
Hybrid Analysis for Partial Order Reduction of
Programs with Arrays

Pavel Parı́zek

Charles University in Prague, Faculty of Mathematics and Physics,
Department of Distributed and Dependable Systems

Abstract. An important component of efficient approaches to software model
checking and systematic concurrency testing is partial order reduction, which
eliminates redundant non-deterministic thread scheduling choices during the state
space traversal. Thread choices have to be created only at the execution of actions
that access the global state visible by multiple threads, so the key challenge is
to precisely determine the set of such globally-relevant actions. This includes
accesses to object fields and array elements, and thread synchronization.
However, some tools completely disable thread choices at actions that access in-
dividual array elements in order to avoid state explosion. We show that they can
miss concurrency errors in such a case. Then, as the main contribution, we present
a new hybrid analysis that identifies globally-relevant actions that access arrays.
Our hybrid analysis combines static analysis with dynamic analysis, usage of in-
formation from dynamic program states, and symbolic interpretation of program
statements. Results of experiments with two popular approaches to partial order
reduction show that usage of the hybrid analysis (1) eliminates many additional
redundant thread choices and (2) improves the performance of software model
checking on programs that use arrays.

1 Introduction

Systematic traversal of the program state space is a popular approach for detecting
concurrency-related errors. It is used, for example, in software model checking [22],
where the goal is to check the program behavior under all possible thread interleavings.

Each interleaving corresponds to a sequence of thread scheduling decisions and also
to a particular sequence of actions performed by the program threads. We divide the ac-
tions into two sets: globally-relevant and thread-local. A globally-relevant action reads
or modifies the global state shared by multiple threads. The set of globally-relevant
actions contains accesses to fields of heap objects and array elements, and thread syn-
chronization operations (e.g., acquisition of a lock). Other actions are thread-local.

Any non-trivial multithreaded program exhibits a huge number of possible inter-
leavings, but many of them differ only in the order of thread-local actions. It is nec-
essary to check just all the possible interleavings of globally-relevant actions, and to
explore each of them just once. Techniques based on state space traversal use partial or-
der reduction (POR) [5] to avoid redundant exploration of thread interleavings in order
to mitigate state explosion.

2 P. Parı́zek

1 class Writer extends Thread {
2 public void run() {
3 int[] buf = SharedData.buffer;
4 buf[0] = x;
5 }
6 }

7 class Reader extends Thread {
8 public void run() {
9 int[] buf = SharedData.buffer;

10 v = buf[0];
11 }
12 }

Fig. 1. Example: race condition involving an array element

The key idea behind POR is to consider non-deterministic thread scheduling choices
only at globally-relevant actions, while avoiding redundant choices at thread-local ac-
tions. A lot of work has been done on POR in the context of software model checking
(e.g., [3, 4, 6, 15]). All the existing approaches to POR have to conservatively over-
approximate the set of globally-relevant actions in order to ensure coverage of all dis-
tinct thread interleavings. On the other hand, they also strive to be as precise as possible,
because the number of thread interleavings explored redundantly during the state space
traversal depends on the number of actions that are actually thread-local but were im-
precisely identified as globally-relevant. For example, dynamic POR [4] uses dynamic
analysis to identify (i) heap objects really accessed by multiple threads and (ii) actions
performed upon such objects. Another technique [3] uses escape analysis to identify
objects that are reachable from multiple threads. Some work has been done also on
the combination of static analysis with dynamic analysis for precise identification of
globally-relevant field accesses on shared heap objects [15, 16].

An important category of actions that may be globally-relevant are accesses to array
objects stored in the heap. However, in the default configuration, POR algorithms in
tools like Java Pathfinder [8] do not allow thread scheduling choices at actions that
access individual array elements in order to avoid state explosion. For each access to an
array element, they make a scheduling choice only at the preceding action that retrieves
the array object from the heap (e.g., a field read access).

The problem with this approach to POR is that state space traversal can miss some
concurrency errors. Consider the small Java-like program in Figure 1, where two threads
access a shared array (buffer). Each thread retrieves a reference to the array object from
the heap through a field read, stores the reference into a local variable buf, and then
accesses the first element. The field read actions do not have to be synchronized at all,
but there is a race condition that involves the array accesses. A verification tool cannot
detect this race condition if it uses a POR algorithm with disabled thread choices at
accesses to individual array elements. We found similar race conditions also in some of
our benchmark programs — we discuss that in more detail at the end of Section 5.

Consequently, the state space traversal procedure with POR has to create thread
scheduling choices at array element accesses in order to enable discovery of all such
race conditions and other concurrency errors. The basic option for identifying globally-
relevant accesses to array elements is to consider heap reachability [3]. When the given
array object is not reachable from multiple threads, then every access to elements of the
array is a thread-local action and no thread choice is necessary.

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 3

We propose a new hybrid analysis that soundly identifies array elements possibly
accessed by multiple threads during the program execution. Results of the hybrid anal-
ysis can be used by POR to decide more precisely whether a given access to an array
element is globally-relevant or thread-local. Then, thread choices at accesses to individ-
ual elements can be enabled without a high risk of state explosion. Although the state
space size might increase in the worst case, it will stay in reasonable limits because POR
avoids many redundant choices at thread-local accesses based on the hybrid analysis.

Our hybrid analysis combines static analysis with dynamic analysis and symbolic
interpretation of program statements, and it also uses information from dynamic pro-
gram states that is available on-the-fly during the state space traversal. We describe key
concepts on the examples of multithreaded Java programs, but the analysis is applica-
ble also to programs written in other languages, such as C# and C++. For simplicity of
presentation, we consider only arrays with a single dimension in most of the paper and
discuss support for multi-dimensional arrays at the end of Section 3.

