
Modeling of Component Environment in
Presence of Callbacks and Autonomous

Activities

Pavel Parizek1 and Frantisek Plasil1,2

1 Charles University in Prague, Faculty of Mathematics and Physics,
Department of Software Engineering, Distributed Systems Research Group

{parizek,plasil}@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz
2 Academy of Sciences of the Czech Republic,

Institute of Computer Science

Abstract. A popular approach to compositional verification of com-
ponent-based applications is based on the assume-guarantee paradigm,
where an assumption models behavior of an environment for each compo-
nent. Real-life component applications often involve complex interaction
patterns like callbacks and autonomous activities, which have to be con-
sidered by the model of environment’s behavior. In general, such patterns
can be properly modeled only by a formalism that (i) supports indepen-
dent atomic events for method invocation and return from a method
and (ii) allows to specify explicit interleaving of events on component’s
provided and required interfaces - the formalism of behavior protocols
satisfies these requirements. This paper attempts to answer the question
whether the model involving only events on provided interfaces (calling
protocol) could be valid under certain constraints on component behav-
ior. The key contribution are the constraints on interleaving of events
related to callbacks and autonomous activities, which are expressed via
syntactical patterns, and evaluation of the proposed constraints on real-
life component applications.

Key words: assume-guarantee reasoning, behavior protocols, modeling
of environment behavior, callbacks, autonomous activities

1 Introduction

Modern software systems are often developed via composition of independent
components with well-defined interfaces and (formal) behavior specification of
some sort. When reliability of a software system built from components is a
critical issue, formal verification such as program model checking becomes a
necessity. Since model checking of the whole complex (”real-life”) system at a
time is prone to state explosion, compositional methods have to be used. A basic
idea of compositional model checking [6] is the checking of (local) properties of
isolated components and inferring (global) properties of the whole system from

2 P. Parizek and F. Plasil

the local properties. This way, state explosion is partially addressed, since a
single isolated component typically triggers a smaller state space compared to
the whole system.

A popular approach to compositional model checking of component appli-
cations is based on the assume-guarantee paradigm [18]: For each component
subject to checking, an assumption is stated on the behavior of the component’s
environment (e.g. the rest of a particular component application); similarly, the
”guarantee” are the properties to hold if the component works properly in the
assumed environment (e.g. absence of concurrency errors and compliance with
behavior specification). Thus, a successful model checking of the component
against the properties under the specific assumption guarantees the component
to work properly when put into an environment modeled by the assumption.

Specific to program model checkers such as Java PathFinder (JPF) [21] is
that they check only complete programs (featuring main()). Thus checking of
an isolated component (its implementation, i.e. for instance of its Java code) is
not directly possible ([17], [10]), since also its environment has to be provided
in the form of a program (code). Thus, program model checking of a primitive
component is associated with the problem of missing environment [14]. A typical
solution to it in case of JPF is to construct an ”artificial” environment (Java
code) from an assumption formed as a behavior model as in [14][20], where the
behavior model is based on LTS defined either directly [10], or in the formalism of
behavior protocols [19]. Then, JPF is applied to the complete program composed
of the component and environment.

In general, real-life component applications feature circular dependencies
among components involving complex interaction schemes. Nevertheless, for the
purpose of program model checking of an isolated component, these schemes
have to be abstracted down to interaction patterns between the component and
its environment pairs. Based on non-trivial case studies [1][8], we have identi-
fied the following four patterns of interaction between a component C and its
environment E to be the most typical ones (C-E patterns):

a) synchronous callback (Fig. 1a), executed in the same thread as the call
that triggered the callback;

b) asynchronous callback (Fig. 1b), executed in a different thread than the
trigger call;

c) autonomous activity (Fig. 1c) on a required interface, which is performed
by an inner thread of the component;

d) synchronous reaction (Fig. 1d) to a call on a component’s provided inter-
face.

In Fig. 1, each of the sequence diagrams contains activation boxes repre-
senting threads (T1 and T2) running in the component and environment in a
particular moment of time. More specifically, in Fig. 1a, m denotes a method
called on the component by the environment, and t denotes the trigger (invoked
in m) of the callback b; note that all calls are performed by the same thread (T1).
As to Fig. 1b, the only difference is that the callback b is asynchronous, i.e. it is
performed by a different thread (T2) than the trigger t. In case of Fig. 1c, the

Modeling of Component Environment 3

E C E C E C E C
T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T1 T2

T1

T1

T2

T1

T1
T2

T1

T1

T2

T1
T2

T1

T1

T1

T1

T1

a) b) c) d)

 m

t

b

b

t

m

m

t

t

b

m
b

s

s

a
m
a

m

m

r

r

m

E

C
M B

T

M B
T

m b
t

E

C
M B

T

M B
T

m b
t

E

C
M

R

M
R

m
r

E

C
S M

A

S M
A

s m
a

Legend: C
M

T
provided interface
required interface

Fig. 1. Interaction patterns (C-E patterns) between a component and its environment

method s called on the component by the environment (in thread T1) starts an
autonomous activity performed by an inner thread (T2), which calls the method
a of the environment. The latter overlaps with the call of m issued by the envi-
ronment. Finally, in Fig. 1d, r denotes a synchronous reaction to the call of the
method m issued by the environment (both performed in the same thread).

