
Towards Memory Management
for Service-Oriented RTS

Tom Richardson

2

Overview

 Introduce service-oriented architecture (SOA)
 Motivation for integrating SOA with RTS (RT-SOA)

 Dynamic reconfiguration

 Issue of memory management in RT-SOA
 Issue of preconfigured GC
 Issue of scoped memory and 3rd party services

 Dynamically reconfigurable GC
 Reconfiguration analysis
 Admission control
 Reconfigurable GC

 Evaluation and conclusions

3

Service-Oriented Architecture
(SOA)

 A service is an act or performance offered by one party to
another

 Similar to objects, modules, and components etc, but:
 Dynamically discoverable

 Dynamically available

 Service-Oriented Architecture (SOA) is a way of designing a
software system to provide services:
 To end-user applications

 To other services

 Achieved by using published and discoverable interfaces (Publish-
Find-Bind)

 SOA enables application dynamic reconfiguration

4

Dynamic Reconfiguration

 Dynamic reconfiguration
 Enables the application architecture to be modified at run-time

 Without shutting the application down

 Different SOA technologies offer different levels of
application dynamic reconfiguration
 The most basic level is service substitutability – i.e. the ability to

bind with different service providers at run-time

 OSGi Framework provides more powerful reconfiguration

 OSGi Framework
 SOA dynamism – Can acquire new services and release services at

run-time

 CBSE with dynamism – Provides the ability to install, uninstall, and
update components at run-time

5

Dynamic Reconfiguration
Example

JVM

OSGi Framework

Service Provider

Service

Requester

Service Registry

Service

T1 T2 T3

Service Provider

Service

6

Motivation for SOA in Real-Time
Systems

 Dynamic reconfiguration improves the system availability
 System does not need to be taken offline to be

maintained/reconfigured
 Improves application availability
 Important in RTS in particular as they have high availability

requirements

 Dynamic reconfiguration minimises memory resource
requirements
 Only require the components and services comprising the current

mode of operation to be deployed
 Important in embedded systems (resource constrained)

 Remote controllability- evolving RTS from a remote location
 RTS deployed in harsh environment- danger in being physically

present in deployment environment for updating software
 Software updates in mass produced embedded devices such as

consumer electronics

7

Current GCs with Dynamically
Reconfigurable Systems

T1 (C,T,D,A)

T2 (C,T,D,A)

T3 (C,T,D,A)

GC (C,T,D)

T4 (C,T,D,A)

T5 (C,T,D,A)

T6 (C,T,D,A)

A

T

Pre-runtime Runtime

 Application reconfigured at run-
time

 GC NOT reconfigured accordingly

 Risk of memory exhaustion

8

Scoped Memory with Dynamically
Reconfigurable Systems

 Scoped Memory (SM)
 Avoids overheads of garbage collection (GC) and

therefore suited to harder RTS

 Two approaches to using SM in SOA
 Threads can enter scoped memory before calling

services
 IllegalAssignmentErrors if service method breaks RTSJ memory

assignment rules

 Services handle scoped memory
 ScopedCycleExceptions depending on the scope stack of calling

threads
 Blocking – ensuring only one thread in SM at any one time

 We focus on GC not SM
 RT-GC advancing, adequate for RT-SOA

9

Application Reconfiguration
Example

Thread C (ms) T (ms) D (ms) A (MB)

T1 1 10 10 0.1

T2 2 8 8 0.3

T3 1 12 12 0.2

T4 1 5 5 0.5

T5 5 30 30 0.4

T6 1 18 18 0.01

 Perform application reconfiguration:
 GC reconfiguration analysis

 Application reconfiguration admission control

 GC reconfiguration

TGC = 8 ms

CGC = 2.5 ms

M = 24.5 MB

10

Example – GC Analysis

 Estimate GC cycle work (WGC)
 Computation time to complete a GC cycle

 Cost of reference traversal (root-set, live objects)

 Cost of object evacuation (copying)

 Cost of memory initialisation

 WGC = 29.2 ms

2
312

1
1

H
cAc

wordsizeof

AR
cW

n

i i

n

i i

GC

11

Example – GC Analysis

 Calculate GC parameters

 Find the maximum CPU utilisation for GC

 GC period (TGC) – equal to the application

thread with the smallest period

 GC budget (CGC) – find maximum value of x

such that all threads remain schedulable

 TGC = 5ms, CGC = 0.5ms

i

j

ij

j

i

GC

i
niGC DC

T

T
x

T

T
txC

1

...0 :|max

12

Example – GC Analysis

 Calculate GC cycle time
 During a GC period, the GC thread can only

perform an amount of work equal to CGC

 Therefore a number of GC periods will be
required to complete a GC cycle

 RGC = 294.7 ms

 GCGCGC

GC

GC
GCGCGC WCT

C

W
CTR

 1

13

Example – Admission Control

 Application reconfiguration admission control
 Application’s memory requirement is 2 * (worst case live memory

plus garbage allocation in a GC cycle of worst case length)
 As at end of a GC cycle, before semispace flip, both semispaces will

have copies of live memory, and one GC cycle’s worth of garbage
alloc

 Guarantees threads will not experience memory exhaustion
 If free mem <= M then accept application reconfiguration and

reconfigure GC
 Else, reject application reconfiguration as it would cause memory

exhaustion

 M = 93.9 MB

n

i

n

i

ii

i

GC AA
T

R
M

1 1

12

14

Example – GC Reconfiguration

 Reconfiguration analysis determines new C,T,D parameters
for the GC

 Admission control controls application reconfiguration

 Need to reconfigure the GC with these parameters

 Only GC available that can be reconfigured is Sun’s GC
 Only the GC thread’s priority can be modified, but not its C,T,D

 Solve by:
 Setting GC thread’s priority to a background priority

 Creating a GC controller thread to manipulate the GC thread’s
priority such that it appears like a time-based GC

 GC controller thread period = TGC

 Time GC runs at high priority = CGC

15

Evaluation
Scenario Expected result Actual result

Single thread Memory not exhausted

(Reconfig analysis)

Garbage is collected. No

memory exhaustion.

Several

threads

Memory not exhausted

(Reconfig analysis,

Admission control)

Garbage is collected. No

memory exhaustion

Admission control functions

correctly.

Dynamic

unbounded

structures

Eventually memory

exhausted

Any garbage is collected, but

memory is eventually

exhausted.

Misbehaving

thread

Memory not exhausted

(Memory allocation

enforced)

Misbehaviour is detected and

the thread is blocked. No

memory exhaustion

16

Conclusions

 Can develop dynamically reconfigurable RTS applications
with:
 GC Reconfiguration analysis
 Admission control
 Reconfigurable GC
 Memory allocation enforcement

 No risk of garbage related memory exhaustion
 Dynamic reconfiguration:

 Improves system availability
 Reduces the memory requirement of application

 Beneficial to RTS as they typically have:
 high availability requirements
 resource constrained

17

Questions?