An important feature of the hybrid analysis is compatibility with all memory mod-
els that we are aware of, including relaxed memory models such as JMM [10] and
TSO [19]. The only requirements are that the underlying tool, which performs state
space traversal, has to simulate the given memory model to a full extent and it must
provide correct information about the dynamic program state, in particular taking into
account delayed propagation of the effects of writes to shared variables among threads.

Experimental results provided in Section 5 show that our hybrid analysis helps to
avoid many redundant thread choices during the state space traversal. It improves the
precision and performance of existing approaches to POR on multithreaded programs
that use arrays, and therefore enables more efficient detection of concurrency-related
errors that involve array elements by software model checking.

In the next section we provide an overview of the whole approach. Then we discuss
situations and code patterns where our hybrid analysis can eliminate a redundant thread
choice (Section 3), and explain the analysis algorithm in more detail in Section 4. The
rest of the paper contains evaluation, description of related work, and a brief summary.

2 Overview

Figure 2 shows the basic algorithm for depth-first state space traversal of multithreaded
programs with POR. We assume that the program state space is constructed on-the-
fly during traversal and that statements are interpreted using dynamic concrete exe-
cution. In addition, we consider only thread scheduling choices and ignore the data
non-determinism in this paper. The symbol s represents a program state, the symbol ch
represents a thread choice, and T denotes a thread runnable in a particular state. Ex-
ploration starts from the initial state s0 and the initial choice ch0, where only the main
thread is runnable. An atomic transition between two states corresponds to the execution
of a sequence of instructions (program statements) that consists of a globally-relevant
action, followed by any number of thread-local actions, and it ends with a thread choice.
The POR algorithm creates a new thread choice just before execution of an action that
it considers to be globally-relevant. All instructions in a transition are executed by the

4 P. Parı́zek

1 visited = {}
2 exploreState (s0 ,ch0)
3

4 procedure exploreState (s ,ch)
5 if s ∈ visited then return
6 visited = visited ∪ s
7 for T ∈ getRunnableThreads (ch) do
8 s′ = executeTransition (s ,T)
9 if isErrorState (s′) then terminate

10 ch′ = createThreadChoice (s′ ,getRunnableThreads (s′))
11 exploreState (s′ ,ch′)
12 end for
13 end proc
14

15 procedure executeTransition (s ,T)
16 i = getNextInstruction (T) // must be globally relevant

17 while i 6= null do // while not at the end of the thread

18 s = executeInstruction (s , i)
19 i = getNextInstruction (T)
20 if isGloballyRelevant (s , i ,T) then break
21 end while
22 return s
23 end proc

Fig. 2. Basic algorithm for state space traversal with POR

same thread. Note that many popular tools, including Java Pathfinder [8], use a state
space traversal procedure that follows this approach.

In this setting, the POR algorithm itself can use information only from (i) the current
dynamic program state, (ii) the current state space path (execution history), and (iii) the
already explored part of the state space to decide whether the action to be executed next
is globally-relevant or thread-local, because it does not see ahead in program execution.
A popular approach is to identify globally-relevant actions based on heap rechability in
the current dynamic state [3]. This approach is safe but not very precise — a particular
heap object (an array) may be reachable from multiple threads but really accessed only
by a single thread during the program execution, or the individual threads may access
different elements of a given array. The POR algorithm has to conservatively assume
that each thread may in the future access every object reachable in the current state, and
therefore many redundant thread choices are created during the state space traversal.

The proposed hybrid analysis determines more precise information about which
array elements may be accessed in the future during the rest of program execution from
the current state. We used the general principle introduced for field accesses in [15] and
adapted it significantly for accesses to array elements. For each program point p in each
thread T , the analysis computes the set of array elements (over all array objects that
may exist in the heap) possibly accessed by thread T after the point p on any execution
path. In other words, the analysis provides over-approximate information about future

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 5

1 procedure isGloballyRelevant (s , i ,Tc)
2 a = getTargetArrayObject (i)
3 if ¬isArrayReachableFromMultipleThreads (s ,a) then return false
4 for To ∈ getOtherThreads (s ,Tc) do
5 if existsFutureConflictingAccess (To ,a) then
6 if possiblyEqualIndexes (s ,Tc ,To ,a) then return true
7 end if
8 end for
9 return false // default

10 end proc

Fig. 3. Procedure that identifies globally-relevant accesses to array elements

behavior of T after a specific code location. Array objects are identified by their static
allocation sites and individual elements are identified by their symbolic indexes.

Our hybrid analysis has two phases: 1) static analysis that computes partial infor-
mation, and 2) post-processing on-the-fly during the state space exploration (i.e., at
the dynamic analysis time). Full results are generated in the second phase, when data
provided by the static analysis are combined with specific information from dynamic
program states, including the dynamic call stack of each thread and concrete values of
some expressions used as array element indexes. The results are more precise than what
would be possible to get with a reasonably expensive static analysis.

Here, in the rest of this section, we describe how the analysis results are used during
the state space traversal to avoid redundant thread choices.

When the next action to be executed is an access to some array element, the POR
algorithm has to decide whether to make a thread choice or not. Figure 3 captures the
procedure at a high level of abstraction. The symbol s represents the current dynamic
state, Tc is the currently scheduled thread, and i is the next instruction of Tc.

First, the algorithm checks whether the target array object a is reachable from mul-
tiple threads in the state s. If it is, then the procedure retrieves the results of the hybrid
analysis for the current point of every thread To other than Tc, and inspects the results
to find whether some of the other threads may access the array a in a conflicting way
(read versus write) on any execution path that starts in s.

