Exhaustive Testing of
Safety Critical Java

Tomas Kalibera
Pavel Parizek Charles University
Michal Malohlava

Martin Schoeberl Technical University of
Denmark

Exhaustive Testing with Java PathFinder (JPF)

Tomas Kalibera JTRES 2010

e JPFis a specialized Java Virtual Machine (JVM)

— Runs Java programs

— Saves program state and backtracks over different
scheduling sequences

— Looks for error states (exceptions, races, ...)
 Optimizations

— Re-scheduling only at operations that are not thread
local (partial order reduction)

— Detection of visited states (state matching)
 Designed for plain Java

(there is much more to it, see http://babelfish.arc.nasa.gov/trac/jpf/)

Our Goal: Tool for Exhaustive Testing of SCJ Programs

Tomas Kalibera JTRES 2010

* Features sought
— Find races (SCJ L1 and higher)

— Find SCJ specific errors and plain Java errors even
if scheduling sequence dependent

* Challenges

— Cover all possible scheduling sequences with a
real-time scheduler

— Fight state explosion so that we can check non-toy
programs

Our Contribution: Tool for Exhaustive Testing of SCJ

Tomas Kalibera JTRES 2010

* Prototype implementation Rs — JPF extension

— Detects invalid memory assignments, potential races,
regular Java errors, failed assertions

— Supports subset of SCJ LO/L1, only periodic handlers
— Tested with Collision Detector and PapaBench

e SCJ LO,L1 scheduling algorithm for JPF

— Reduction of the number of states with execution
time estimator for target platform

— Tested with Java Optimized Processor (JOP)

SCJ LO,L1 Scheduling for JPF

The Notion of Time at SCJ Level O

Tomas Kalibera

startup
mission init

frame 1

H1 ‘ H2 ‘H3‘ idle

JTRES 2010

frame 2

H2 idle

Time

 Only one valid scheduling sequence
* Notion of time is only needed for

— The application — Clock.getTime

— Diagnostics — detect possible frame overruns

The Notion of Time at SCJ Level O

Tomas Kalibera

JTRES 2010

frame 1 frame 2
startup _ » _
e | HL ‘ H2 ‘ H3 ‘ idle idle
n Par >
W \w
f A Time
t=0 t =0+ “length of frame 1”

The Notion of Time at SCJ Level O

Tomas Kalibera JTRES 2010

frame 1 frame 2

startup
mission init
Pany i P
\ ~~ \ .
/ B Time
~
/ ~
~
~
(insnl ‘ insn2 ‘ insn3 ~ — J
£

T

..+ “lower bound for execution time of insn1”

H1

H2 ‘H3‘ idle | H2 ‘ idle

>

t. =t

m

=t ., + “upper bound for execution time of insn1”

The Notion of Time at SCJ Level 1

Tomas Kalibera JTRES 2010

H1 preempts H2 H1 completes, H2 continues
H1
startup A
mission init H2 H2 ‘ H3 ‘ e ‘ H2
4
| | | I .
. ! ! ! Time
Releases 1H2 1H1 1H3 1H2

The Notion of Time at SCJ Level 1

Tomas Kalibera

H1 preempts H2

N

JTRES 2010

H1 completes, H2 continues

e

H1
startup A
mission init H2 H2 ‘ H3 ‘ e ‘ H2
: »
I I I I .
I : : : Time
Releases :Hz 1H1 1H3 1H2

* Notion of time needed for scheduling

* Imprecise notion of time results in multiple valid
scheduling sequences

The Notion of Time at SCJ Level 1

Tomas Kalibera JTRES 2010

startup _
mission init "E a ‘ H3 ‘ dle rL H2
ar N _ >
}‘\I’ \:/ \1./ \:/ Time
Releases 1H?2 'H1 1H3 'H2
t=0 t = “release offset of H2” +

1 * “period of H2”

Non-deterministic Execution at SCJ Level 1

Tomas Kalibera JTRES 2010

H1
startup "
mission init H2 Hl‘ H3 ‘ | e/L H2
N N _ >
S < .
I : :\ : Time
Releases 1H2 1H1 1H3\ 1H2
N
/
/ N
/ N
insnl ‘ insn2 ‘ insn3 N
4 N

5

Non-deterministic Execution at SCJ Level 1

Tomas Kalibera JTRES 2010

Ist . <=t <=t __ ?

min max

(Can the release happen now ?)

If YES, choose non-
If NOT, keep executing H2 deterministically whether
to release or not

H2 / H1
insnl insn2 insn3
|4
tR

V'

t. =0 t .. =t . +“lower bound for execution time of insn1”
0

=t ., + “upper bound for execution time of insn1”

Evaluating Rs)

Does it scale to real programs ?
What are the caveats of our scheduling algorithm ?

esting with Application Benchmarks

Tomas Kalibera

JTRES 2010

Benchmark #of |SC) | Checking Memory
IEHS Time Used

CDx

PapaBench

CDx — no simulator

L1
CDx — with simulator 2 LO
L1
PapaBench 14 LO
L1

12s
34s
35s
15min

31min

490M
490M
580M
710M
14G
15G

Collision Detector benchmark (Purdue), aircraft collision detection. We
implemented the SCJ port of CDx with simulator and the L1 version

Based on Paparazzi UAV auto-pilot. We translated the C version of
PapaBench to Java and extended it to be executable.

Java PapaBench: A Better RT Java Application Benchmark

Tomas Kalibera JTRES 2010

e Paparazzi Project
— Free auto-pilot (free sw, open-design hw)
— ENAC University, France, http://www.enac.fr/
— Implemented in C, has flown real UAVs

e C PapaBench

— A subset of an earlier version of Paparazzi, intended for
testing WCET analysis tools

— |RIT, France

e Java PapaBench
— Java/RTSJ/SCJ translation of PapaBench
— Includes environment simulation to be executable
— Michal Malohlava, Charles University
— http://d3s.mff.cuni.cz/~malohlava/projects/jpapabench/

http://www.enac.fr/

(Java) PapaBench Components

Tomas Kalibera JTRES 2010

e Autopilot
— Produces low-level flight commands to FBW
— Follows a pre-configured high-level flight plane
— Reacts to input from GPS and IR
e Fly-by-wire (FBW)
— Low-level access to aircraft hardware
e Simulator

— GPS, IR interrupt source
— Physical environment simulation

Checking RT Programs: Lessons Learned

Checking RT Programs: Lessons Learned

Tomas Kalibera JTRES 2010

e State matching needs revisiting

— Current time is part of program state — SM has to be
disabled, otherwise we fail to fully check a program

e Partial order reduction does not apply
— Scheduler decisions in a real system are deterministic

— Potential preemption points have to be fine grained
(i.e. a single instruction in Rsi) to bound release jitter

e More work is needed to customize JPF-core

— By default, states are saved even at deterministic
thread switch

See the official RTEmbed extension of JPF at
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/rtembed for our related efforts.

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/rtembed

