
On Teaching Formal Methods:
Behavior Models and Code Analysis

Jan Kofroň1,2, Pavel Paŕızek1, and Ondřej Šerý1

1 Charles University in Prague, Department of Software Engineering
Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic

{kofron,parizek,sery}@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

2 Academy of Sciences of the Czech Republic, Institute of Computer Science
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

kofron@cs.cas.cz

http://www.cs.cas.cz

Abstract. Teaching formal methods is a challenging task for several rea-
sons. First, both the state-of-the-art knowledge and the tools are rapidly
evolving. Second, there are no comprehensive textbooks covering certain
topics, especially code analysis. In this paper, we share our experience
with teaching two courses. The first is focused on classics of modeling
and verification of software and hardware systems (LTS, LTL, equiva-
lences, etc.), while the other one involves topics related to automated
analysis of program code. We hope that other lecturers can benefit from
our experience to improve their courses.

1 Introduction

For a developer of a system with high demand on reliability (e.g., safety-critical
systems and device drivers), at least a basic insight into formal methods is es-
sential. In particular, familiarity with model checking and code verification tech-
niques and tools is an important asset. First, it is useful when actually dealing
with the tools, which often communicate in specialized formalisms (e.g., various
temporal logics). Second, it helps developers to decide whether they can benefit
from a concrete technique or tool and also to choose among different imple-
mentations to suit their specific needs. The latter point is especially important
with the increasing number of available code analysis tools that are ready for
industrial use, at least in specialized domains (e.g., Slam [8]). The underlying
techniques have different strengths and limitations, which is very hard to assess
without a deeper insight.

Well targeted formal methods education of the future software developers is
very important, but also very intricate. In order to fully understand the top-
ics, quite deep mathematical background (e.g., in logics, algebra, and automata
theory) is required. This is in contrast to the current trend of a slow decrease
in the amount of mathematical theory taught in favor of software development



practice. As a result, building a formal methods course based on the limited
foundations is very challenging.

Another obstacle is lack of literature. When it comes to general modeling of
systems and model checking, Model checking by Clarke et al. [24] forms an excel-
lent basis for a course. Unfortunately, the situation is not so good in the case of
code analysis (as applied in tools like Java PathFinder [4] and Blast [2]). This
topic is relatively new and still rapidly evolving. To the best of our knowledge,
there is no comprehensive publication summarizing and comparing the different
techniques so far. This means that a course has to be based mainly on various
journal and conference publications and technical reports. These publications are
rather brief, as the page range is typically limited. They also often differ in the
level of abstraction and the underlying formalization and notation. Except for
the additional preparation overhead, it is not an issue for the lecturers; however,
such a form of study materials constitutes a major obstacle for the students.

In this paper, we share our experience with teaching formal methods in the
scope of a new master study plan, Dependable Systems (Sect. 2). Among other
courses, the plan contains two one-semester courses on formal methods that
together cover modeling systems, model checking, code verification, deductive
methods, and static analysis. The common goal of the courses (and the study
plan in general) is balancing the theoretical and practical skills of the students. In
Sections 3 and 4, the topics covered by the two courses are summarized in more
detail along with the main references to study materials and the list of tools the
students get acquainted with. We believe that other lecturers preparing similar
courses will benefit from our experience. Sect. 5 contains observations and points
to be discussed by the formal methods teaching community.

2 Our Vision and Realization

In 2008, a new study plan for master studies, Dependable Systems, emerged in
our department as a reaction to both increasing industrial demand for highly
specialized software experts and differentiation in their expected knowledge. The
motivation of the new study plan is to provide industry with graduates famil-
iar with techniques necessary to develop dependable systems (e.g., embedded,
safety-critical, and real-time systems).

On one hand, this includes rather low-level knowledge of system architec-
tures, operating systems, middleware, real-time systems, embedded systems, and
parallel computing. On the other hand, the graduates get insight into software
architectures, component systems, and services. Of course, courses on formal
methods are a natural part of this study plan as well.

In general, the Dependable Systems study plan provides students with both
the theoretical foundations and the practical hands-on experience with differ-
ent tools and development techniques for more exotic platforms (e.g., embedded
devices) and development under specific conditions (e.g., real-time, limited mem-
ory).



Considering formal methods, there are two specialized lectures: Behavior
Models and Verification (Sect. 3) and Program Analysis and Code Verification
(Sect. 4). The former covers modeling and model checking of software and hard-
ware systems. The latter specializes on techniques for direct code analysis. Orig-
inally, there was only the former course covering also few code model checking
topics. However, the amount of information associated with recent advances in
code model checking and success of projects like Slam[8] in practice simply did
not fit into a single course and motivated us to separate the course into the two
specialized courses.