For the array accesses that may be performed by some other thread, the hybrid anal-
ysis inspects also symbolic indexes of array elements. More specifically, it compares
(1) the concrete value of the array element index for the next access in Tc, which can be
easily retrieved from the current dynamic state s, and (2) the symbolic index for each of
the possible future conflicting accesses to a. Under some conditions, the concrete value
of the array element index can be soundly determined also for a possible future access
— the respective situations and code patterns are discussed in the next section.

A thread choice has to be created in the state s only when some thread To may
possibly access the same element of a as Tc, because otherwise the respective action of
Tc is thread-local. In particular, if every possible conflicting future access to the array a
in some other thread provably uses a different concrete value of an element index, then
the POR algorithm does not have to make a thread choice.

6 P. Parı́zek

3 Array Access Patterns

Here we discuss patterns of concurrent accesses to array elements, for which our hy-
brid analysis can eliminate a redundant thread choice, and also cases where it cannot
eliminate a thread choice due to imprecision. Each code pattern involves two threads:

– the active thread whose next action is the array access in question (where a thread
choice will be created or not depending on the analysis results), and

– the conflicting thread, which may access the same array elements as the active
thread in the future on some execution path.

In all the patterns we assume that the array data is reachable from both threads. The
various kinds of symbolic expressions that can be used as array element indexes are
considered only for the conflicting thread, because for the active thread we can always
get the actual concrete index value from the current dynamic program state.
Constants. The most basic pattern is the usage of an integer constant as the array ele-
ment index. We show on this example how to interpret also the other patterns below.

data[e] = x y = data[1]
active thread conflict thread

In the code of the active thread, we use the symbol e to denote the concrete value
of the index expression. The symbolic index associated with the possible future access
by the conflicting thread (i.e., the constant 1 in the code fragment above) is compared
with the value e. If the values are different then a thread choice would be redundant at
the array access in the active thread, because each thread accesses different elements.
Local variables. Another common case is when the symbolic index associated with
the future access by the conflicting thread is a local variable v of a method m. In order
to decide soundly about making a new choice, the hybrid analysis can use the current
value of v (from the dynamic state) only if the following two conditions are satisfied.

1. The conflicting thread is executing the method m in the current dynamic state s.
2. The local variable v is not updated in the rest of the program execution starting

from the state s.

We consider all methods on the current dynamic call stack of a given thread as currently
executing. The concrete value obviously cannot be retrieved for local variables of meth-
ods that are not yet on the dynamic call stack of a respective thread. Note also that the
local variable v of m may be updated in the future in two ways — either by assignment
in the rest of the current execution of m, or by a future call of m at any time during the
program execution.

Consider the following example, where the variable v is not updated after the access
to data and the method run is not called again.

main(): run(args):
... v = f(args)
data[e] = x ...
... y = data[v]

active thread conflict thread

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 7

The hybrid analysis can safely eliminate a thread choice only if the concrete dy-
namic value of v is different from e.

A typical situation where the variable v may be updated later during the execution
of m is shown in the next example. Here, v is also a control variable of the loop.

main(): run(args):
... for (v = 0; v < 10; v++)
data[e] = x y = data[v]

active thread conflict thread

The hybrid analysis cannot determine whether another iteration of the loop might
be executed or not, and therefore a future update of v is always possible in this case.

We have to consider also future calls of the method m because every local variable
of m has to be initialized (i.e., updated) before it can be used as array index. Although
each execution of m has its own instances of local variables, the symbolic name v is
common to all of the executions. Therefore, an update of v may occur between the
current state and the relevant array access in a future execution of m.

Object fields. When the symbolic index contains a field access path fp, the analysis can
use the current dynamic value of fp only if the following conditions are satisfied.

1. In the case of instance fields, the access path must contain the local variable this
associated with one of the currently executing methods of the conflicting thread.

2. No field in the access path fp is updated in the future during the rest of program
execution starting from the current dynamic state s.

Then, the dynamic value of fp can be used to compute the concrete value of the
array index expression in the conflicting thread. If the result is not equal to the value of
the index expression e used by the active thread, then both threads will always access
different elements of the shared array at the respective code locations, and thus the POR
algorithm does not have to create a new thread choice.

Multi-dimensional arrays. Our hybrid analysis supports multi-dimensional arrays but
only with a limited precision. Element indexes are inspected and compared only for
the innermost dimension, using the same approach as for single-dimensional arrays.
Index expressions for outer dimensions are completely ignored by the hybrid analysis,
which therefore assumes (i) that concurrent threads may use the same index values
and (ii) that any two elements of an outer array may be aliased. A possible choice can
be safely eliminated only when both threads use provably different values of element
indexes for the innermost dimension. This case is illustrated by the following example,
where e1 might be equal to e2.

data[e1][0] = x y = data[e2][1]
active thread conflict thread

On the other hand, a choice must be preserved when both threads may use the same
index value for the innermost dimension, such as e1 and e2 in the example below, even
if different values (e.g., 0 and 1) are used at some outer dimension. The expressions
data[0] and data[1] may point to the same innermost array because of aliasing.

8 P. Parı́zek

data[0][e1] = x y = data[1][e2]
active thread conflict thread

Note also that we have to analyze possible read-write conflicts only for the inner-
most dimension, because only read-read conflicts may happen at outer dimensions and
they do not require thread choices.

4 Hybrid Analysis

The hybrid analysis computes all the information necessary to decide whether a thread
choice must be created — in particular, for each of the scenarios described in the pre-
vious section. We designed the analysis in a modular way. Each component provides
information about one of the following: (1) accesses to array objects, (2) future accesses
to specific array elements, (3) symbolic values of element indexes, (4) local variables
possibly updated in the future, (5) updated object fields, and (6) future method calls.

