... if (idx == N) comp.methodN(..);

if (idx == N) comp.methodN(..); }

}

a) b)

Fig. 1. Fragment of Java code of a single thread (a) in a universal environment and
(b) in a random-sequence environment

with the restricted universal environment is not feasible for non-trivial Java com-
ponents. We present only the running times of JPF in the table to show how
fast it run out of memory.

Component JPF running time

AccountDatabase 921 ± 121 s

ConcurrentHashMap 1426 ± 377 s

GenericObjectPool 1034 ± 308 s
Table 1. Results for checking components with a universal environment

5 Random-Sequence Environments

Similarly to a universal environment, a random-sequence environment calls meth-
ods of a component in two concurrently-running threads and retrieves method
parameter values from the Java class provided by the user. The key difference
is that, in the case of a random-sequence environment, each thread performs a
randomly selected sequence of calls of the component’s methods. The length of
the sequence is a random number from the interval [1, 2×|M |], where M stands
for the set of component’s methods — we set the maximal length of the sequence
to 2×|M | to ensure that the sequence contains multiple calls of several methods
with a high probability. The Java code of each thread corresponds to the tem-
plate in Figure 1b, where N is the number of component’s methods. The need
for randomness in the selection of a sequence environment is motivated by the
absence of any knowledge about the component’s implementation and expected
usage — in particular, it is not known in advance which sequence environments
trigger an error and which do not, and therefore it is not possible to select only
such sequence environments that trigger errors.

6 P. Parizek and T. Kalibera

The results of experiments for checking components with random-sequence
environments are listed in Table 2. Since some random-sequence environments
do not trigger any errors, we distinguish between two groups of results based on
whether JPF found an error in the component’s code (value “yes” in the “Error
found” column), or traversed the whole state space and found no error (value
“no” in the “Error found” column). Note that JPF did not run out of available
memory in any experiment with random-sequence environments.

Component Error found Runs Time Memory

AccountDatabase
yes 23 1040 ± 802 s 334 ± 134 MB
no 17 12420 ± 8861 s 1784 ± 738 MB

ConcurrentHashMap
yes 37 173 ± 108 s 104 ± 19 MB
no 3 14 ± 10 s 70 ± 12 MB

GenericObjectPool
yes 22 1934 ± 2208 s 186 ± 78 MB
no 18 10230 ± 7979 s 1136 ± 789 MB

Table 2. Results for checking components with random-sequence environments

The experimental results show that running times of JPF vary to a great
degree independently of whether JPF found an error or not. Although the ex-
perimental results suggest that running times of JPF generally tend to be shorter
when JPF finds an error and much longer when JPF is applied to a component
in an environment that does not trigger any error (this is especially visible for
AccountDatabase and GenericObjectPool), the results show that JPF can run
very long even when it finds an error in the component. The Figures 2, 3 and
4 show graphs of the empirical cumulative distribution function for the exper-
imental results for each component. A point [t, p] in a graph means that the
running time of JPF (regardless of whether JPF finds an error or not) will be
shorter than t with the probability p. The time axis has a logarithmic scale in
each graph. The graphs indicate that if JPF is running for a long time and has
not found an error yet, then the chance that it will find an error (or terminate
with no error found) in reasonable time is significantly decreasing. Solving this
issue was our primary goal in the application of restarts to the error detection
process.

6 Restart Strategies

Based on [13], we define a restart strategy as a sequence (t1, t2, t3, . . .) of times
at which the error detection process is restarted — i.e. as a sequence of restart
times. The key idea is that if in the run n JPF either (a) does not finish in time
tn or (b) traverses the whole state space in a time shorter than tn and does not
find any error or (c) runs out of memory, then the whole error detection process
is restarted with time limit tn+1 for the JPF run, and so on. We say that a run
of the error detection process involves one or more runs of JPF (iterations of the

Efficient Detection of Errors in Components 7

AccountDb

Time − Log Scale [s]

R
el

at
iv

e
F

re
qu

en
cy

●
●

●
●
●
●

●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10 100 1000 10000 1e+05

Fig. 2. Graph of the empirical cumulative distribution function for results of checking
AccountDatabase with random-sequence environments

ConcurMap

Time − Log Scale [s]

R
el

at
iv

e
F

re
qu

en
cy

●

●

●
●

●

●

●

●
●

●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 10 100 1000

Fig. 3. Graph of the empirical cumulative distribution function for results of checking
ConcurrentHashMap with random-sequence environments