3 Behavior Models and Verification (NSWI101)

The course Behavior Models and Verification [14] aims at providing basics of the
behavior modeling of systems and their consequent verification. The attendees
of the course, future developers, should learn about the principles of formal
specification and verification as well as work with state-of-the-art tools that are
used in industry for verification of hardware and software models nowadays. Since
this is an introductory course for master’s level students, we do not assume any
special knowledge in this area in addition to what they have learned during their
bachelor’s level studies. In particular, this includes propositional and predicate
logics, and the automata theory. After passing the course, the students should be
able to construct a formal behavior specification of a simple hardware/software
system, think of and specify properties of interest, and, eventually, verify these
properties using available tools. As to the organization, there are a lecture and
a lab every week.

3.1 Lectures

In Fig. 1, the topics covered by the lectures are depicted; the main body includes
the following:

– Basic concepts. LTS, Kripke structure, and different preorder and equiv-
alence relations

– Temporal logics. Syntax, semantics, and expressive power of LTL, CTL,
and CTL*

– Model checking algorithms. Both explicit (for LTL and CTL) and sym-
bolic (for CTL) based on OBBDs

– Partial order reduction. The Ample set algorithm

This part of the course is motivated mainly by the comprehensive book
Model checking by Clarke et al. [24]. A suitable level of abstraction is main-
tained throughout the book, which makes it also a useful study material for the
attendees.

The rest of the lectures introduce timed automata and process algebras.
The overview of timed automata is motivated by [16] and presents the basic



Fig. 1. Topics covered by the NSWI101 course and their dependencies. The corre-
sponding lectures are held in the top-down order.

properties of the class of timed regular languages, emptiness check algorithm,
parallel composition, and references the Uppaal integrated environment [12].
The lectures on process algebras focuses on Algebra of Communicating Processes
(ACP) [21] and its content is highly inspired by the book Introduction to Process
Algebra by Fokkink [26]. As an example of a relatively recent application, the
formalism for behavior specification of software components, Behavior Protocols,
is also presented based on [15].

3.2 Lab

There are two major aims of the lab of the NSWI101 course—first, the students
should practically exercise the algorithms and techniques presented during the
lectures, and, second, the model checking tools are presented and their input
languages are discussed in detail.

The first three labs are devoted to the Spin model checker [11] and its in-
put language Promela. We use the slides from the official Spin website [38, 39],
which turned out to be very good for first understanding of the basic modeling



concepts. The presentation of the language is divided into two parts. After each
part, the students solve simple assignments during the lab, such as the modeling
of the producer–consumer problem. The goal of these labs is to cover almost the
entire language. The principles of model simulation and verification are also pre-
sented as well as the majority of the options (command-line switches), however,
the details on implementation of the algorithms inside Spin are mentioned just
briefly or entirely skipped. The tool is demonstrated using both command-line
and graphical user interfaces, whose options and settings are briefly explained.
For more information, the students are pointed to the complete slide sets and
the Holzmann book on Spin [30].

The subsequent three labs are devoted to exercises of the techniques and al-
gorithms presented in the lectures. This includes in particular modeling simple
systems via LTS, deciding on equivalences of temporal logics formulae, represent-
ing formulae, sets, and Kripke structures via OBDDs, and LTL and CTL model
checking algorithms. After the lectures introducing OBDDs and algorithms for
symbolic CTL model checking, a lab focusing on SMV model checker, in partic-
ular NuSMV [5], is held. The tool along with the parallel assignment language
is introduced and the students again try to model simple systems (e.g., dining
philosophers and the producer-consumer problem) to become familiar with the
tool.

The rest of the labs is again devoted to exercises related to the theory pre-
sented in the lectures. To provide an opportunity to work on homework assign-
ments, there are two to three labs left out at the end of the semester.