These sequence diagrams clearly show that proper modeling of these C-E
patterns via a specific formalism is possible only if the formalism allows to ex-
plicitly model the interleaving of method invocations and returns from methods
on C’s provided and required interfaces. Specifically, a method call as whole can-
not be modeled as an atomic event (like in [10]); instead, independent constructs
for method invocation (invocation event), return from a method (return event)
and method execution (method body) have to be supported by the formalism.
We say that a model of environment’s behavior is valid if it precisely describes
all occurrences of the C-E patterns in the interaction between a component and
its environment.

The formalism of behavior protocols [19], developed in our group, supports in-
dependent invocation and return events on C’s provided and required interfaces

4 P. Parizek and F. Plasil

(details in Sect. 2) and therefore allows to model all the C-E patterns properly.
In our former work, we introduced two specific approaches to modeling of envi-
ronment’s behavior: inverted frame protocol [14] and context protocol [15]. Both
of them are generic, i.e. not limited to any particular communication pattern
between E and C, and valid. The key difference between these two is that the
inverted frame protocol models E that exercises C in all ways it was designed
for (maximal-calling environment), while the context protocol models the actual
use of C in the given context of a component-based application (context envi-
ronment). Specifically, the context protocol may be simpler than the inverted
frame protocol, e.g. in terms of level of parallelism (i.e. the assumption on envi-
ronment behavior is weaker), if the particular application uses only a subset of
C’s functionality.

Unfortunately, the actual JPF model checking of a component combined with
an environment determined by any of these two modeling approaches is prone
to state explosion, in particular for two reasons:

(1) Java code of E is complex, since it has to ensure proper interleaving of
the events on C’s provided interfaces triggered by E with the events on C’s
required interfaces triggered by C itself. Technically, since there is no direct
language support for expressing acceptance of a method call depending upon
calling history in Java, the interleaving has to be enforced indirectly, e.g. via
synchronization tools (wait, notify) and state variables.

(2) As to the context environment, its construction is also prone to state
explosion, since the context protocol is derived from behavior specifications of
the other components in a particular component application via an algorithm
similar to the one employed in behavior compliance model checking [11]. In [15]
we presented a syntactical algorithm for derivation of a context protocol, which
has a low time and space complexity; however, it does not support autonomous
activities and does not handle cycles in architecture (and thus callbacks) properly
in general.

The issues (1) and (2) are particularly pressuring when C is designed to han-
dle a high level of parallel activities (threads). Then, this has to be reflected in
E to exercise C accordingly. To alleviate the state explosion problem associated
with these issues we proposed in [16] a simplified approach to modeling envi-
ronment behavior: calling protocol. Roughly speaking, a calling protocol models
precisely only the events on C’s provided interfaces, i.e. it models only the calls
issued by E, under the assumption that the calls issued by C are accepted by
E at any time (and in parallel) - this is an overapproximation of the desired be-
havior of E. Thus the Java code of E is simple, since it does not have to ensure
proper interleaving of the events on C’s provided and required interfaces. On the
other hand, capturing this interleaving is necessary for an appropriate modeling
of the C-E patterns in general, and thus for validity of a calling protocol-based
model of environment’s behavior. An open question is whether there are con-
straints on behavior of C under which the calling protocol-based approach could
provide a valid model of E.

Modeling of Component Environment 5

1.1 Goals and Structure of the Paper

The goal of this paper is to answer the question whether the calling protocol-
based approach can provide a valid model of environment behavior in the context
of the C-E patterns, if, in the component’s behavior specification, certain con-
straints are imposed on the sequencing and interleaving of the C-E events with
other events on the component interfaces.

The structure of the paper is as follows. Sect. 2 provides an overview of the
formalism of behavior protocols and its use for modeling of environment behav-
ior. Sect. 3 presents the key contribution of the paper - an answer to the question
of validity of the calling protocol-based approach under certain constraints on
component behavior and an algorithm for automated construction of a valid call-
ing protocol-based model of environment’s behavior. Sect. 4 shows experimental
results and the rest contains evaluation, related work and a conclusion.

2 Behavior Protocols

The formalism of behavior protocols - a simple process algebra - was introduced
in [19] as a means of modeling behavior of software components in terms of
traces of atomic events on the components’ external interfaces. Specifically, a
frame protocol FPC of a component C is an expression that defines C’s behavior
as a set L(FPC) of finite traces of atomic events on its provided and required
interfaces.

Syntactically, a behavior protocol reminds a regular expression over an al-
phabet of atomic events of the form <prefix><interface>.<method><suffix>.
Here, the prefix ? denotes acceptance, while ! denotes emit; likewise, the suffix ↑
denotes a method invocation and ↓ denotes a return from a method. Thus, four
types of atomic events are supported: !i.m↑ denotes emitting of a call to method
m on interface i, ?i.m↑ acceptance of the call, !i.m↓ emitting of return from
the method, and, finally, ?i.m↓ denotes acceptance of the return. Several use-
ful shortcuts are also defined: !i.m{P} stands for !i.m↑ ; P ; ?i.m↓ (method
call), and ?i.m{P} stands for ?i.m↑ ; P ; !i.m↑ (method acceptance). Both
in !i.m{P} and ?i.m{P}, a protocol P models a method body (possibly empty).
As for operators, behavior protocols support the standard regular expression
operators (sequence (;), alternative (+), and repetition (*)); moreover, there are
two operators for parallel composition: (1) Operator |, which generates all the
interleavings of the event traces defined by its operands; the events do not com-
municate, nor synchronize. It is used to express parallel activities in the frame
protocol of C. (2) Operator ∇S (”consent”), producing also all interleavings of
the event traces defined by its operands, where, however, the neighboring events
from S (with ”opposite” prefix) are complementary - they synchronize and are
forced to communicate (producing internal action τ similar to CCS and CSP).
An example of such complementary events would be the pair !I.m↑ and ?I.m↑.
This operator is used to produce the composed behavior of cooperating compo-
nents, while S comprises all the events on the component’s bindings. Moreover,