8 P. Parizek and T. Kalibera

ObjectPool

Time − Log Scale [s]

R
el

at
iv

e
F

re
qu

en
cy

●

●
●

●
●

●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 10 100 1000 10000 1e+05

Fig. 4. Graph of the empirical cumulative distribution function for results of checking
GenericObjectPool with random-sequence environments

run-stop-generate-restart loop) and terminates when a specific JPF run finds an
error. For all iterations except the last one, it holds that either JPF traverses the
whole state space before the restart time (and finds no error) or JPF runs out
of the time limit (restart time). Restart of the error detection process involves
three steps: (i) terminating the current run of JPF, (ii) generating a new random-
sequence environment, and (iii) starting a new run of JPF on the Java program
composed of the component and new environment.

The key challenge is to determine the best possible restart strategy. In this
paper, we focus on the use of a predefined application-independent strategy,
which is the typical approach of SAT solvers. Another possible approach would
be to compute the strategy on the basis of a metric of component’s code or state
space traversal process, where the metric can be static, i.e. measured before a
JPF run, or dynamic, i.e. measured on-the-fly during JPF checking — we discuss
this approach in more detail in Section 9.

We have identified three restart strategies, which are widely and successfully
used in state-of-the-art SAT solvers (e.g., [3, 4]) and also in search problems of
other kinds: fixed strategy, Luby strategy, and Walsh geometric strategy. We
performed experiments for all the three strategies to find which gives the best
results in the case of error detection with JPF.

Fixed strategy [5] is a constant sequence S = t, t, t, . . ., where t represents the
fixed restart time.

Efficient Detection of Errors in Components 9

Luby strategy [12] is a sequence S = k1u, k2u, k3u, . . ., where u is a restart
time unit and ki is computed using the following expression:

ki = 2n−1, if i = 2n − 1
ki = ki−2n−1+1 if 2n−1 ≤ i < 2n − 1

The first few elements of the sequence ki are 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8.
Walsh geometric strategy [18] is a sequence S = u, ru, r2u, r3u, . . ., where u

is a restart time unit and r > 1 is a ratio of the geometric sequence. In our case
we used r =

√
2.

The Luby strategy was proposed in [12] for speedup of randomized algorithms
of the Las Vegas type with unknown probability distribution of running time.
However, the theoretical results presented in [12] (e.g., the bound on the running
time with respect to optimal time) are not applicable in our case of model
checking components with random-sequence environments, since our algorithm
is not strictly of the Las Vegas type — in our case, an input of the algorithm
is different for each run, since different sequence environments are randomly
selected. Similarly, the model for restart strategies proposed in [13] cannot be
used in our case, since the probability distribution of JPF running times for
all random-sequence environments is not known in advance. Knowledge of the
probability distribution is one of the requirements of the model.

We present results of experiments for all combinations of the three restart
strategies — fixed, Luby and Walsh — and six different values of restart time
unit — 1 second, 3 seconds, 10 seconds, 30 seconds, 60 seconds, and 600 seconds.
We selected these values of restart time unit in order to cover a wide range of
situations, including corner cases such as too early restarts and too late restarts.
Restart time unit of 1 second is used only for the Luby and Walsh strategies,
since it is too small for the fixed strategy which does not extend the restart time
adaptively — initialization would form a significant part of JPF’s running time
in that case.

The results of experiments are listed in Table 3 for AccountDatabase, in
Table 4 for ConcurrentHashMap, and in Table 5 for GenericObjectPool. Values
in the “Time” column represent the total running time of the error detection
process, i.e. the time needed to detect an error. Total running time of a single
run of the error detection process equals to the sum of JPF running times in
individual iterations. Similarly, values in the “Memory” column represent the
memory needed by the error detection processes. Memory needed by a single
run of the error detection process equals to the maximal value over all iterations
in the run. Note that JPF did not run out of memory in any experiment for
restarts of the error detection process.

