
Towards Memory Management
for Service-Oriented RTS

Tom Richardson

2

Overview

 Introduce service-oriented architecture (SOA)
 Motivation for integrating SOA with RTS (RT-SOA)

 Dynamic reconfiguration

 Issue of memory management in RT-SOA
 Issue of preconfigured GC
 Issue of scoped memory and 3rd party services

 Dynamically reconfigurable GC
 Reconfiguration analysis
 Admission control
 Reconfigurable GC

 Evaluation and conclusions

3

Service-Oriented Architecture
(SOA)

 A service is an act or performance offered by one party to
another

 Similar to objects, modules, and components etc, but:
 Dynamically discoverable

 Dynamically available

 Service-Oriented Architecture (SOA) is a way of designing a
software system to provide services:
 To end-user applications

 To other services

 Achieved by using published and discoverable interfaces (Publish-
Find-Bind)

 SOA enables application dynamic reconfiguration

4

Dynamic Reconfiguration

 Dynamic reconfiguration
 Enables the application architecture to be modified at run-time

 Without shutting the application down

 Different SOA technologies offer different levels of
application dynamic reconfiguration
 The most basic level is service substitutability – i.e. the ability to

bind with different service providers at run-time

 OSGi Framework provides more powerful reconfiguration

 OSGi Framework
 SOA dynamism – Can acquire new services and release services at

run-time

 CBSE with dynamism – Provides the ability to install, uninstall, and
update components at run-time

5

Dynamic Reconfiguration
Example

JVM

OSGi Framework

Service Provider

Service

Requester

Service Registry

Service

T1 T2 T3

Service Provider

Service

6

Motivation for SOA in Real-Time
Systems

 Dynamic reconfiguration improves the system availability
 System does not need to be taken offline to be

maintained/reconfigured
 Improves application availability
 Important in RTS in particular as they have high availability

requirements

 Dynamic reconfiguration minimises memory resource
requirements
 Only require the components and services comprising the current

mode of operation to be deployed
 Important in embedded systems (resource constrained)

 Remote controllability- evolving RTS from a remote location
 RTS deployed in harsh environment- danger in being physically

present in deployment environment for updating software
 Software updates in mass produced embedded devices such as

consumer electronics

7

Current GCs with Dynamically
Reconfigurable Systems

T1 (C,T,D,A)

T2 (C,T,D,A)

T3 (C,T,D,A)

GC (C,T,D)

T4 (C,T,D,A)

T5 (C,T,D,A)

T6 (C,T,D,A)

A

T

Pre-runtime Runtime

 Application reconfigured at run-
time

 GC NOT reconfigured accordingly

 Risk of memory exhaustion

8

Scoped Memory with Dynamically
Reconfigurable Systems

 Scoped Memory (SM)
 Avoids overheads of garbage collection (GC) and

therefore suited to harder RTS

 Two approaches to using SM in SOA
 Threads can enter scoped memory before calling

services
 IllegalAssignmentErrors if service method breaks RTSJ memory

assignment rules

 Services handle scoped memory
 ScopedCycleExceptions depending on the scope stack of calling

threads
 Blocking – ensuring only one thread in SM at any one time

 We focus on GC not SM
 RT-GC advancing, adequate for RT-SOA

9

Application Reconfiguration
Example

Thread C (ms) T (ms) D (ms) A (MB)

T1 1 10 10 0.1

T2 2 8 8 0.3

T3 1 12 12 0.2

T4 1 5 5 0.5

T5 5 30 30 0.4

T6 1 18 18 0.01

 Perform application reconfiguration:
 GC reconfiguration analysis

 Application reconfiguration admission control

 GC reconfiguration

TGC = 8 ms

CGC = 2.5 ms

M = 24.5 MB

10

Example – GC Analysis

 Estimate GC cycle work (WGC)
 Computation time to complete a GC cycle

 Cost of reference traversal (root-set, live objects)

 Cost of object evacuation (copying)

 Cost of memory initialisation

 WGC = 29.2 ms

 






















 
 






2
312

1
1

H
cAc

wordsizeof

AR
cW

n

i i

n

i i

GC

11

Example – GC Analysis

 Calculate GC parameters

 Find the maximum CPU utilisation for GC

 GC period (TGC) – equal to the application

thread with the smallest period

 GC budget (CGC) – find maximum value of x

such that all threads remain schedulable

 TGC = 5ms, CGC = 0.5ms

 

































 





i

j

ij

j

i

GC

i
niGC DC

T

T
x

T

T
txC

1

...0 :|max 

12

Example – GC Analysis

 Calculate GC cycle time
 During a GC period, the GC thread can only

perform an amount of work equal to CGC

 Therefore a number of GC periods will be
required to complete a GC cycle

 RGC = 294.7 ms

    GCGCGC

GC

GC
GCGCGC WCT

C

W
CTR 























 1

13

Example – Admission Control

 Application reconfiguration admission control
 Application’s memory requirement is 2 * (worst case live memory

plus garbage allocation in a GC cycle of worst case length)
 As at end of a GC cycle, before semispace flip, both semispaces will

have copies of live memory, and one GC cycle’s worth of garbage
alloc

 Guarantees threads will not experience memory exhaustion
 If free mem <= M then accept application reconfiguration and

reconfigure GC
 Else, reject application reconfiguration as it would cause memory

exhaustion

 M = 93.9 MB




















































  

 

n

i

n

i

ii

i

GC AA
T

R
M

1 1

12

14

Example – GC Reconfiguration

 Reconfiguration analysis determines new C,T,D parameters
for the GC

 Admission control controls application reconfiguration

 Need to reconfigure the GC with these parameters

 Only GC available that can be reconfigured is Sun’s GC
 Only the GC thread’s priority can be modified, but not its C,T,D

 Solve by:
 Setting GC thread’s priority to a background priority

 Creating a GC controller thread to manipulate the GC thread’s
priority such that it appears like a time-based GC

 GC controller thread period = TGC

 Time GC runs at high priority = CGC

15

Evaluation
Scenario Expected result Actual result

Single thread Memory not exhausted

(Reconfig analysis)

Garbage is collected. No

memory exhaustion.

Several

threads

Memory not exhausted

(Reconfig analysis,

Admission control)

Garbage is collected. No

memory exhaustion

Admission control functions

correctly.

Dynamic

unbounded

structures

Eventually memory

exhausted

Any garbage is collected, but

memory is eventually

exhausted.

Misbehaving

thread

Memory not exhausted

(Memory allocation

enforced)

Misbehaviour is detected and

the thread is blocked. No

memory exhaustion

16

Conclusions

 Can develop dynamically reconfigurable RTS applications
with:
 GC Reconfiguration analysis
 Admission control
 Reconfigurable GC
 Memory allocation enforcement

 No risk of garbage related memory exhaustion
 Dynamic reconfiguration:

 Improves system availability
 Reduces the memory requirement of application

 Beneficial to RTS as they typically have:
 high availability requirements
 resource constrained

17

Questions?