6 P. Parizek and F. Plasil

it also indicates communication errors (deadlock and ”bad activity” - there is
no complementary event to !I.m↑ in a trace, i.e. a call cannot be answered).

a) synchronous callback: FPCa = ?M.m {!T.t{?B.b}}
b) asynchronous callback: FPCb = ?M.m↑;!T.t↑;?T.t↓;?B.b↑;!M.m↓;!B.b↓
c) autonomous activity: FPCc = ?S.s;!A.a↑;?M.m↑;?A.a↓;!M.m↓
d) synchronous reaction: FPCd = ?M.m {!R.r}

Table 1. Frame protocols of C in Fig. 1

Using behavior protocols, a quite complex behavior can be modeled - see, e.g.,
[1] for a behavior model of a real-life component application. Advantageously,
it is possible to model the explicit interleaving of events on both the provided
and required interfaces of a component in its frame protocol. Specifically, the
frame protocol of C in Fig. 1 in the alternatives a) - d) would take the form as
in Tab. 1.

2.1 Modeling Environment via Behavior Protocols

Consider again the missing environment problem and the setting on Fig. 1.
Obviously, the environment of an isolated component C can be considered as
another component E bound to C. Thus the model of E’s behavior can be a
frame protocol of E. Since a required interface is always bound to a matching
provided interface, the former issuing calls and the latter accepting calls, the
corresponding events in both frame protocols ought to be complementary. For
example, the frame protocols of E in Fig. 1 in alternatives a) - d) would have
the form as in Tab. 2.

a) FPEa = !M.m {?T.t{!B.b}}
b) FPEb = !M.m↑;?T.t↑;!T.t↓;!B.b↑;?M.m↓;?B.b↓
c) FPEc = !S.s;?A.a↑;!M.m↑;!A.a↓;?M.m↓
d) FPEd = !M.m {?R.r}

Table 2. Frame protocols of E in Fig. 1

Obviously, an event issued by E (such as !M.m↑) has to be accepted by C
(such as ?M.m↑) at the right moment and vice versa. As an aside, this (behav-
ior compliance [19]) can be formally verified by parallel composition via con-
sent, FPE ∇S FPC , which should not indicate any communication error; for
FPEb ∇S FPCb this is obviously true, since FPEb was created by simply replac-
ing all ? by ! and vice versa - FPEb is the inverted frame protocol (FP−1

Cb) of
Cb. Because of that and since here S comprises all events on the interfaces M, T
and B, the consent operator produces traces composed of τ only.

In general, any protocol FPE for which FPE ∇S FPC does not yield any
composition error is called environment protocol of C, further denoted as EPC . In

Modeling of Component Environment 7

Sect. 1, we proposed three specific techniques to construct C’s environment pro-
tocol: (i) inverted frame protocol (EP inv

C), (ii) context protocol (EP ctx
C) and (iii)

calling protocol (EP call
C). Event though these techniques aim at ”decent” exer-

cising of C, an environment protocol may be very simple, designed to help check
a specific property. Assume for instance that the interface M of C in Fig. 1 fea-
tures also a method x and FP ′Ca = ?M.m {!T.t{?B.b}} + ?M.x. Then, EP ′Ca =
!M.x would be an environment protocol since EP ′Ca ∇S FP ′Ca does not yield
any composition error.

ReportingApplicationStoreApplication

:Data

:StoreGUI :ReportingGUI

:StoreLogic :ReportingLogic

:Enterprise:Persistence:Store

StoreQueryIf PersistenceIf EnterpriseQueryIf

StoreIf ReportingIf

* :StoreServer

CashDeskConnectorIf AccountSaleEvent

MoveGoodsIf

ProductDispatcherIf

Fig. 2. Architecture of the StoreServer component

Nevertheless, the three techniques (i) - (iii) are much more of practical impor-
tance; below, they are illustrated on a part of the component architecture created
in our group for the solution to the CoCoME assignment [8] (Fig. 2); the solution
was based on the Fractal component model [3] and behavior protocols. Here we
focus especially on the Store component, the functionality of which is not fully
used by StoreApplication that accesses Store indirectly via Data. Specifically,
the actual use of Store employs only a subset of the traces allowed by its frame
protocol FPStore (Fig. 3a); for example, FPStore states that it is possible to
call any method of the StoreQueryIf interface at most four times in parallel;
however, assume that the queryProductById and queryStockItem methods on
this interface are (indirectly) called three times in parallel by StoreApplication

8 P. Parizek and F. Plasil

and the other methods are called only twice in parallel, or not at all in parallel.
Therefore, the context protocol EP ctx

Store (Fig. 3c) of Store is much simpler in
terms of level of parallelism than its inverted frame protocol EP inv

Store (Fig. 3b).
Since the Store component has no required interface, its calling protocol EP call

Store

is equal to its context protocol, thus being obviously a valid model of the Store’s
environment behavior in this special case.

a) FPStore = (

?StoreQueryIf.queryProductById +

?StoreQueryIf.queryStockItem +

calls of other methods on StoreQueryIf follow

)*

|

the fragment above repeated three more times

b) EP inv
Store = (

!StoreQueryIf.queryProductById +

!StoreQueryIf.queryStockItem +

calls of other methods on StoreQueryIf follow

)*

|

the fragment above repeated three more times

c) EP ctx
Store = (!StoreQueryIf.queryStockItem* ; ...)*

|

(

!StoreQueryIf.queryProductById*

+

!StoreQueryIf.queryStockItem*

)*

|

!StoreQueryIf.queryProductById*

|

(

... ;

(

(!StoreQueryIf.queryProductById*; ...)