Experimental results show that extremely long running times of JPF can be
avoided by restarts of the error detection process. On average, the time needed
to detect an error is the lowest when the fixed strategy with a small restart time

10 P. Parizek and T. Kalibera

Strategy Unit time Time Memory

Fixed

3 s 197 ± 47 s 72 ± 1 MB
10 s 153 ± 44 s 108 ± 4 MB
30 s 152 ± 46 s 129 ± 11 MB
60 s 287 ± 81 s 169 ± 14 MB

600 s 1212 ± 488 s 430 ± 71 MB

Luby

1 s 215 ± 43 s 116 ± 8 MB
3 s 240 ± 62 s 130 ± 11 MB

10 s 158 ± 46 s 134 ± 14 MB
30 s 244 ± 77 s 158 ± 14 MB
60 s 323 ± 111 s 172 ± 20 MB

600 s 609 ± 172 s 385 ± 78 MB

Walsh

1 s 216 ± 111 s 133 ± 19 MB
3 s 663 ± 529 s 241 ± 90 MB

10 s 284 ± 85 s 174 ± 23 MB
30 s 270 ± 90 s 179 ± 27 MB
60 s 387 ± 135 s 211 ± 37 MB

600 s 1250 ± 545 s 486 ± 148 MB
Table 3. Experimental results for error detection with restarts for AccountDatabase

Strategy Unit time Time Memory

Fixed

3 s 19 ± 4 s 57 ± 1 MB
10 s 13 ± 3 s 69 ± 6 MB
30 s 29 ± 9 s 79 ± 7 MB
60 s 26 ± 8 s 78 ± 8 MB

600 s 136 ± 75 s 97 ± 15 MB

Luby

1 s 21 ± 4 s 57 ± 3 MB
3 s 15 ± 3 s 61 ± 3 MB

10 s 18 ± 5 s 71 ± 5 MB
30 s 18 ± 6 s 70 ± 7 MB
60 s 43 ± 12 s 89 ± 9 MB

600 s 73 ± 37 s 82 ± 10 MB

Walsh

1 s 18 ± 7 s 59 ± 4 MB
3 s 15 ± 4 s 64 ± 5 MB

10 s 24 ± 5 s 75 ± 5 MB
30 s 22 ± 7 s 72 ± 6 MB
60 s 33 ± 9 s 87 ± 9 MB

600 s 61 ± 36 s 83 ± 12 MB
Table 4. Experimental results for error detection with restarts for ConcurrentHashMap

Efficient Detection of Errors in Components 11

Strategy Unit time Time Memory

Fixed

3 s 28 ± 6 s 53 ± 1 MB
10 s 29 ± 7 s 77 ± 3 MB
30 s 79 ± 20 s 93 ± 6 MB
60 s 120 ± 29 s 127 ± 14 MB

600 s 549 ± 182 s 310 ± 66 MB

Luby

1 s 43 ± 9 s 64 ± 4 MB
3 s 33 ± 12 s 65 ± 5 MB

10 s 58 ± 16 s 83 ± 6 MB
30 s 82 ± 24 s 103 ± 12 MB
60 s 89 ± 37 s 117 ± 19 MB

600 s 594 ± 278 s 300 ± 63 MB

Walsh

1 s 50 ± 21 s 74 ± 9 MB
3 s 47 ± 12 s 80 ± 9 MB

10 s 104 ± 73 s 102 ± 24 MB
30 s 75 ± 26 s 105 ± 18 MB
60 s 413 ± 398 s 173 ± 39 MB

600 s 1197 ± 674 s 391 ± 100 MB
Table 5. Experimental results for error detection with restarts for GenericObjectPool

unit (1, 3, 10 or 30 seconds) is used. However, the results also show that use
of too small a restart time unit (1 or 3 seconds) may actually increase the time
needed to detect an error. The error detection process is restarted too early for
JPF to find an error in such a case.

7 Evaluation

Results of all experiments that we performed show that the combination of
checking with random-sequence environment and restarts of the error detection
process has three main benefits: (1) errors are discovered in very short time in
most cases and in reasonable time in the other cases, (2) extremely long running
times of JPF are avoided, and (3) JPF does not run out of memory. Compared
to checking with random-sequence environments only, the use of restarts always
leads to discovery of an error (assuming there are some errors in the component)
and an error is found in shorter time in most cases. Some random-sequence
environments do not trigger any errors and thus none can be discovered by JPF,
when such an environment is used. Nevertheless, when the checked component
does not contain any errors, then the error detection process would be restarted
again and again — it is up to the user to terminate the process after a reasonable
time (when no error is found after several restarts). Compared to checking with
a universal environment, an error is on average found in shorter time using
random-sequence environments and restarts than it takes JPF to run out of
memory when a universal environment is used.