There are two graded homeworks; the grading forms 55% of the final grade,
while the rest, i.e., 45%, is formed by the grade a student gets from the final test.
The first homework is assigned at the end of the fourth lab. The assignment is
articulated in a very general way, such as “model a railway station” and “model
an airport”. This way turned out to be beneficial from several points of view.
First, it is easy to reveal a potential disallowed collaboration of the students—
such a general assignment is very unlikely to be “implemented” similarly in
multiple cases. Second, the students are forced to think of suitable abstractions
to be used to create the models. Third, they have to think of properties to
check—this is very important according to us, since in most papers and text
books, usually only deadlocks and in better cases also response patterns are
considered. We believe, however, that it is important to verify specific properties
that can be a matter of interest in particular cases. Nevertheless, the students
are provided with examples of entities that can be modeled, the properties that
can be checked, and ways to make their models simpler if they reach the limits of
Spin, usually in the sense of the size of their state spaces. The maximum amount
of points a student can normally get for the first homework is 40. However, if a
student creates an exceptional model, he or she can get up to 5 extra points.

At the end of the seventh lab (slightly after the middle of the semester), the
second homework is assigned. It is aimed at practicing the NuSMV tool [5]. Since
the parallel assignment language is rather low level in comparison with Promela,
we decided for a simpler assignment, in particular, modeling and verification of



properties of a well-known algorithm, e.g., the Dekker’s algorithm for mutual
exclusion [25]. Because of the lower complexity of the second assignment, the
maximum amount of points in the case of the second homework is 15.

3.3 Grading

The grade for the course is based on points. We award 0–40 and 0–15 points
for the first and second homework, respectively, and 0–45 points for the written
exam; the total number of points is therefore 100. The grading scale is defined
as follows:

– Score of 80–100 points corresponds to the excellent grade.
– Score of 71–79 points corresponds to the very good grade.
– Score of 62–70 points corresponds to the good grade.
– Score of 0–61 points corresponds to the failure, i.e., to an unsuccessful at-

tempt to complete the course.

The grading scale is defined to force students to do both homeworks and
the written exam that is devoted to theoretical background, principles, and im-
portant algorithms; it is not possible to do just the homeworks or the exam to
complete the course.

There are soft deadlines for both homeworks—after a deadline passes, for
each day of delay, there is a penalty of 10% of the points awarded.

3.4 Experience

Originally, there was a lecture every week, while the lab was held every other
week only, i.e., there were six labs during the semester. They were entirely fo-
cused on the tools and their input languages (Spin, NuSMV, Bandera). After
two years, we realized that the students are quite able to construct models in
the sense of using a specification/modeling language and corresponding tools to
verify their properties, however, they did not capture the algorithms and un-
derlying theories well. This is mainly due to the rather demanding amount of
theory. Therefore, we decided to extend the course and have the lab every week
to practice it.

The aforementioned fact that the students were able to create models and
use the tools deserves more explanation here. Since for most of the students, this
was the very first experience with behavior modeling, which differs from ordinary
implementation, indeed, several problems occurred. According to the complexity
of the models they submitted as solutions to the homework assignment (taking
just the first Promela assignment into account), the students could be divided
into two groups. The students of the first group submitted a sort of simplistic
models which can be verified by Spin in a reasonable amount of time (in the
order of minutes on a decent machine), while the others ran into difficulties with
verification due to complexity of their models. The unfortunate conclusion of
some of them was then that Promela is not a suitable modeling language, and



that behavior modeling in general does not make much sense. After getting this
kind of feedback, we have started to emphasize the goals and success stories of
modeling in general and focused more on guidelines on how the models should
be constructed, especially choosing an appropriate level of abstraction.

As to the organization of the course, after first two years, we have decided to
teach this course in English, which is not a native language of the students. There
were several motivations for doing so. First, the majority of the terms have just
an English form and there are no widely accepted translations. Second, since the
English-language skills are generally not on a proper level in our country, the
students can benefit from knowledge of the English language at conferences and
workshops in the future. Even though there was a significant drop in the number
of students attending the course after switching to English, all the students
attending the courses so far have given us a positive feedback on this issue.

4 Program Analysis and Code Verification (NSWI132)

While the course Behavior Models and Verification (Sect. 3) focuses on general
behavior modeling of software and hardware systems and checking of various
properties of the models, in the course Program Analysis and Code Verifica-
tion [34] we focus on analysis and verification of programs in mainstream lan-
guages like Java and C. The goals of the course are twofold:

1. to show the students, future software developers, that there exist tools for
formal verification and analysis of programs that can discover real bugs (er-
rors) in non-trivial programs and/or verify many interesting properties in
the programs, and to let students gain experience with usage of the tools;

2. to provide the students with basic knowledge of key approaches to program
analysis and verification, and of advantages, challenges, and limitations as-
sociated with each approach.

Our vision is that students attending the course should be able to use the ap-
propriate methods and tools during the software development process.