First we describe the general principles and then we provide additional details about
the individual components. Every component that is an inter-procedural analysis has
two phases: static and dynamic. Both phases are designed and executed using an ap-
proach that was proposed in [15]. The static analysis runs first, and then follows the
state space traversal with dynamic analysis. Results of the static analysis (phase 1) are
combined with information taken from the dynamic program state (phase 2) on-the-fly
during the state space traversal, i.e. at the dynamic analysis time.

The static phase involves a backward flow-sensitive and context-insensitive analysis
that is performed over the full inter-procedural control flow graph (ICFG) of a given
thread. For each program point p in the thread T , it provides only information about the
behavior of T between the point p and the return from the method m containing p. Note
that the result for p in m covers also methods called from m (transitively).

Full results are computed at the dynamic analysis time based on the knowledge
of the dynamic call stack of each thread, which is a part of the dynamic program state.
The dynamic call stack of a given thread specifies a sequence p0, p1, . . . , pN of program
points, where p0 is the current program counter of the thread (in the top stack frame),
and pi is the point from which execution of the thread would continue after return
from the method associated with the previous stack frame. When the hybrid analysis is
queried for data about the current point p of some thread T , it takes the data computed
by the static analysis phase for each point pi, i = 0, . . . , N on the dynamic call stack
of T , where p = p0, and merges them all to get the precise and complete results for p.

The complete results for a program point p in thread T cover the future behavior of
T after the point p (until the end of T), and also the behavior of all child threads of T
started after p. Here, a child thread of T is another thread created and started by T .

Note also that the complete results of the hybrid analysis are fully context-sensitive
for the following two reasons: (1) they reflect the current dynamic calling context of
p in T , i.e., the current program counter in each method on the dynamic call stack
of T , and (2) they precisely match calls with returns. Only those method call and return
edges in the ICFG that can be actually taken during the concrete program execution are
considered by the hybrid analysis.

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 9

Accesses to array objects. This component of the hybrid analysis identifies all arrays
possibly accessed in the future by a given thread. More specifically, for each program
point p in each thread T , it computes the set of all array objects that may be accessed on
some execution path after p. Static allocation sites are used to represent the actual array
objects also here. The analysis considers read and write accesses separately in order to
enable precise detection of read-write conflicts. It is an inter-procedural analysis, which
therefore has two phases — static and dynamic — in our approach.

Instruction Transfer function
after[`] =

⋃
`′∈succ(`) before[`′]

`: v = a[i] before[`] = after[`] ∪ {r a}
`: a[i] = v before[`] = after[`] ∪ {w a}
`: return before[`] = ∅
`: call M before[`] = before[M.entry] ∪ after[`]
`: other instr. before[`] = after[`]

Fig. 4. Transfer functions for the static phase of the array objects analysis

Figure 4 shows transfer functions for the static phase. When the analysis encounters
a read or write access to an array a, it adds the target array object into the set of data-
flow facts. The transfer functions for the call and return statements are defined in this
way to ensure that the result of the static phase for a point p in a method m covers only
the execution between p and return from m. The merge operator is a set union.

Array elements. Possible future accesses to individual array elements are identified
using an analysis component that works in a very similar way to the one for array
objects. This analysis computes, for each program point p in each thread, the set of all
possible accesses to array elements that may occur on some execution path after p. It
gathers the following information about each access: a target array object (allocation
site), method signature, and instruction index (bytecode position). Knowledge of the
method signature and bytecode position is used by the next component to associate
each particular access with symbolic values of array element indexes.

Symbolic indexes. This component performs symbolic interpretation of the code in
each method to determine symbolic expressions that represent indexes of array ele-
ments. A symbolic expression may include local variables, field access paths, nested
accesses to array elements, numeric constants, and arithmetic operators.

When processing the code of a method, the analysis maintains a stack of symbolic
expressions, which models the concrete dynamic stack containing local variables and
operands. The symbolic stack is updated during interpretation to capture the effects of
executed program statements. For each statement, all its operands are removed from the
stack and then the result is pushed onto it.

The following example illustrates how the symbolic value of an element index is
computed for a particular array access. We consider the statement v = a[o.f+2].

10 P. Parı́zek

1: load a [a]
2: load o [a, o]
3: getfield f [a, o.f]
4: const 2 [a, o.f, 2]
5: add [a, o.f+2]
6: arrayload [e]
7: store v []

instructions symbolic stack

The left column contains a sequence of instructions that corresponds to the state-
ment, and the right column shows the content of the symbolic stack after each instruc-
tion. At line 5, the top value on the stack represents the symbolic array element index.

Updated local variables. The sets of possibly updated local variables are computed by
an intra-procedural static analysis of each method. For each point p in method m, the
analysis identifies all future write accesses to local variables of m that may occur on
some execution path in m. Note that this component of the whole hybrid analysis does
not use any information available in the dynamic program state.

Transfer function for the store operation just records the index (name) of the target
local variable. For all other statements, the transfer function is identity.

Updated fields. We use the field access analysis proposed in [15] to find all fields that
may be updated on some execution path in thread T after the point p. The analysis is
fully inter-procedural and combines the static phase with information taken from the
dynamic program state.

However, the field access analysis alone is not sufficient for the following reason:
a symbolic value of an array element index may refer to a field of a heap object that
does not exist yet in the current dynamic state. It is therefore necessary to consider also
possible future allocations of heap objects of the respective class (type). The current
dynamic value of a given field may be safely used by the hybrid analysis and POR, as
discussed in Section 3, only when the following two conditions hold.

1. The field is provably not updated in the future according to the field access analysis.
2. No heap object of the given type may be allocated later during the program execu-

tion starting from the current dynamic state.

We use a simple analysis to find allocation sites at which some dynamic heap object
may be possibly allocated in the future (on some execution path starting in p).