As for the choice of a restart strategy and restart time unit, best results are
achieved using the fixed strategy and short restart times. However, it is not true

12 P. Parizek and T. Kalibera

that the shortest restart time always provides the best result. Optimal restart
time most probably depends on whether concurrency errors in the component
are “shallow” or “deep”. Shallow errors exhibit themselves in many thread in-
terleavings (on many state space paths) and therefore can be found “early in the
search” by JPF, while deep errors occur only in rare corner cases (for specific
thread interleavings) and thus it takes JPF more time to find them. Use of short
restart times would give better results in discovery of shallow errors than for
deep errors.

Table 6 summarizes the results of experiments with different approaches de-
scribed in this paper and also presents the results of application of a technique
described in [14] on the same components. The technique described in [14] is
our previous work in automated construction of abstract environment for Java
components with the goal of efficient detection of concurrency errors. It is based
on a combination of static analysis and a software metric — static analysis is
used to identify method sets whose parallel execution may trigger a concurrency
error, and the metric is used to order the sets by the likeliness that an error will
really occur. Table 6 provides the following information for each component:

– the time it takes JPF to run out of memory when checking the component
with a universal environment (the “Univ env” column),

– the time needed to find a concurrency error in the component when only a
random-sequence environment is used (the “Random env” column),

– the time to find an error using a combination of checking with a random-
sequence environment and restarts of the error detection process (in the
“Restarts” column) — the lowest time over all restart strategies and restart
time units is presented, and

– the time to detect an error using the technique described in [14] (the “Prev
work” column) — the lowest time over all configurations of the metric is
presented in the table.

Component Univ env Random env Restarts Prev work

AccountDatabase 921 ± 121 s 1040 ± 802 s 152 ± 46 s 114 s

ConcurrentHashMap 1426 ± 377 s 173 ± 108 s 13 ± 3 s 64 s

GenericObjectPool 1034 ± 308 s 1934 ± 2208 s 28 ± 6 s 1590 s
Table 6. Summary and results for a technique proposed in previous work

Results in Table 6 show that the method proposed in this paper is an im-
provement over our previous work [14]. The proposed method gives significantly
better results for the ConcurrentHashMap and GenericObjectPool components,
while both methods give comparable results in case of the AccountDatabase
component.

Efficient Detection of Errors in Components 13

8 Related Work

Significant amount of work has been done in various optimizations aiming to-
wards more efficient search for errors in program code via model checking. The
existing approaches include heuristics for state space traversal, context-bounded
model checking, and a combination of model checking with runtime analysis.

Heuristics for state space traversal are typically used to address state explo-
sion with the goal of detection of specific errors in reasonable time and memory
— for discovery of concurrency errors, a heuristic that prefers aggressive thread
scheduling [6] can be used.

The idea behind context-bounded model checking [2, 16] is to check only those
executions of a given program that involve bounded number of thread context
switches. The bound can apply to all threads together [16] or to each thread
separately [2].

An example of a technique based on the combination of runtime analysis with
model checking is [7]. The key idea of [7] is that runtime analysis is performed
first with the goal of detecting potential concurrency errors in a program, and
then a model checker (JPF) is run on the same program, using counterexamples
provided by the runtime analysis as a guide during state space traversal.

A common characteristic of the approaches described above is that, like the
method proposed in this paper, they sacrifice completeness of checking for the
purpose of efficient detection of errors. Nevertheless, the existing approaches are
complementary to the proposed method — they could be applied during model
checking of a runnable program, i.e. during a single run of the error detection
process, to reduce the time needed to find an error even further.

9 Summary and Future Work

We have proposed a method for efficient detection of concurrency errors in
Java components with Java PathFinder, which is based on random-sequence
environments and restarts of the error detection process according to a pre-
defined application-independent strategy. Results of experiments that we per-
formed show that the application of the proposed method significantly reduces
the time and memory needed to find errors in components’ code. In particular,
JPF does not run out of memory as in the case of checking with a universal
environment and extremely long running times of JPF, which occur in checking
with random-sequence environments only, are also avoided by using restarts.