We do not expect any specific prior knowledge from the students—we only
assume that all students have basic knowledge of the automata theory and pred-
icate logic. Since the course aims at master’s level students, and courses on the
automata theory and logic are taught at the bachelor’s level, all students should
have the required knowledge. Moreover, we do not strictly require that students
complete the course on Behavior Models and Verification before participating in
this course.

As for organization, the course run in the winter of 2008 for the first time.
There was a lecture every week and a lab every other week. We give the students
three homework assignments as a part of the course.

4.1 Lectures

The goal of the lectures is to introduce and describe the main approaches to
verification and analysis of programs (code). We divided all the lectures (Fig. 2)



Fig. 2. Topics covered by the NSWI132 course and their dependencies. The corre-
sponding lectures are held in the top-down order.

into four blocks: Program Model Checking, Deductive Methods, Static Analysis,
and Current Trends. In the lectures forming each block, we describe theoretical
background (e.g., lattices and fixed points for static analysis) of the approach,
the basic principles and concepts of the approach (e.g., state space traversal in
case of program model checking), and main limitations and challenges associated
with use of the approach (e.g., state explosion) together with some solutions to
the challenges (e.g., POR and symmetries for state explosion).

Program Model Checking comprises lectures on both explicit-state pro-
gram model checking and CEGAR-based algorithms. The explicite-state pro-
gram model checkers are explained on the example of Java PathFinder [4].
The lectures are based on a related paper [41] describing the algorithms Java
PathFinder uses for POR, efficient state caching, etc.

The CEGAR-based algorithms are explained on the examples of Slam [8],
SatAbs [7], and Blast [2]. The lectures cover predicate abstraction, abstraction
refinement loop, and lazy abstraction; they are based on the papers [18, 22, 37]



and nice tutorial slides on lazy abstraction [29]. Note that, before diving into the
theorem proving details in the next lectures, the theorem prover is used here as
a black-box with emphasis on the type of questions it is able to answer.

Deductive Methods and their application in program verification. In this
block, we provide an overview of the main techniques used in SAT solvers,
SMT solvers, and general theorem provers. The lectures are inspired mainly
by the books Decision Procedures: An Algorithmic Point of View by Kroening
and Strichman [31], and Automated Theorem Proving: Theory and Practice by
Newborn [32]. Additional information on SAT solvers was taken from a nice
survey [42].

In the subsequent lectures, we present application of solvers in the contract-
verification frameworks like ESC/Java2 for JML [3] and Boogie for Spec#
programs [10]. Here, the most useful information sources are the papers that
describe algorithms used in Boogie [20, 19].

Static Analysis block contains methods that are based on the lattice theory
and computation of fixed points. This includes traditional data-flow analyses,
points-to and shape analysis, and also a brief introduction to a control-flow
analysis. The structure and content of this block of lectures is to a great extent
based on the lecture notes [40]. A more thorough source is the book Principles
of Program Analysis by Nielson et al. [33], however, we found it a bit too formal
for use in an overview course.

Current Trends in formal analysis and verification of programs are sum-
marized in the last block. Here, we provide an overview of the very recent
topics based on various conference papers. The topics include compositional
verification using assume-guarantee reasoning [27], symbolic execution in Java
PathFinder [36, 17], and a combination of testing with predicate abstraction [35,
28, 23].

4.2 Lab

The main goal of the labs is to provide the students with a hands-on experience
with selected tools for verification and analysis of programs (code).

Each lab is devoted to a specific tool—for example, Java PathFinder and
Soot framework [9]. First we explain how a tool works, how it can be configured
and executed, and how to prepare its input and interpret its output—all this on
simple demo programs and examples. Then, in the second part of a lab, we assign
some simple tasks to the students, so that they can get their own experience with
using the tools (and “playing” with them).

We present a single tool for each main technique (method) that is described
in the lectures. To be more specific, we present the following tools:

– Java PathFinder [4], an explicit-state model checker for Java programs,



– Blast model checker [2], an implementation of the CEGAR-based model
checking algorithm,

– SatAbs [7], model checker for C programs that uses CEGAR and a SAT
solver,

– PicoSAT [6], a state-of-the-art SAT solver,
– Yices [13], a state-of-the-art SMT solver,
– ESC/Java2 [3], a tool for verification of Java programs against JML speci-

fications [1], and
– Soot [9], a framework for static analysis and transformation of Java pro-

grams.

We have selected these tools due to their maturity and stability, moreover they
are widely used, and open source.