+

(... ; !StoreQueryIf.queryStockItem*)

+

...

)

)*

Fig. 3. a) a fragment of the frame protocol of Store; b) a fragment of the inverted
frame protocol of Store; c) a fragment of the context protocol of Store

Modeling of Component Environment 9

In summary, the basic idea of the techniques (i)-(iii) for construction of a
model of C’s environment (E) behavior is as follows:

Re (i) The inverted frame protocol EP inv
C of a component C is constructed

directly from the component’s frame protocol FPC by replacing all the prefixes
? by ! and vice versa.

Re (ii) The component’s context protocol EP ctx
C is derived via consent com-

position of the frame protocols of all the other components bound to C at the
same level of nesting and the context protocol (or inverted frame protocol) of
the C’s parent component (if there is one).

Re (iii) The calling protocol can be derived in two ways: either via syntactical
omitting of events on required interfaces from the inverted frame protocol or
context protocol, or directly from the frame protocols of all the components in an
architecture (including the one subject to checking) via a syntactical algorithm
described in Sect. 3.2. In both cases, events on C’s required interfaces, i.e. calls
of E from C, are modeled implicitly in such a way that they are allowed to
happen at any time and in parallel with any other event on any C’s interface;
technically, the environment protocol based on a calling protocol takes the form

EP call
C = <calling protocol> | ?m1* | ... | ?m1* | (E1)
| ?m2* | ... | ?mN*

where m1, ..., mN represent methods of the component’s required interfaces (ob-
viously several instances of the same method can be accepted in parallel; nev-
ertheless, the number N and the number of appearances of each ?mi* have to
be finite). Such EP call

C is compliant with FPC (assuming that compliance holds
for frame protocols of all components in the application, which C belongs to),
i.e. there are no communication errors, for the following reasons: (a) an environ-
ment modeled by EP call

C calls C only in a way allowed by FPC , since EP call
C is

derived from the frame protocols of the components cooperating with C at the
same level of nesting (assuming their behavior is compliant); (b) an environment
modeled by EP call

C can accept any call from C at any time and in parallel with
any other event on a C’s interface (both provided and required).

3 Calling Protocol vs. Callbacks and Autonomous
Activities

As indicated at the end of Sect. 1, an environment protocol based on a calling
protocol (EP call

C) is an imprecise model (overapproximation) of E’s behavior in
general, since it models in detail only the events on the C’s provided interfaces
and assumes a generic acceptance of calls on the required interfaces. Therefore,
specifically, it is not possible to model detailed interleaving of events on these
interfaces, which is necessary for proper modeling of callbacks and autonomous
activities.

In this section, we propose certain syntactical constraints on C’s frame pro-
tocol FPC to ensure that no other events than those related to synchronous
reactions, triggers of callbacks, and autonomous activities take place on the re-

10 P. Parizek and F. Plasil

quired interfaces of C; also, we answer the question whether EP call
C can be a

valid model of E’s behavior if these constraints are satisfied.
The key idea is to express the constraints on FPC via the following syntactical

schemes (for simplicity, names of interfaces are omitted in event identifications):
(A) To express synchronous callbacks (and synchronous reactions) correctly,

the constraint is that in FPC the events corresponding to a particular callback
b and a trigger t for b have to be nested according to the scheme

FPC = α1 op1 ?m{ α2 op2 !t{?b} op3 α3} op4 α4 (A1)
where αi may involve only synchronous reactions (C-E pattern (d)) and arbitrary
behavior protocol operators except consent (∇), and opi is either the sequence
operator (;) or the alternative operator (+). Specifically, the frame protocol
FP ′C = α1op1 ?m ; α2 ; !t ; α3 ; ?b op2α4, which would be the only option
when using the LTS-based approach of [10], violates the constraint. An example
of a frame protocol that satisfies the constraint is

FP ′Ca = ?m1{!r1} ; ?m2{!t{?b} + !r2} ; ?m3{!r3} (EX-A1)
(B) To express asynchronous callbacks (and (A)) correctly, the constraint on

FPC is that it is necessary to use parallel composition of the events corresponding
to a particular callback b with other events, including the trigger t of b, according
to the scheme

FPC = β1 op1 ?m↑ ; β2 ; !t↑ ; ((?t↓ ; β3 ; !m↓ op2 β4) | ?b) (B1)
where βi is composed of behavior protocols satisfying the constraint A connected
via arbitrary behavior protocol operators except the consent (∇), and opi is again
either ; or +. Specifically, a violation of the constraint would be to use explicit
sequencing of events like in ?m↑ ; !t↑ ; ?t↓ ; ?b↑ ; !m↓ ; !b↓ (Tab. 1b),
since an asynchronous callback runs in a different thread than the trigger and
therefore unpredictable thread scheduling has to be considered. An example of
a frame protocol that satisfies the constraint is
FP ′Cb = ?m1 ; ?m2↑ ; !t↑ ; ((?t↓ ; !m2↓ ; ?m3{!r3}) | ?b) (EX-B1)

