
Using the Executor Framework
 to Implement AEH in the RTSJ

Table of Contents

 ▶ Role of AEH in the RTSJ
 ▶ AEH Facility in the RTSJ
 ▶ Implementation Discussion
 ▶ Limitations of AEH
 ▶ The Executor Framework
 ▶ Applying the Framework to AEH in the RTSJ
 ▶ Conclusions

 MinSeong Kim & Andy Wellings

Role of AEH in the RTSJ
• Event-based programming

 - An alternative to thread-based programming

• AEH is used to handle the followings:

 a. External events to model parallelism with external objects

 - hardware interrupts, OS signals (SIGALRM), etc.

 b. Asynchronous error conditions detected by RT-JVM

 - a deadline miss or a cost overrun

 c. Application-defined error notification

 - a general error notification or a fault-handling mechanism

 d. Time-triggered events

 - periodic action or scheduled execution

 - OneShotTimer and PeriodicTimer

AEH Facility in the RTSJ

• AsyncEvent (AE)

• AsyncEventHandler (ASEH)

• BoundAsyncEventHandler (BoundASEH)

 extends AsyncEventHandler

Implementation Discussion

• RTTs & ASEHs are both Schedulable Objects,

• RTTs provide the vehicles for the execution,

• ASEHs are designed to be used as a lightweight
 concurrency mechanism,

• RTSJ does not provide any guidelines

• Major challenges
 - An efficient and predictable AEH implementation model
 - A smaller number of real-time server threads than the number of

handlers

Limitations of AEH

• Lack of implementation configurability
 - The RTSJ does not provide any configurable facilities to finely

tune the components of AEH

• A single model for all types of non-bound asynchronous
event handlers

 - All asynchronous events must be handled in the same
implementation-dependent way

 - Not possible for an application to indicate a different AEH
implementation strategy for various handlers with different
characteristics (blocking or non-blocking , heap-using or no-heap,
hard or soft real-time handlers, and etc.,)

• These limitations of AEH in the RTSJ severely weaken the
configurability and the flexibility of the AEH implementation

The Executor Framework
• In the java.util.concurrent package.

• Provides simple standardized extensible classes which
provide useful functionality for using Java threads to
control the execution of asynchronous tasks.

• It is extremely useful and convenient as a configurable
server pool:

• Therefore it is a good idea to use the executor
framework for the execution of ASEHs in the RTSJ

ThreadPoolExecutor (int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable> workQueue,

 ThreadFactory threadFactory,

 RejectedExecutionHandler handler)

Applying
 the Executor Framework

• AEH cannot directly be used with the framework

• Three Major Issues to Consider
 1. Use of Real-Time Threads
 - By default, executors use a thread factory that creates normal
 Java threads

 2. Use of a Priority Queue
 - Any blocking queue can be used but they use a FIFO ordering
 - A priority queue must be used as a pending handler queue

 3. Reflecting Submitted Handlers’ Priorities
 protected void beforeExecute(Thread t, Runnable r)

 protected void afterExecute(Runnable r, Throwable t)

• These solutions enable the executor framework to work
well with AEH in the RTSJ

Conclusions
• Using the configurability and the flexibility of the Executor

Framework
 ◊ Static 1:1 mapping

 - Bound ASEHs and non-bound ASEHs in OVM

 ◊ Dynamic 1:1 mapping

 - The RI and jRate

 ◊ Static 1:N mapping

 - Jamaica

 ◊ Dynamic 1:N mapping

 - Java RTS 2.0, and blocking and non-blocking AEH models

 - Not with the default run-time behavior

• Other mapping models for various ASEHs with different
characteristics

 ◊ Hard and soft real-time handlers

 ◊ Heap and no-heap using handlers

 ◊ Daemon and non-daemon handlers

• Therefore it provides the programmer with an extremely
configurable and flexible environment

Thank you
(Q & A)