The homework assignments directly follow the labs. Our motivation behind
the homeworks is to let students try the tools on a larger example (program) than
it is possible during a lab. There are three homeworks together. The theme of
the first homework is Java PathFinder—the students are required to create a
reasonable abstract environment for an open system and also to create a custom
property. In case of the second homework, students are required to create a JML
specification for several Java classes and to verify the classes’ implementation
against the specification. Finally, the third homework consists of creating custom
analysis and transformation of Java source code on top of the Soot framework.
The time needed for each homework is between 8 and 16 hours, depending on
student’s skills.

4.3 Grading

The grade for the course is based on points. We award 0–10 points for each
homework and 0–30 points for the oral exam; the total number of points is
therefore 60. The grading scale is defined as follows:

– Score of 49–60 points corresponds to the excellent grade.
– Score of 40–48 points corresponds to the very good grade.
– Score of 31–39 points corresponds to the good grade.
– Score of 0–30 points corresponds to the failure, i.e., to an unsuccessful at-

tempt to complete the course.

We have defined such a grading scale in order to force students to do both
homeworks, which are about practical use of the tools, and oral exams that
is devoted to theoretical background, basic principles of the approaches and
important algorithms. In particular, it is not possible to do solely the homeworks
or solely the exam to complete the course.



4.4 Experience

After the first year, our experience with the course is somewhat mixed. On the
one hand, the students were interested in the discussed topics and we were very
satisfied with the quality of students’ solutions to the homework assignments.

On the other hand, we found that having a lab only once per two weeks is
not enough, similarly to the other course. For the upcoming years, we plan to
have a lab every week. Some of the labs will focus on manual computation of the
key algorithms using paper and blackboard, while the others focus on practical
experience with the tools.

5 Evaluation and Discussion

The common issue of both courses is a low number of students attending the
courses. We believe that the low attendance (enrollment) of students has the
following two main causes:

– The usefulness of formal methods in industrial software development is not
obvious to the students. They probably do not see the benefit of formal
verification and analysis in comparison to testing. Moreover, formal methods
are rarely used in software companies and therefore the students are not
forced to learn about them. The students prefer to attend those courses,
which they see as useful for their employment (XML, software engineering,
web development, etc.).

– Courses on formal methods typically require significant mathematical back-
ground (logics, automata theory, formal languages, etc.) and they are also
typically more demanding than the courses on XML and web development.
Since most students prefer to choose the easier way to get the degree, they
tend to avoid mathematics as much as possible.

While we see these two causes as general, they may be specific to our university
to a certain extent.

Another problem is the lack of literature about formal methods at the level of
master’s level studies. There are many books and research papers that could be
used, however they are often aiming at PhD students and researchers. This is es-
pecially problematic in the course Program Analysis and Code Verification, since
we are not aware of any comprehensive book on code analysis and verification—
e.g., with an extent and coverage similar to [24], which we use in the course
Behavior Models and Verification.

As for the structure and syllabus of the courses, as the greatest benefit for
students, we see the possibility to get hands-on experience with the tools and see
their advantages and limitations, since they will not have such an opportunity
in industry. Nevertheless, they are not always able to assess the complexity
of models (or programs) with respect to formal analysis and verification, even
after completing the courses—this requires years of experience with the practical
application of formal methods.



6 Conclusion

In this paper, we have shared our experience with teaching formal methods in the
scope of a new study plan, Dependable Systems. We have presented the content
of two courses—“Behavior Models and Verification” and “Program Analysis and
Code Verification”. While the former one is probably similar to courses at other
universities regarding its structure and content, we believe that a reader will
benefit from our experience with the latter one. We have structured the code
analysis course in a way to provide the students with experience with more tools
rather than introducing few tools in greater depth.

Interestingly enough, the number of students attending the two courses is
rather low in comparison to practically-oriented software engineering courses.
Having a positive feedback from our students on the content and quality of the
courses, we believe that the low attendance is caused by the fact that most
students are interested in different topics.

As for the future, we plan to improve the first course by making it more
comprehensible for students via including of more examples during lectures. As
to the code analysis course, we definitely plan to stay up-to-date and update the
content according to result of recent research in the area.

References

1. Java modeling language (JML). http://www.eecs.ucf.edu/~leavens/JML/.
2. Blast project. http://mtc.epfl.ch/software-tools/blast/.
3. ESC/Java2. http://kind.ucd.ie/products/opensource/ESCJava2/.
4. Java PathFinder. http://javapathfinder.sourceforge.net/.
5. NuSMV. http://nusmv.irst.itc.it/.
6. PicoSAT. http://fmv.jku.at/picosat/.
7. SatAbs tool. http://www.verify.ethz.ch/satabs/.
8. Slam project. http://research.microsoft.com/en-us/projects/slam/.
9. Soot framework. http://www.sable.mcgill.ca/soot/.