(C) To express autonomous activities on required interfaces (and (B)) cor-
rectly, the constraint is that it is also necessary to use parallel composition
(as in (B)), since such activities are performed by C’s inner threads and thus
non-deterministic scheduling of the threads has to be considered. Specifically, the
events corresponding to a particular autonomous activity a have to be composed
via the and-parallel operator with other events that can occur after the start of
the inner thread (in method s). Thus, when involving autonomous activities,
FPC has to comply with the scheme

FPC = γ1 op1 ?s↑ ; ((!s↓ ; γ2) | !a) (C1)
where γi is composed of behavior protocols satisfying the constraint B connected
via arbitrary behavior protocol operators except the consent (∇). For example,
the frame protocol FP ′C = γ1op1 ?s ; γ2 ; !a↑ ; γ3 ; ?a↓ ; γ4 is not valid,
since the events for the autonomous activity a are not allowed to happen before
the call to s returns (i.e. before !s↓ occurs). An example of a frame protocol
that satisfies the constraint is

FP ′Cc = ?m1 ; ?s↑ ; ((!s↓ ; (?m2 + ?m3{!r3})) | !a) (EX-C1)

Modeling of Component Environment 11

In summary, to satisfy the constraints, a frame protocol has to be constructed
in a hierarchical manner, with synchronous reactions and synchronous callbacks
(compliant to the constraint A) lower than asynchronous callbacks (compliant
to B), and with autonomous activities (compliant to C) at the top.

3.1 Calling & Trigger Protocol

An important question is whether from a FPC (and frame protocols of other
components at the same level of nesting as C) satisfying the constraints A, B,
and C an EP call

C can be derived such that it would be a valid model of behavior of
C’s environment; i.e., whether it suffices to model precisely only the interleaving
of events on C’s provided interfaces when callbacks and autonomous activities
are considered. To answer this question, it is sufficient to consider the possible
meanings of an event on a required interface in the frame protocol FPC satisfying
the constraints; such an event can be:

(1) A synchronous reaction r to a call on a provided interface, when r is not
a trigger of a callback.

(2) An autonomous activity a on a required interface, when a is not a trigger
of a callback.

(3) A trigger t of a callback b (either synchronous or asynchronous).
In cases (1) and (2), it is appropriate to model r, resp. a, implicitly (as in

E1), since it has no relationship with any event on C’s provided interfaces. On
the other hand, a trigger t of a callback b (case 3) cannot be modeled implicitly,
since b can be executed by E only after C invokes t - if t were modeled implicitly,
then E could execute b even before t was invoked by the component.

Therefore, the answer to the question of sufficiency of the constraints is that
the environment protocol based on a calling protocol (EP call

C) is not a valid
model of E’s behavior if the interaction between C and E involves callbacks,
since triggers of callbacks are modeled implicitly in EP call

C - precise interleaving
of a callback and its trigger has to be preserved in a valid model of E’s behavior.

As a solution to this problem, we propose to define the environment protocol
of a component C on the basis of a calling & trigger protocol that models a precise
interleaving of the events on C’s provided interfaces (including callbacks) and
triggers of callbacks. In principle, the environment protocol takes the form

EP trig
C = <calling & trigger protocol> | ?m1* | ... | (E2)
| ?m1* | ?m2* | ... | ?mN*

where m1, ..., mN are all the methods of the C’s required interfaces except triggers
of callbacks. Compliance of EP trig

C with FPC holds for similar reasons like in
case of EP call

C (end of Sect. 2.1) - note that although an environment modeled by
EP trig

C can accept triggers of callbacks from a component C only at particular
moments of time, C will not invoke any trigger at an inappropriate time, since
frame protocols of C and components cooperating with C at the same level of
nesting are assumed to be compliant.

An environment protocol based on a calling & trigger protocol for (A1) has
to comply with the scheme

12 P. Parizek and F. Plasil

EP trig
C = (α−1

1 prov op1 !m{α−1
2 prov op2 ?t{!b} op3 α

−1
3 prov} op4 (A2)

op4 α
−1
4 prov) | α−1

1 req | ... | α−1
4 req

where α−1
i prov denotes the events on provided interfaces from α−1

i and α−1
i req

denotes the events on required interfaces from α−1
i (α−1

i contains the events from
αi with ? replaced by ! and vice versa). For illustration, the proper environment
protocol for (EX-A1) is EP trig′

Ca = (!m1 ; !m2{?t{!b}} ; !m3) | ?r1 | ?r2
| ?r3.

Similarly, an environment protocol for (B1) has to comply with the scheme
EP trig

C = (β−1
1 prov op1 !m↑ ; β−1

2 prov ; ?t↑ ; ((!t↓ ; β−1
3 prov ; (B2)

; ?m↓ op2 β
−1
4 prov) | !b)) | β−1

1 req | ... | β−1
4 req,

while an environment protocol for (C1) has to comply with the scheme
EP trig

C = ((γ−1
1 prov op1 !s ; γ−1

2 prov) | ?a) | γ−1
1 req | γ−1

2 req. (C2)

The proper environment protocol for (EX-B1) is EP trig′

Cb = (!m1 ; !m2↑
; ?t↑ ; ((!t↓ ; ?m2↓ ; !m3) | !b)) | ?r3, while the proper environment
protocol for (EX-C1) is EP trig′

Cc = (!m1 ; !s↑ ; ((?s↓ ; (!m2 + !m3)) |
!a)) | ?r3.

3.2 Construction of Calling & Trigger Protocol

The algorithm for construction of a calling & trigger protocol (CTP) is based on
the syntactical algorithm for derivation of a context protocol that was presented
in [15] - the main difference is the newly added support for callbacks and au-
tonomous activities. Only the basic idea is described here, i.e. technical details
are omitted.