Although the conditions are quite restrictive, we believe that they will be satisfied
in many cases in practice. Based on manual inspection of the source code of our bench-
mark programs (listed in Section 5), we found that array index expressions quite often
refer to fields of heap objects that are allocated early during the program execution. The
concrete dynamic value of an object field can be safely used in such cases, helping to
eliminate many redundant thread choices.

Method calls. The last component of the hybrid analysis identifies methods that may
be called in the future after the current state. It is an inter-procedural analysis that repre-
sents methods by their signatures. The transfer function for the call statement adds into
the set of facts every method that is a possible target according to the call graph.

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 11

5 Evaluation

We implemented the proposed hybrid analysis in Java Pathfinder (JPF) [8], which is a
framework for state space traversal of multithreaded Java programs. JPF uses on-the-
fly state space construction, depth-first search, and concrete execution of Java bytecode
instructions. In order to support decisions about thread choices based on the results of
our hybrid analysis, we created a non-standard interpreter of Java bytecode instructions
for array access. We used the WALA library [23] for static analysis and JPF API to
retrieve information from the dynamic program state. Symbolic interpretation of Java
bytecode, which collects symbolic expressions that represent indexes of array elements,
is performed by a custom engine that we also built using WALA.

Our prototype implementation, together with the experimental setup and benchmark
programs described below, is publicly available at http://d3s.mff.cuni.cz/
projects/formal_methods/jpf-static/vmcai16.html.
Benchmarks. We evaluated the hybrid analysis on 11 multithreaded Java programs
from widely known benchmark suites (Java Grande Forum [7], CTC [2], pjbench [13]),
our previous work, and existing studies by other researchers [20]. Table 1 shows the
list of benchmark programs and their quantitative characteristics — the total number of
source code lines (Java LoC) and the maximal number of concurrently running threads.
All the benchmark programs that we use contain array objects reachable from multiple
threads and many accesses to array elements in their source code.

Table 1. Benchmark programs

Benchmark Java LoC Threads
CRE Demo 1,300 2
Daisy 800 2
Crypt 300 2
Elevator 300 3
Simple JBB 2700 2
Alarm Clock 200 3
Prod-Cons 130 2
Rep Workers 400 2
SOR 160 2
TSP 420 2
QSort MT 290 2

For selected benchmarks, we provide a more detailed characteristic that is relevant
for the discussion of experimental results later in this section. The benchmark program
Crypt contains three shared arrays, but each thread accesses different elements of the
arrays, and therefore all possible thread choices at the accesses to arrays would be
redundant. In the case of CRE Demo and Daisy, each array object used directly in
the application source code is reachable only from a single thread, which means that
accesses to arrays are thread-local, but the programs involve shared collections (e.g.,
Vector and HashSet) that use arrays internally.

12 P. Parı́zek

Table 2. Configurations of POR

Description Short name
heap reachability without thread choices at bytecode

HR + no array ch
instructions for array element access
heap reachability with thread choices enabled at

HR + all array ch
bytecode instructions for array element access
heap reachability with field access analysis and

HR + fields + all array ch
enabled thread choices at array element accesses
heap reachability with field access analysis, thread

HR + fields + hybrid
choices at array accesses, and hybrid analysis
dynamic POR without thread choices at bytecode

DPOR + no array ch
instructions for array element access
dynamic POR with thread choices enabled at

DPOR + enabled array ch
bytecode instructions for array access
dynamic POR with field access analysis and

DPOR + fields + enabled array ch
enabled choices at array element accesses
dynamic POR with field access analysis, enabled

DPOR + fields + hybrid
choices at array accesses, and hybrid analysis

Experiments. The goal of our experimental evaluation was to find how many redundant
thread choices the hybrid analysis really eliminates during the state space traversal, and
how much it improves performance and scalability of different approaches to partial
order reduction in the context of software model checking. We performed experiments
with the hybrid analysis for shared array elements proposed in this paper, the hybrid
field access analysis [15], the POR algorithm based on heap reachability, and our im-
plementation of the dynamic POR algorithm described in [4]. For the purpose of our
experiments, we have implemented also the dynamic POR algorithm in JPF and com-
bined it with state matching.

Table 2 shows all configurations of POR that we considered in our experiments. For
each configuration, it provides a brief description and a short name used in tables with
results. Note that we say ”array access” instead of ”array element access” in some table
rows, but with the same intentional meaning, as the table would be too large otherwise.

For each configuration and benchmark program, i.e. for every experiment, we report
the following metrics: (1) the total number of thread choices created by JPF at all kinds
of bytecode instructions during the state space traversal, and (2) the total running time
of JPF combined with all phases of the hybrid analysis. The number of thread choices
shows precision, while the running time indicates performance.

In the first set of experiments, we configured JPF to traverse the whole state space
of each benchmark program — we had to disable reporting of errors because otherwise
JPF would stop upon reaching an error state. We used the time limit of 8 hours and
memory limit of 20 GB. The symbol ”-”, when present in some cell of a table with
results, indicates that JPF run out of the limit for a given configuration and benchmark.

