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Exhaustive Testing with Java PathFinder (JPF)
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e JPFis a specialized Java Virtual Machine (JVM)

— Runs Java programs

— Saves program state and backtracks over different
scheduling sequences

— Looks for error states (exceptions, races, ...)
 Optimizations

— Re-scheduling only at operations that are not thread
local (partial order reduction)

— Detection of visited states (state matching)
 Designed for plain Java

(there is much more to it, see http://babelfish.arc.nasa.gov/trac/jpf/ )



Our Goal: Tool for Exhaustive Testing of SCJ Programs
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* Features sought
— Find races (SCJ L1 and higher)

— Find SCJ specific errors and plain Java errors even
if scheduling sequence dependent

* Challenges

— Cover all possible scheduling sequences with a
real-time scheduler

— Fight state explosion so that we can check non-toy
programs



Our Contribution: Tool for Exhaustive Testing of SCJ
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* Prototype implementation Rs — JPF extension

— Detects invalid memory assignments, potential races,
regular Java errors, failed assertions

— Supports subset of SCJ LO/L1, only periodic handlers
— Tested with Collision Detector and PapaBench

e SCJ LO,L1 scheduling algorithm for JPF

— Reduction of the number of states with execution
time estimator for target platform

— Tested with Java Optimized Processor (JOP)



SCJ LO,L1 Scheduling for JPF



The Notion of Time at SCJ Level O
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 Only one valid scheduling sequence
* Notion of time is only needed for

— The application — Clock.getTime

— Diagnostics — detect possible frame overruns



The Notion of Time at SCJ Level O
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The Notion of Time at SCJ Level O
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The Notion of Time at SCJ Level 1
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The Notion of Time at SCJ Level 1
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* Notion of time needed for scheduling

* Imprecise notion of time results in multiple valid
scheduling sequences



The Notion of Time at SCJ Level 1
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Non-deterministic Execution at SCJ Level 1
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Non-deterministic Execution at SCJ Level 1
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Evaluating Rs)

Does it scale to real programs ?
What are the caveats of our scheduling algorithm ?



esting with Application Benchmarks
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Benchmark #of |SC) | Checking Memory
IEHS Time Used

CDx

PapaBench

CDx — no simulator

L1
CDx — with simulator 2 LO
L1
PapaBench 14 LO
L1

12s
34s
35s
15min

31min

490M
490M
580M
710M
14G
15G

Collision Detector benchmark (Purdue), aircraft collision detection. We
implemented the SCJ port of CDx with simulator and the L1 version

Based on Paparazzi UAV auto-pilot. We translated the C version of
PapaBench to Java and extended it to be executable.



Java PapaBench: A Better RT Java Application Benchmark
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e Paparazzi Project
— Free auto-pilot (free sw, open-design hw)
— ENAC University, France, http://www.enac.fr/
— Implemented in C, has flown real UAVs

e C PapaBench

— A subset of an earlier version of Paparazzi, intended for
testing WCET analysis tools

— |RIT, France

e Java PapaBench
— Java/RTSJ/SCJ translation of PapaBench
— Includes environment simulation to be executable
— Michal Malohlava, Charles University
— http://d3s.mff.cuni.cz/~malohlava/projects/jpapabench/



http://www.enac.fr/

(Java) PapaBench Components
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e Autopilot
— Produces low-level flight commands to FBW
— Follows a pre-configured high-level flight plane
— Reacts to input from GPS and IR
e Fly-by-wire (FBW)
— Low-level access to aircraft hardware
e Simulator

— GPS, IR interrupt source
— Physical environment simulation



Checking RT Programs: Lessons Learned



Checking RT Programs: Lessons Learned
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e State matching needs revisiting

— Current time is part of program state — SM has to be
disabled, otherwise we fail to fully check a program

e Partial order reduction does not apply
— Scheduler decisions in a real system are deterministic

— Potential preemption points have to be fine grained
(i.e. a single instruction in Rsi) to bound release jitter

e More work is needed to customize JPF-core

— By default, states are saved even at deterministic
thread switch



See the official RTEmbed extension of JPF at
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/rtembed for our related efforts.



http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/rtembed