In general, the algorithm accepts frame protocols of all components (primitive
and composite) in the given application and bindings between the components
as an input, and its output are CTP s for all primitive components in the appli-
cation. The frame protocols have to be augmented with identification of events
that correspond to triggers for callbacks and autonomous activities.

The algorithm works in a recursive way: when executed on a specific com-
posite component C, it computes CTPCi for each of its sub-components C1, ...,
CN , and then applies itself recursively on each Ci.

More specifically, the following steps have to be performed to compute the
calling & trigger protocol CTPCk of Ck, a sub-component of C:

1) A directed graph G of bindings between C and the sub-components of C
is constructed and then pruned to form a sub-graph GCk that contains only the
paths involving Ck. The sub-graph GCk contains a node NC corresponding to
C and a node NCi for each sub-component Ci of C; in particular, it contains a
node NCk for Ck.

2) An intermediate version IPCk of CTPCk is constructed via a syntactical
expansion of method call shortcuts during traversal of GCk in a DFS manner.
The traversal consists of two phases - (i) processing synchronous reactions and
autonomous activities on required interfaces, and (ii) processing callbacks. Tech-
nically, the first phase starts at NC with CTPC of C (inverted frame protocol is

Modeling of Component Environment 13

used for the top-level composite component) and ends when all the edges on all
paths between NC and NCk are processed (cycles are ignored in this phase); the
second phase starts at Ck and processes all cycles involving Ck. When processing
a specific edge Elm, which connects nodes NCl and NCm (for Cl and Cm), in
the first phase, the current version IP lm

Ck (computed prior to processing of Elm)
of IPCk is expanded in the following way: assuming that a required interface Rl

of Cl is bound to a provided interface Pm of Cm, each method call shortcut on
Rl in IP lm

Ck is expanded to the corresponding method body defined in the frame
protocol of Cm.

For example, if IP lm
Ck contains ”...; !Rl.m1 ; !R1.m2 ;...” and the frame

protocol of Cm contains ”...; ?Pm.m1{prot1} ; ?Pm.m2{prot2 + prot3} ;
...”, the result of one step of expansion has the form ”...; prot1 ; (prot2
+ prot3) ;...”.

3) CTPCk is derived from IPCk by dropping (i) all the events related to
other sub-components of C and (ii) all events on the required interfaces of Ck

with the exception of triggers for callbacks, which have to be preserved.
In general, these three steps have to be performed for each sub-component of

each composite component in the given component application in order to get a
calling & trigger protocol for each primitive component.

4 Tools and Experiments

In order to show the benefits of use of the calling & trigger protocol-based
approach instead of a context protocol or an inverted frame protocol, we have
implemented construction of a context protocol (via consent composition) and
a calling & trigger protocol (Sect. 3.2), and performed several experiments.

Inverted frame Context protocol- Calling & trigger
protocol-based EP based EP protocol-based EP

Time to 0 s 3 s 0.1 s
compute EP

Total time n/a 1102 s 1095 s
(EP + JPF)

Total memory > 2048 MB 762 MB 748 MB

Table 3. Results for the Store component

Our implementation of construction of a calling & trigger protocol and a
context protocol does not depend on a specific component system, i.e. it can
be used with any component system that supports formal behavior specification
via behavior protocols (currently SOFA [4] and Fractal [1]). Moreover, the au-
tomated environment generator for JPF (EnvGen for JPF) [13] is available in
both SOFA and Fractal versions, and thus we provide a complete JPF-based
toolset for checking Java implementation of isolated SOFA or Fractal primitive

14 P. Parizek and F. Plasil

components against the following properties: obeying of a frame protocol by the
component’s Java code [17] and all the properties supported by JPF out of the
box (e.g. deadlocks and assertion violations).

Inverted frame Context protocol- Calling & trigger
protocol-based EP based EP protocol-based EP

Time to 0 s 2 s 0.5 s
compute EP

Total time n/a n/a 485 s
(EP + JPF)

Total memory > 2048 MB > 2048 MB 412 MB

Table 4. Results for the ValidityChecker component

We have performed several experiments on the Store component (Sect. 2.1)
and the ValidityChecker component, which forms a part of the demo com-
ponent application developed in the CRE project [1] - frame protocol, context
protocol and calling & trigger protocol of ValidityChecker are in the appendix.
For each experiment, we measured the following characteristics: time needed to
compute a particular environment protocol, total time (computation of EP and
JPF checking) and total memory; the value ”> 2048 MB” for total memory
means that JPF run out of available memory (2 GB) - total time is set to ”n/a”
in such a case.

Results of experiments (in Tab. 3 and Tab. 4) show that (i) construction of
a calling & trigger protocol takes less time and memory than construction of a
context protocol for these two components and (ii) total time and memory of en-
vironment’s behavior model construction, environment generation and checking
with JPF (against obeying of a frame protocol, deadlocks and race conditions)
are the lowest if the calling & trigger protocol-based approach is used. Time
needed to compute EP ctx of both Store and ValidityChecker is also quite
low, since frame protocols of other components bound to them (in the particular
applications) do not involve very high level of parallelism and thus state explo-
sion did not occur. The main result is that the whole process of environment
construction and, above all, JPF checking has a lower time and space complexity
for calling & trigger protocol than if the other approaches are used.