Discussion. The results in Table 3 and Table 4 show that usage of our hybrid analysis
together with POR in general reduces the number of thread choices and improves the

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 13

Table 3. Experimental results: POR algorithm based on heap reachability

HR + no array ch HR + all array ch HR + fields + HR + fields +
all array ch hybrid

benchmark choices time choices time choices time choices time
CRE Demo 30942 51 s 103016 174 s 41146 79 s 29737 69 s
Daisy 28436002 17954 s 32347254 18357 s 8453587 5972 s 8453587 6765 s
Crypt 4993 3 s 682273 238 s 674041 237 s 46105 29 s
Elevator 10167560 7656 s 23709139 18339 s 9980240 7426 s 4748393 3872 s
Simple JBB 575519 1779 s 836889 2583 s 515312 1722 s 344428 1269 s
Alarm Clock 531463 432 s 742027 601 s 344791 285 s 344791 289 s
Prod-Cons 6410 4 s 6934 4 s 2792 4 s 2792 6 s
Rep Workers 9810966 6860 s 9983423 7045 s 1714694 1169 s 1714694 1275 s
SOR 222129 123 s 1565386 882 s 772837 451 s 273693 160 s
TSP 35273 572 s 47475 779 s 15386 257 s 13258 221 s

Table 4. Experimental results: dynamic POR

DPOR + no array ch DPOR + enabled DPOR + fields + DPOR + fields +
array ch enabled array ch hybrid

benchmark choices time choices time choices time choices time
CRE Demo 2015 11 s 2232 20 s 2207 18 s 2197 22 s
Daisy - - - - - - - -
Crypt 9 1 s 9 1 s 9 3 s 9 5 s
Elevator 414345 913 s 501732 1371 s 408192 886 s 342817 648 s
Simple JBB 602 30 s 608 36 s 608 36 s 608 38 s
Alarm Clock 102076 147 s 155974 227 s 103964 123 s 103964 125 s
Prod-Cons 429 1 s 444 1 s 407 3 s 407 4 s
Rep Workers - - - - - - - -
SOR 135 2 s 40594 208 s 26503 135 s 19819 71 s
TSP 101 67 s 101 94 s 97 66 s 97 58 s

running time for both POR algorithms that we considered. In the next few paragraphs,
we discuss the results for individual benchmark programs in more detail and highlight
important observations.

For many configurations and benchmark programs, the total number of thread choices
created during the state space traversal is much higher when choices are enabled at ac-
cesses to array elements. This is evident from the values in columns ”HR + no array
ch” and ”HR + all array ch” (Table 3), respectively in the columns ”DPOR + no array
ch” and ”DPOR + enabled array ch” (Table 4). We observed an extreme increase of the
number of thread choices in two cases — by the factor of 137 for the Crypt benchmark
with POR based on heap reachability, and by the factor of 300 for the SOR benchmark
when using the dynamic POR. On the other hand, there is a negligible increase for
Prod-Cons and Rep Workers, and no increase for the benchmarks Crypt, Simple JBB,
and TSP when using the dynamic POR.

14 P. Parı́zek

Data in tables 3 and 4 also indicate how many redundant choices were eliminated
by the hybrid analysis, and how much it improved the performance and scalability of
state space traversal. The result for a particular benchmark and POR based on heap
reachability corresponds to the difference between values in the columns ”HR + fields
+ all array ch” and ”HR + fields + hybrid” of Table 3. Similarly, in the case of dynamic
POR one has to consider values in the columns ”DPOR + fields + enabled array ch”
and ”DPOR + fields + hybrid” of Table 4. We observe that our hybrid analysis elim-
inates many redundant thread choices at array accesses for 6 out of 10 benchmarks,
namely the following: CRE Demo, Crypt, Elevator, Simple JBB, SOR, and TSP. In the
case of four benchmark programs — CRE Demo, Crypt, Simple JBB, and TSP — the
hybrid analysis significantly reduced the total number of thread choices only when it
is combined with the POR based on heap reachability. The factor of reduction in the
number of thread choices lies in the range from 1.16 (for TSP and POR based on heap
reachability) up to 14.62 (Crypt and again POR based on heap reachability).

Our results for the benchmarks Alarm Clock, Daisy, Prod-Cons, and Rep Workers
indicate that all redundant thread choices were eliminated by the field access analysis.
For example, by manual inspection of the source code of Prod-Cons we have found
that all accesses to array elements are properly synchronized, and therefore no thread
choices are created at their execution.

Here we compare dynamic POR with the POR algorithm based on heap reachability.
A well-known fact is that dynamic POR is very precise and creates much less thread
choices [12, 16]. For example, it correctly identifies that all accesses to array elements
in the Crypt benchmark are thread-local actions. It analyzes small programs very fast
(in few seconds) — see, e.g., the data for Crypt and Prod-Cons in Table 4 — but it
has a significantly higher running time and memory consumption for some of the more
complex benchmark programs. Specifically, our implementation of dynamic POR run
out of memory for Daisy and Rep Workers. Even though dynamic POR itself avoids
many redundant thread choices, usage of our hybrid analysis can still improve precision
and also the running time — data for the benchmarks Elevator and TSP highlight this
case. We discuss reasons for the observed behavior of dynamic POR in Section 6.

The cost of the static phase of the hybrid analysis is negligible, as it runs for few
seconds at most. This is apparent especially from the data for benchmarks Crypt and
Prod-Cons, where a majority of the total running time is consumed by static analysis.
The cost of the dynamic analysis phase, which is performed on-the-fly during the state
space traversal, depends heavily on the number of executed actions (program state-
ments) for which JPF queries the hybrid analysis. For every such action, the hybrid
analysis must decide whether it is globally-relevant or not. Results for the benchmarks
Daisy and Rep Workers in the right-most columns of Table 3 show that the cost of the
dynamic analysis phase may be significant if JPF performs many queries — in general,
one query for each thread choice created in the configuration ”HR + all array ch”. Note
that for Daisy and Rep Workers, the hybrid analysis for shared array elements does
not eliminate any additional thread choices when compared to the configuration ”HR
+ fields + all array ch” that involves just the field access analysis, and therefore hybrid
analysis is responsible for the increase of running time. However, despite the relatively

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 15

Table 5. Experimental results: search for concurrency errors

HR + all array ch HR + fields + DPOR + enabled DPOR + fields +
hybrid array ch hybrid

benchmark choices time choices time choices time choices time
Daisy 253336 143 s 173441 151 s - - - -
Elevator 31169 14 s 8494 9 s 178748 529 s 80486 165 s
Alarm Clock 428 1 s 161 4 s 179 1 s 71 4 s
Prod-Cons 12073 17 s 3030 8 s 1114 3 s 1101 6 s
Rep Workers 6708 5 s 1545 6 s 4527 6 s 1699 6 s
QSort MT 2635 2 s 1428 4 s - - - -

high cost, the speedup of JPF achieved due to the elimination of many redundant thread
choices makes the proposed hybrid analysis practically useful for many programs.

