
Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Investigating Hardware Micro-Instruction Folding
in a Java Embedded Processor

Flavius Gruian1 Mark Westmijze2

1Lund University, Sweden
flavius.gruian@cs.lth.se

2University of Twente, The Netherlands
m.westmijze@student.utwente.nl

Java Technologies for Real-time and Embedded Systems, 2010

1 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Outline

1 Introduction

2 Folding BlueJEP

3 Implementation and Experiments

4 Discussion

5 Conclusion

2 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Goal

What are we trying to do?

Implement bytecode folding on an existing Java embedded
processor and evaluate the results with respect to:

theoretical estimates

absolute speed-up

performance w.r.t. device area

Finally...

Is it worth it?

3 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Goal

What are we trying to do?

Implement bytecode folding on an existing Java embedded
processor and evaluate the results with respect to:

theoretical estimates

absolute speed-up

performance w.r.t. device area

Finally...

Is it worth it?

3 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Starting Point

Original Processor Architecture

BlueJEP

BlueSpec System Verilog Java Embedded Processor,
a redesign of JOP [M. Schöberl]

micro-programmed, stack machine core

predictable rather than high-performance (RT systems)

JOP micro-instruction set (for ease of programming)

specified in BSV [see JTRES 2007]

4 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Starting Point

Original Processor Architecture

BlueJEP

BlueSpec System Verilog Java Embedded Processor,
a redesign of JOP [M. Schöberl]

micro-programmed, stack machine core

predictable rather than high-performance (RT systems)

JOP micro-instruction set (for ease of programming)

specified in BSV [see JTRES 2007]

4 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

BlueJEP Architecture

Six Stages Micro-Programmed Pipeline

Fetch 
Bytecode

Fetch 
micro-I

Decode
& Fetch 
Register

Fetch 
Stack Execute Write-

back

micro-
ROM

BC2 
microA

jump 
table

bypass
forward

BC-
Cache

jpc

StackRegisters

bus interface (OPB)

load 
cache

SP VP

MD MrAMwA

PC

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
bc

fif
o

de
cfi

fo

fs
fif

o

ex
fif

o

wb
fif

o

OPD

const
CacheCtl

rollback

MMU access registers

5 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Folding Theory

Bytecode Folding Theory

stack machine (JVM) code can be shorter on multi-address
machines that emulate them

stack code 3-address code
≈7 bytes ≈4 bytes

iload a add a, b, c
iload b
iadd

istore c

folding pattern length depends on the available resources
(ALUs, memory ports)

bytecodes are grouped in classes by resource access, e.g.:

P producer: pushes a value in the stack
C consumer: pops a value in the stack
O operation: uses top two and pushes back a result
S special: not foldable (breaks a pattern)

6 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Folding Theory

Bytecode Folding Theory

stack machine (JVM) code can be shorter on multi-address
machines that emulate them

stack code 3-address code
≈7 bytes ≈4 bytes

iload a add a, b, c
iload b
iadd

istore c

folding pattern length depends on the available resources
(ALUs, memory ports)

bytecodes are grouped in classes by resource access, e.g.:

P producer: pushes a value in the stack
C consumer: pops a value in the stack
O operation: uses top two and pushes back a result
S special: not foldable (breaks a pattern)

6 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Folding Theory

Bytecode Folding Theory

stack machine (JVM) code can be shorter on multi-address
machines that emulate them

stack code 3-address code
≈7 bytes ≈4 bytes

iload a add a, b, c
iload b
iadd

istore c

folding pattern length depends on the available resources
(ALUs, memory ports)

bytecodes are grouped in classes by resource access, e.g.:

P producer: pushes a value in the stack
C consumer: pops a value in the stack
O operation: uses top two and pushes back a result
S special: not foldable (breaks a pattern)

6 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Folding Scheme

Adopted Folding Scheme

fixed folding pattern approach [picoJava-II]

micro-instruction level (rather than bytecode level)

maximum length of four micro-instructions
(at most four single instruction bytecodes)

Folding Pattern Length

ppoc 4
poc 3
ppc 3
pc 2
oc 2
po 2

7 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Folding Scheme

Pre-design Estimates

How much is the number of executed clock cycles reduced?

Processed cycle accurate simulation traces say:

≈ 30% fewer cycles for 0-delay memory

≈ 25% fewer cycles for realistic memory

8 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Folding Scheme

Pre-design Estimates

How much is the number of executed clock cycles reduced?
Processed cycle accurate simulation traces say:

≈ 30% fewer cycles for 0-delay memory

≈ 25% fewer cycles for realistic memory

8 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Design

Architectural Changes

Increase fetch parallelism to allow folding:

wider fetch-bytecode stage: up to four bytecodes must be
available simultaneously.

multiple bytecode FIFOs: to feed the next stage with
sequences of bytecodes.

wider fetch-instruction stage: up to four different
micro-addresses must be read simultaneously.

multiple micro-instruction FIFOs: to provide patterns to
the decode stage.

folding schemes in the decode stage: to identify and
handle foldable patterns.