5 Evaluation and Related work

In general, our experiments confirm that although EP trig
C for a component C

specifies an ”additional” parallelism (a parallel operator for each method of the
C’s required interfaces), the size of the JPF state space in checking C with an
environment modeled by EP trig

C is not increased (i.e. state explosion does not
occur because of that), since the ”additional” parallelism is not reflected in the
environment’s Java code explicitly via additional threads - the environment only

Modeling of Component Environment 15

has to be prepared to accept the call of any method from C (except triggers of
callbacks) at any time and in parallel with other activities. On the contrary,
modeling environment by EP trig

C has the benefit of low time and space complex-
ity (i) of construction of the model with respect to use of EP ctx

C , and (ii) of JPF
checking of component’s Java code with respect to the use of EP inv

C .
There are many other approaches to modeling behavior of software compo-

nents and their environment that can be used to perform compositional verifi-
cation of component-based applications (e.g. [9], [10], [5] and [12]); in particu-
lar, [9] and [10] do so on the basis of the assume-guarantee paradigm. However, to
our knowledge, none of them supports independent constructs for the following
atomic events explicitly in the modeling language: acceptance of a method in-
vocation (?i.m↑ in behavior protocols), emitting a method invocation (!i.m↑),
acceptance of a return from a method (?i.m↓), and emitting a return from a
method (!i.m↓). Process algebra-based approaches ([9], [5]) typically support in-
put (acceptance) and output (emit) actions explicitly in the modeling language,
while transition systems-based approaches (e.g. [10] and [12]) support general
events. In any case, it is possible to distinguish the events via usage of different
names (e.g. event names m1 invoke, resp. m1 return, for invocation of m1, resp.
for return from the method); however, an automated composition checking may
fail even for compliant behavior specifications in such a case, since the developer
of each of them can choose a different naming scheme (e.g. m1 invoke versus
m1↑). We believe that a formalism for modeling component behavior should sup-
port all the four types of atomic events, since:

(a) independent constructs for method invocation and return from a method
are necessary for proper modeling of callbacks and autonomous activities, and

(b) independent input and output actions are necessary for compliance check-
ing, i.e. for checking the absence of communication errors between components.

Program model checking of open systems (isolated software components, de-
vice drivers, etc) typically involves construction of an ”artificial” environment
- an open system subject to checking and its environment then form a closed
system (a complete program). The environment typically has the form of a pro-
gram, as in our approach [14] and in [10], where the environment is defined in
Java, or in SLAM/SDV [2], where the model of the windows kernel (environ-
ment for device drivers) is defined in the C language. In general, each approach
to model checking of open software systems involves a custom tool or algorithm
for construction of the environment, since each program model checker features
a unique combination of API and input modeling language (i.e. different combi-
nation than the other program model checkers).

As for automated construction of the model of environment’s behavior, one
recent approach [7] is based on the L∗ algorithm for incremental learning of
regular languages. The basic idea of this approach is to iteratively refine an
initial assumption about behavior of the environment for a component subject to
checking. At each step of the iteration, model checking is used to check whether
the component satisfies the property, and if not, the assumption is modified
according to the counterexample. The iteration terminates when the component

16 P. Parizek and F. Plasil

satisfies the given property in the environment modeled by the assumption. An
advantage of our approach over [7] is lower time and memory complexity, since
use of model checking is not needed for construction of EP trig.

6 Conclusion

In our former work, we introduced two specific approaches to modeling of envi-
ronment’s behavior: inverted frame protocol and context protocol. However, JPF
checking of a component with the environment determined by any of these mod-
eling approaches is prone to state explosion for the following reasons: (i) Java
code of the environment is complex, since it has to ensure proper interleaving
of invocation and return events on the component’s provided and required in-
terfaces, (ii) for the context protocol, the algorithm for its construction involves
model checking, while for the inverted frame protocol, the environment involves
high level of parallelism. To address the problem of state explosion, in [16] we
proposed to use a model of environment’s behavior based on the calling proto-
col. Since the calling protocol-based approach models precisely only the events
on component’s provided interfaces, it does not allow to express C-E patterns
properly in general (it is an overapproximation of the desired behavior).

Therefore, in this paper we proposed a slightly modified idea - calling & trig-
ger protocol, which models precise interleaving of events on provided interfaces
and triggers of callbacks, and the ”other events” models implicitly, similar to [16]
with no threat of state explosion. The key idea is to impose certain constraints
on the frame protocol of a component in terms of interleaving of C-E events
with other events and to express the constraints via syntactical patterns the
frame protocol has to follow, and then, if the constrains are satisfied, derive in
an automated way the calling & trigger protocol. The experiments confirm that
the idea is viable.

As a future work, we plan to create a tool for automated recognition of those
component frame protocols that do not satisfy the constraints and to integrate
it into the SOFA runtime environment.

Acknowledgments. This work was partially supported by the Grant Agency
of the Czech Republic (project number 201/06/0770).

References

1. Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil, F.:
Component Reliability Extensions for Fractal Component Model, http://kraken.
cs.cas.cz/ft/public/public_index.phtml, 2006.