We also performed experiments with several benchmark programs to find whether
our hybrid analysis improves the speed of error detection. For that purpose, we had to
manually inject concurrency errors into some of the programs. Table 5 contains results
for selected configurations. We have considered both the POR based on heap reach-
ability and the dynamic POR, each with enabled thread choices at accesses to array
elements, and then with or without the hybrid analysis.

Usage of the hybrid analysis (i) helped to reduce the number of thread choices
created before reaching an error state for all the benchmarks, and (ii) also helped to im-
prove performance by a factor greater than 2 for the benchmark Elevator (with dynamic
POR) and for the benchmark Prod-Cons (just with POR based on heap reachability).
When the error is detected very quickly in the baseline configurations, then the cost of
the hybrid analysis is responsible for slight increase of the total running time — see,
e.g., the data for Prod-Cons and the dynamic POR. Interestingly, dynamic POR is much
slower than JPF with heap reachability for Elevator, and it did not find any error for
Daisy and QSort MT.

Regarding the actual errors, JPF reported a race condition involving a particular ar-
ray element only for the benchmarks Elevator and QSortMT. They could not be detected
if threads choices were disabled at array accesses. Other benchmarks contain also race
conditions that involve field accesses, and the corresponding error states are discovered
by JPF sooner than the possible races at array element accesses.

6 Related Work

We discuss selected approaches to partial order reduction, which are used in software
model checking, and also few static analysis-based techniques that can be used to iden-
tify shared array elements.

Dwyer et al. [3] proposed to use a heap reachability information that is computed
by a static or dynamic escape analysis. If a given heap object is reachable from multi-
ple threads, then all operations upon the object have to be marked as globally-relevant,
independently of which threads may really access the object. The dynamic escape anal-
ysis is performed on-the-fly during the state space traversal, and therefore it can use

16 P. Parı́zek

knowledge of the dynamic program state to give more precise results than the static
escape analysis. An important limitation of this approach is that it works at the granu-
larity of whole objects and arrays. For example, if an array object is reachable from two
threads but every element is accessed only by a single thread, then all the accesses are
still imprecisely considered as globally-relevant even though they are actually thread-
local. Our hybrid analysis is more precise because (i) for each thread T it computes the
set of array objects accessed by T and (ii) it can distinguish individual array elements.

The dynamic POR algorithm that was proposed by Flanagan and Godefroid [4]
is very precise. It explores each dynamic execution path of the given program sepa-
rately, and for each path determines the set of array elements that were truly accessed
by multiple threads on the path. The main advantage of dynamic POR is that it can
distinguish between individual dynamic heap objects, unlike the static pointer analysis
whose results we also use in our hybrid analysis. More specifically, dynamic POR can
precisely identify every shared memory location, e.g. a dynamic array object with the
concrete value of an element index, and creates thread choices retroactively at accesses
to such locations. Every added choice corresponds to a new thread interleaving that
must be explored later. A limitation of this dynamic POR algorithm performance-wise
is that it performs redundant computation because (i) it has to execute each dynamic
path until the end state and (ii) it has to track all accesses to object fields and array
elements. A given path has to be fully analyzed even if it does not contribute any new
thread choices, and this can negatively impact performance in the case of long execution
paths. We believe that the redundant computation is the main reason for the surprisingly
long running times of the dynamic POR that we reported in Section 5. The need to keep
track of many accesses to fields and array elements is the main reason for high memory
consumption that we observed with our implementation. Our hybrid analysis improves
the performance of dynamic POR, when they are combined together, by identifying
thread-local accesses to array elements that the dynamic POR does not have to track. In
Section 5, we also reported that the combination of dynamic POR with hybrid analysis
improves precision for some benchmarks. The standalone dynamic POR does not con-
sider reachability of heap objects by individual threads, and therefore it may still create
some redundant thread choices. More specifically, when processing two instructions i
and j that access the same element on the same array object a, the dynamic POR does
not check whether the array a was reachable by thread Tj (which executes j) at the time
of the access by instruction i.

Other recent approaches to partial order reduction include, for example, the Carte-
sian POR [6] and the combination of dynamic POR with state matching [24], which
address some limitations of the original approach to dynamic POR. Unnecessary thread
choices can be eliminated from the state space also by preemption sealing [1], which
allows the user to enable thread scheduler only inside specific program modules.

Many techniques that improve the error detection performance of software model
checking are based on bounding the number of explored thread interleavings. See the
recent experimental study by Thomson et al. [20] for a comprehensive overview. Tech-
niques from this group are orthogonal to our proposed approach, because they limit the
search to a particular region of the state space, while preserving all thread choices.

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 17

Another group of related techniques includes static and dynamic analyses that can
determine whether a given heap object (field) is stationary according to the definition
in [21]. Such objects and fields may be updated only during initialization, while they are
reachable only from a single thread. Once the object becomes shared, it can be just read
in the rest of the program execution. The analyses for detecting stationary objects [9]
and fields [21] could be extended towards array elements, and then used to compute
a subset of the information that is produced by our hybrid analysis. No thread choice
would have to be created at accesses to a stationary array element during the state space
traversal, because there cannot occur any conflicting pair of read-write accesses to such
an element from different threads.