Although the proposed method is promising, there is a large space for im-
provements and optimizations that may further reduce time needed to find errors
in the code. Moreover, we focused only on sequential and static restart strategies
in this paper, but it is possible to use also other kinds of restart strategies. We
will investigate some of the following approaches in the future:

– Use of dynamic restart strategies, e.g. such as proposed in [9], in which case
the restart time could be determined dynamically during a JPF run using a
heuristic. The heuristic could be based on the time JPF is already running

14 P. Parizek and T. Kalibera

or on the (estimated) size of the already traversed part of the state space
(on the number of explored branches).

– Use of parallel restart strategies, e.g. based on the ideas and results published
in [11]. The key idea would be to increase the chance that an error is found
in shorter time by running several instances of the error detection process in
parallel.

– Use of metrics of component’s code to determine statically, i.e. before the
start of the error detection process, the restart strategy and restart time.

Variants of the proposed method could be applied also to detection of other kinds
of errors. For example, errors like null pointer exceptions or assertion violations
often occur only for specific inputs (method parameters) — the idea would be to
create an abstract environment that calls component’s methods with randomly
selected parameter values. We also plan to evaluate the proposed method on
multiple larger case studies.

Acknowledgments. This work was partially supported by the Grant Agency
of the Czech Republic project 201/08/0266 and by the Ministry of Education of
the Czech Republic (grant MSM0021620838). We also thank Nicholas Kidd for
his valuable comments and suggestions.

References

1. J. Adamek, T. Bures, P. Jezek, J. Kofron, V. Mencl, P. Parizek, and F. Plasil.
Component Reliability Extensions for Fractal Component Model, 2006, http://
kraken.cs.cas.cz/ft/public/public_index.phtml.

2. M.F. Atig, A. Bouajjani, and S. Qadeer. Context-Bounded Analysis for Concurrent
Programs with Dynamic Creation of Threads, In Proceedings of the 15th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2009), LNCS, vol. 5505, 2009.

3. A. Biere, PicoSAT Essentials, In Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), vol. 4, 2008.

4. N. Een and N. Sorensson. An Extensible SAT-solver, Proceedings of 6th Interna-
tional Conference On Theory and Applications of Satisfiability Testing, LNCS, vol.
2919, 2003.

5. C.P. Gomes, B. Selman, and H.A. Kautz. Boosting Combinatorial Search Through
Randomization, Proceedings of AAAI’98.

6. A. Groce and W. Visser. Heuristics for Model Checking Java Programs, Interna-
tional Journal on Software Tools for Technology Transfer, vol. 6, no. 4, 2004.

7. K. Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs,
In Proceedings of the 7th SPIN Workshop on Model Checking of Software, LNCS,
vol. 1885, 2000.

8. J. Huang. The Effect of Restarts on the Efficiency of Clause Learning, Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI), 2007.

9. H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic Restart
Policies, In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI’02), AAAI Press, 2002.

Efficient Detection of Errors in Components 15

10. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A Comprehensive
Study on Real World Concurrency Bug Characteristics, In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2008), ACM, 2008.

11. M. Luby and W. Ertel. Optimal Parallelization of Las Vegas Algorithms, In Pro-
ceedings of the 11th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’94), LNCS, vol. 775, 1994.

12. M. Luby, A. Sinclair, and D. Zuckerman. Optimal Speedup of Las Vegas Algo-
rithms, Information Processing Letters, 47(4), 1993.

13. A.P.A. van Moorsel and K. Wolter. Analysis of Restart Mechanisms in Software
Systems, IEEE Transactions on Software Engineering, vol. 32, no. 8, 2006.

14. P. Parizek, J. Adamek, and T. Kalibera. Automated Construction of Reasonable
Environment for Java Components, To appear in Proceedings of International
Workshop on Formal Foundations of Embedded Software and Component-Based
Software Architectures (FESCA 2009), ENTCS, 2009.

15. P. Parizek and F. Plasil. Specification and Generation of Environment for Model
Checking of Software Components, In Proceedings of International Workshop on
Formal Foundations of Embedded Software and Component-Based Software Ar-
chitectures (FESCA 2006), ENTCS, 176(2), 2007.

16. S. Qadeer and J. Rehof. Context-Bounded Model Checking of Concurrent Software,
In Proceedings of the 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2005), LNCS, vol. 3440, 2005.

17. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs,
Automated Software Engineering Journal, vol. 10, no. 2, 2003.

18. T. Walsh. Search in a Small World, In Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI 99), 1999.

19. Apache Commons Pool, http://commons.apache.org/pool/.
20. GNU Classpath, http://www.gnu.org/software/classpath/.