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S. K., Ustuner, A.: Thorough Static Analysis of Device
Drivers, Proceedings of EuroSys 2006, ACM Press

3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: The FRACTAL
component model and its support in Java, Softw. Pract. Exper., 36(11-12), 2006

Modeling of Component Environment 17

4. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model, Proceedings of SERA 2006, IEEE CS

5. Brim, L., Cerna, I., Varekova, P., Zimmerova, B.: Component-interaction Au-
tomata as a Verification-oriented Component-based System Specification, Proceed-
ings of SAVCBS 2005, ACM Press

6. Clarke, E. M., Long, D. E., McMillan, K. L.: Compositional Model Checking,
Proceedings of LICS’89, IEEE CS

7. Cobleigh, J. M., Giannakopoulou, D., Pasareanu, C. S.: Learning Assumptions for
Compositional Verification, Proceedings of 9th TACAS, LNCS, vol. 2619, 2003

8. CoCoME, http://agrausch.informatik.uni-kl.de/CoCoME
9. de Alfaro, L., Henzinger, T. A.: Interface Automata, Proceedings of 8th European

Software Engineering Conference, ACM Press, 2001
10. Giannakopoulou, D., Pasareanu, C. S., Cobleigh, J. M.: Assume-guarantee Verifi-

cation of Source Code with Design-Level Assumptions, Proceedings of 26th Inter-
national Conference on Software Engineering (ICSE), 2004

11. Mach, M., Plasil, F., Kofron, J.: Behavior Protocol Verification: Fighting State
Explosion, International Journal of Computer and Information Science, 6(2005)

12. Ostroff, J.: Composition and Refinement of Discrete Real-Time Systems, ACM
Transactions on Software Engineering and Methodology, 8(1), 1999

13. Parizek, P.: Environment Generator for Java PathFinder, http://dsrg.mff.cuni.
cz/projects/envgen

14. Parizek, P., Plasil, F.: Specification and Generation of Environment for Model
Checking of Software Components, Proceedings of FESCA 2006, ENTCS, 176(2)

15. Parizek, P., Plasil, F.: Modeling Environment for Component Model Checking from
Hierarchical Architecture, Proceedings of FACS’06, ENTCS, vol. 182

16. Parizek, P., Plasil, F.: Partial Verification of Software Components: Heuristics for
Environment Construction, Proc. of 33rd EUROMICRO SEAA, IEEE CS, 2007

17. Parizek, P., Plasil, F., Kofron, J.: Model Checking of Software Components: Com-
bining Java PathFinder and Behavior Protocol Model Checker, Proceedings of
SEW’06, IEEE CS

18. Pasareanu, C. S., Dwyer, M., Huth, M.: Assume-guarantee model checking of soft-
ware: A comparative case study, Proceedings of the 6th SPIN workshop, LNCS,
vol. 1680, 1999

19. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, IEEE
Transactions on Software Engineering, 28(11), 2002

20. Tkachuk, O., Dwyer, M. B., Pasareanu, C. S.: Automated Environment Generation
for Software Model Checking, Proceedings of ASE 2003, IEEE CS

21. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs,
Automated Software Engineering Journal, vol. 10, no. 2, 2003

Appendix

FPV alidityChecker =

(
?IToken.SetEvidence
|
?IToken.SetValidity

18 P. Parizek and F. Plasil

|
(
?IToken.SetAccountCredentials {
!ICustomCallback.SetAccountCredentials

}
+
NULL

)
)
;
?ILifetimeController.Start^ ; !ITimer.SetTimeout^
;
(
(
?Timer.SetTimeout$; !ILifetimeController.Start$
;
(
?IToken.InvalidateAndSave {
!ITimer.CancelTimeouts;
(!ICustomCallback.InvalidatingToken + NULL);
!ITokenCallback.TokenInvalidated

}*
|
?IToken.InvalidateAndSave {
!ITimer.CancelTimeouts;
(!ICustomCallback.InvalidatingToken + NULL);
!ITokenCallback.TokenInvalidated

}*
)

)
|
?ITimerCallback.Timeout {
(!ICustomCallback.InvalidatingToken + NULL);
!ITokenCallback.TokenInvalidated

}*
)

EP inv
V alidityChecker = EP ctx

V alidityChecker =

(
!IToken.SetEvidence
|
!IToken.SetValidity
|
(
!IToken.SetAccountCredentials {

Modeling of Component Environment 19

?ICustomCallback.SetAccountCredentials
}
+
NULL

)
)
;
!ILifetimeController.Start^ ; ?ITimer.SetTimeout^
;
(
(
!Timer.SetTimeout$; ?ILifetimeController.Start$
;
(
!IToken.InvalidateAndSave {
?ITimer.CancelTimeouts;
(?ICustomCallback.InvalidatingToken + NULL);
?ITokenCallback.TokenInvalidated

}*
|
!IToken.InvalidateAndSave {
?ITimer.CancelTimeouts;
(?ICustomCallback.InvalidatingToken + NULL);
?ITokenCallback.TokenInvalidated

}*
)

)
|
!ITimerCallback.Timeout {
(?ICustomCallback.InvalidatingToken + NULL);
?ITokenCallback.TokenInvalidated

}*
)

EP trig
V alidityChecker =

(
(
!IToken.SetEvidence
|
!IToken.SetValidity
|
(
!IToken.SetAccountCredentials
+
NULL

20 P. Parizek and F. Plasil

)
)
;
!ILifetimeController.Start^ ; ?ITimer.SetTimeout^
;
(
(
!Timer.SetTimeout$; ?ILifetimeController.Start$
;
(
!IToken.InvalidateAndSave*
|
!IToken.InvalidateAndSave*

)
)
|
!ITimerCallback.Timeout*

)
)
|
?ICustomCallback.SetAccountCredentials*
|
?ITimer.CancelTimeouts*
|
?ITimer.CancelTimeouts*
|
?ICustomCallback.InvalidatingToken*
|
?ICustomCallback.InvalidatingToken*
|
?ICustomCallback.InvalidatingToken*
|
?ITokenCallback.TokenInvalidated*
|
?ITokenCallback.TokenInvalidated*
|
?ITokenCallback.TokenInvalidated*