Shape analysis together with pointer analysis can be also used to identify heap ob-
jects and array elements possibly shared between multiple threads. For example, the
analysis proposed by Sagiv et al. [17] determines the set of memory locations that are
directly reachable from two or more pointer variables. Client analyses can derive vari-
ous higher-level sharing properties from this information. Our hybrid analysis is differ-
ent especially in that it determines only whether an array element is possibly accessed
by multiple threads — it does not compute the heap reachability information and does
not perform any kind of shape analysis.

Marron et al. [11] proposed an analysis that determines whether elements of a given
array may be aliased. In that case, threads accessing the respective different array el-
ements would in fact access the same object. Our hybrid analysis does not compute
aliasing information of such kind — rather it answers the question whether multiple
threads can access the same array element (i.e., whether threads can use the same index
when accessing the array), independently of possible aliasing between array elements.

7 Conclusion

Our motivation for this work was to optimize the existing popular approaches to partial
order reduction in the context of programs that heavily use arrays. We proposed a hybrid
static-dynamic analysis that identifies array elements that are possibly accessed by mul-
tiple threads during the program execution. Results of experiments that we performed
on several benchmark programs show that combination of the hybrid analysis with POR
improves performance and scalability of state space traversal. The main benefit of the
hybrid analysis is that, in tools like Java Pathfinder, thread choices can be enabled at
globally-relevant accesses to individual arrays elements, which is a necessary step for
detecting specific race conditions and other kinds of concurrency errors, all that without
a high risk of state explosion and at a reasonable cost in terms of the running time.

In the future, we plan to integrate the proposed hybrid analysis for array elements
with the may-happen-before analysis [14]. Another possible line of future research work
is to design some variant of the dynamic determinacy analysis [18] for multithreaded
programs, and use it to improve the precision of our hybrid analyses.

Acknowledgments. This work was partially supported by the Grant Agency of the
Czech Republic project 13-12121P.

18 P. Parı́zek

References

1. T. Ball, S. Burckhardt, K.E. Coons, M. Musuvathi, and S. Qadeer. Preemption Sealing for
Efficient Concurrency Testing. In Proceedings of TACAS 2010, LNCS, vol. 6015.

2. Concurrency Tool Comparison repository, https://facwiki.cs.byu.edu/
vv-lab/index.php/Concurrency_Tool_Comparison

3. M. Dwyer, J. Hatcliff, Robby, and V. Ranganath. Exploiting Object Escape and Locking
Information in Partial-Order Reductions for Concurrent Object-Oriented Programs. Formal
Methods in System Design, 25, 2004.

4. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Checking Soft-
ware. In Proceedings of POPL 2005, ACM.

5. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol.
1032, 1996.

6. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian Partial-Order Reduction. In Pro-
ceedings of SPIN 2007, LNCS, vol. 4595.

7. The Java Grande Forum Benchmark Suite, https://www2.epcc.ed.ac.uk/
computing/research_activities/java_grande/index_1.html

8. Java Pathfinder: a system for verification of Java programs, http://babelfish.arc.
nasa.gov/trac/jpf/

9. D. Li, W. Srisa-an, and M.B. Dwyer. SOS: Saving Time in Dynamic Race Detection with
Stationary Analysis. In Proceedings of OOPSLA 2011, ACM.

10. J. Manson, W. Pugh, and S.V. Adve. The Java Memory Model. In Proceedings of POPL
2005, ACM.

11. M. Marron, M. Mendez-Lojo, M. Hermenegildo, D. Stefanovic, and D. Kapur. Sharing Anal-
ysis of Arrays, Collections, and Recursive Structures. In Proceedings of PASTE 2008, ACM.

12. E. Noonan, E. Mercer, and N. Rungta. Vector-Clock Based Partial Order Reduction for JPF.
ACM SIGSOFT Software Engineering Notes, 39(1), 2014.

13. pjbench: Parallel Java Benchmarks, https://bitbucket.org/pag-lab/pjbench
14. P. Parizek and P. Jancik. Approximating Happens-Before Order: Interplay between Static

Analysis and State Space Traversal. In Proceedings of SPIN 2014, ACM.
15. P. Parizek and O. Lhotak. Identifying Future Field Accesses in Exhaustive State Space

Traversal. In Proceedings of ASE 2011, IEEE CS.
16. P. Parizek and O. Lhotak. Model Checking of Concurrent Programs with Static Analysis of

Field Accesses. Science of Computer Programming, 98(part 4), 2015.
17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. ACM

Transactions on Programming Languages and Systems, 24(3), 2002.
18. M. Schaefer, M. Sridharan, J. Dolby, and F. Tip. Dynamic Determinacy Analysis. In Pro-

ceedings of PLDI 2013, ACM.
19. P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. Myreen. x86-TSO: A Rigorous

and Usable Programmer’s Model for x86 Multiprocessors. Comm. of the ACM, 53(7), 2010.
20. P. Thomson, A. Donaldson, and A. Betts. Concurrency Testing Using Schedule Bounding:

An Empirical Study. In Proceedings of PPoPP 2014, ACM.
21. C. Unkel and M.S. Lam. Automatic Inference of Stationary Fields: A Generalization of

Java’s Final Fields. In Proceedings of POPL 2008, ACM.
22. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs. Auto-

mated Software Engineering, 10(2), 2003.
23. WALA: T.J. Watson Libraries for Analysis, http://wala.sourceforge.net/
24. Y. Yang, X. Chen, G. Gopalakrishnan, and R.M. Kirby. Efficient Stateful Dynamic Partial

Order Reduction. In Proceedings of SPIN 2008, LNCS, vol. 5156.