9 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Design

Configurability

Highly configurable architecture:
1 bytecode bandwidth (1,2,4)
2 micro-instruction bandwidth (1,2,4)
3 foldable patterns

Fetch 
Bytecode

Fetch 
micro-I

Decode
& Fetch 
Register

micro-
ROMBC2 

microA

jump 
table

Stage 1 Stage 2 Stage 3

bc
fif

os

de
cfi

fo
s

Figure: Handling 2 bytecodes, 4 micro-instructions simultaneously.

10 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Design

Configurability

Highly configurable architecture:
1 bytecode bandwidth (1,2,4)
2 micro-instruction bandwidth (1,2,4)
3 foldable patterns

Fetch 
Bytecode

Fetch 
micro-I

Decode
& Fetch 
Register

micro-
ROMBC2 

microA

jump 
table

Stage 1 Stage 2 Stage 3

bc
fif

os

de
cfi

fo
s

Figure: Handling 2 bytecodes, 4 micro-instructions simultaneously.
10 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Setup and Tools

Synthesis → device area, maximum clock frequency

FPGA, Xilinx Virtex-5 (XC5VLX30-3)
BSV compiler 2006.11, BSV → Verilog
Xilinx EDK 9.1i, Verilog + IPs → System
Xilinx ISE 9.1i, System→ FPGA
Chipscope, to calibrate simulation

Simulation → executed clock cycles

Desktop, Linux
BSV compiler 2006.11, BSV → Executable
custom tools for parsing the output from
instrumented code

11 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Setup and Tools

Synthesis → device area, maximum clock frequency

FPGA, Xilinx Virtex-5 (XC5VLX30-3)
BSV compiler 2006.11, BSV → Verilog
Xilinx EDK 9.1i, Verilog + IPs → System
Xilinx ISE 9.1i, System→ FPGA
Chipscope, to calibrate simulation

Simulation → executed clock cycles

Desktop, Linux
BSV compiler 2006.11, BSV → Executable
custom tools for parsing the output from
instrumented code

11 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Results

Original vs. Folding Configurations (2,2; 2,4)

0

0.5

1.0

1.5

2.0

2.5

Relative Clk Cycles Relative Clk Frequency Relative Device Area
Relative Performance Relative Performance/Area Unit

12 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Results

Original vs. Folding Configurations (4,4)

0

0.5

1.0

1.5

2.0

2.5
Relative Clk Cycles Relative Clk Frequency Relative Device Area
Relative Performance Relative Performance/Area Unit

13 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Discussion

Introducing folding and more patterns:

+ reduce the executed clock cycles (as in theory), but

- . . . greatly reduce the maximum clock frequency

- . . . and also greatly increase the required device area

Performance/area unit gets as low as 1/4 for some designs with
maximal folding!

Introducing more simple processors instead of using folding would
be more efficient.

14 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Discussion

Introducing folding and more patterns:

+ reduce the executed clock cycles (as in theory), but

- . . . greatly reduce the maximum clock frequency

- . . . and also greatly increase the required device area

Performance/area unit gets as low as 1/4 for some designs with
maximal folding!

Introducing more simple processors instead of using folding would
be more efficient.

14 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Provisions

Reservations:

using RT-level vhdl instead of BSV may offer better control
over the critical path

introducing more stages may increase clock frequency

multi-method caches instead of one-method cache would
improve overall performance

other applications than the one we used (GC) could exhibit
more folding potential

more elaborate folding schemes may be more effective

15 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Finally...

Summary We evaluated folding schemes for BlueJEP and
conclude that the performance greatly decreases
although the number of executed cycles is reduced.

Observation Theoretical gains are not enough to show efficiency.
Complete implementations must be evaluated!

Recommendation For our case, using several simple processors
is potentially more efficient.

16 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Finally...

Summary We evaluated folding schemes for BlueJEP and
conclude that the performance greatly decreases
although the number of executed cycles is reduced.

Observation Theoretical gains are not enough to show efficiency.
Complete implementations must be evaluated!

Recommendation For our case, using several simple processors
is potentially more efficient.

16 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Finally...

Summary We evaluated folding schemes for BlueJEP and
conclude that the performance greatly decreases
although the number of executed cycles is reduced.

Observation Theoretical gains are not enough to show efficiency.
Complete implementations must be evaluated!

Recommendation For our case, using several simple processors
is potentially more efficient.

16 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Thank you!

Questions?

17 / 17



Introduction Folding BlueJEP Implementation and Experiments Discussion Conclusion

Thank you!

Questions?

17 / 17


	Introduction
	Goal
	Starting Point
	BlueJEP Architecture
	Folding Theory

	Folding BlueJEP
	Folding Scheme
	Design

	Implementation and Experiments
	Results

	Discussion
	
	

	Conclusion
	