10. Spec#. http://research.microsoft.com/en-us/projects/specsharp/.
11. Spin. http://spinroot.com/spin/whatispin.html.
12. Uppaal integrated environment. http://www.uppaal.com/.
13. Yices. http://yices.csl.sri.com/.
14. J. Adámek, J. Kofroň, and F. Plášil. NSWI101: Behavior models and verification.

http://dsrg.mff.cuni.cz/teaching/nswi101/.
15. J. Adamek and F. Plasil. Component composition errors and update atomicity:

static analysis: Research articles. Journal of Software Maintenance and Evolution:
Research and Practice, 17(5):363–377, 2005.

16. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

17. S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A symbolic execution extension
to Java PathFinder. In TACAS, volume 4424 of Lecture Notes in Computer
Science, pages 134–138. Springer, 2007.

18. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-
drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
SIGOPS Oper. Syst. Rev., 40(4):73–85, 2006.



19. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of Lecture Notes in Computer Science, pages 364–387. Springer, 2005.

20. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis For Software Tools and Engineering, PASTE’05, pages 82–87. ACM, 2005.

21. J. Bergstra and J. Klop. Process algebra for synchronous communication. Infor-
mation and Control, 60(1-3):109–137, January 1984.

22. D. Beyer, T. A. Henzinger, R. Jhala, R. Majumdar, and D. Beyer. The software
model checker blast: Applications to software engineering. Int. J. Softw. Tools
Technol. Transfer, pages 505–525, 2007.

23. D. Beyer, T. A. Henzinger, and G. Théoduloz. Program analysis with dynamic pre-
cision adjustment. In Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2008), pages 29–38. IEEE Computer
Society Press, 2008.

24. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
25. E. W. Dijkstra. Cooperating sequential processes. In Programming Languages:

NATO Advanced Study Institute, pages 43–112. Academic Press, 1968.
26. W. Fokkink. Introduction to Process Algebra. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2000.
27. D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh. Assume-guarantee ver-

ification of source code with design-level assumptions. In 26th International Con-
ference on Software Engineering (ICSE 2004), pages 211–220. IEEE Computer
Society, 2004.

28. B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
Synergy: a new algorithm for property checking. In SIGSOFT ’06/FSE-14: Pro-
ceedings of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 117–127. ACM, 2006.

29. T. A. Henzinger, R. Jhala, and R. Majumdar. SPIN Workshop 2005 – Blast
tutorial slides. http://www.cs.ucla.edu/~rupak/Powerpoint/BlastTutorial/

SPIN2005.ppt.
30. G. J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.

Addison-Wesley Professional, September 2003.
31. D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of

View. Springer, 2008.
32. M. Newborn. Automated Theorem Proving: Theory and Practice. Springer-Verlag,

2001.
33. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1999.
34. P. Paŕızek and O. Šerý. NSWI132: Program analysis and code verification. http:

//dsrg.mff.cuni.cz/~parizek/teaching/proganalysis/.
35. C. S. Pasareanu, R. Pelnek, and W. Visser. Predicate abstraction with under-

approximation refinement. Logical Methods in Computer Science, 3(1), 2007.
36. C. S. Pasareanu and W. Visser. Verification of java programs using symbolic

execution and invariant generation. In Model Checking Software, 11th International
SPIN Workshop, Proceedings, volume 2989 of Lecture Notes in Computer Science,
pages 164–181. Springer, 2004.

37. T. H. Ranjit, T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy abstraction. In
In POPL, pages 58–70. ACM Press, 2002.

38. T. C. Ruys. SPIN Workshop 2002 – SPIN beginners tutorial. http://spinroot.

com/spin/Doc/SpinTutorial.pdf.



39. T. C. Ruys and G. J. Holzmann. SPIN Workshop 2004 – advanced SPIN tutorial.
http://spinroot.com/spin/Doc/Spin_tutorial_2004.pdf.

40. M. Schwartzbach. Lecture notes on static analysis. http://www.brics.dk/~mis/

static.html.
41. W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking

programs. Automated Software Engineering, 10(2):203–232, 2003.
42. L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In

CAV ’02: Proceedings of the 14th International Conference on Computer Aided
Verification, pages 17–36, London, UK, 2002. Springer-Verlag.


