
WCET Driven Design Space 
Exploration of an Object Cache

Benedikt Huber, Wolfgang Puffitsch, Martin Schoeberl

JTRES’10



Computer Architecture Design for 
Embedded Hard-RT Systems
• Application Area

• Resource-constrained hard real-time systems

• Timing needs to be predictable!

• Target Platform: Java Optimized Processor

• Choosing the right components
• Wide variety of performance-enhancing techniques

• Example here: Data caches to bridge CPU/memory gap

• Which choices are favorable for hard RT?



Cache Design for JOP

 Small processor for Safety-Critical Java
 Designed to allow precise worst-case execution 

time (WCET) estimations
 Non-trivial dynamic memory behavior

• Garbage Collector

• Objects shared between threads

 Data cache promises significant speedup 
(especially for multiprocessor version)



Conventional Cache Evaluation

 Create different implementations (Simulator/FPGA)
 Measure runtime on set of representative 

benchmarks
 Rank designs based on

• Measurement results

• Implementation cost

 Problem: No quantitative metric for timing 
predictability



Our Approach

 Use both simulation and static analysis results
 Based on static WCET analysis techniques

• Program analysis (Dataflow analysis)

• Worst-case calculation (ILP based)

 Avoid architecture designs without precise timing 
models
• Waste of resources for hard RT systems

• Usually more complex (error prone) static analysis
➔ WCET-guided architecture design



Split Cache Architecture

• Distinguish data accesses based on address 
predictability and coherence issues
i. Address known statically, immutable data

ii. Same, but mutable data (cache coherence)

iii. Heap allocated data (address statically unknown)

• Split data cache for predictability!
• Direct-mapped / set-associative cache for static data

• No interference with unknown addresses → precise 
timing estimation possible

• Object cache for heap allocated objects



The Object Cache

• Fully-associative cache
• Keeps track of 16-64 “active” objects

• Handles (indirections not mutated by GC) as tag

• Object Cache Entries
• One (longer) cache line per object

• Word Fill: one valid bit for each field

• Burst Fill: fill cache line (or parts of it) at once



Data Cache Predictability

• Is it possible to effectively limit the number of 
cache misses in a program fragment?

• Addresses of heap-allocated objects?
• Dynamic memory allocation

• Garbage Collector (changes address)

• Allocated in a different thread

• Heap-allocated objects + Direct Mapped Cache
• If the address of accessed datum is unknown, it might 

evict any other datum from a direct-mapped cache



Object Cache Predictability

• First approximation: Number of possible conflicting 
accesses in program fragments

• Object Cache with Associativity N (FIFO & LRU): 
No conflict if at most N distinct objects are 
accessed in a program fragment

• Compare to set-associative cache
• Assuming address of handle is unknown

• Worst-case scenario: All objects map to the same cache 
line in set-associative cache



Object Cache: Static Analysis (1)

 Cache Hit/Miss Classification
• Standard technique for instruction caches

• Does not work (well) if addresses are unknown

 Local persistence analysis
• Restrict number of cache misses in program fragment

• Requires architecture with composable timing

 Integration into WCET calculation
• We use Implicit Path Enumeration Technique (IPET)

• Cache analysis adds inequalities restricting cache cost



Object Cache: Static Analysis (2)

 Persistence Analysis Implementation
• Run on selected program fragments (bottom-up search)

i. Dataflow Analysis
Compute symbolic name of accessed objects (relative to 
scope entry)

ii. Max-Cost Network Flow Analysis
Compute maximal number K of distinct objects used in 
the scope

iii. IPET Integration
If K <= Associativity: IPET inequalities to restrict number 
of cache misses



WCET-driven Object Cache 
Evaluation
• Uses our WCET Analysis framework

• Compute cache miss cycles for set of embedded 
Java Benchmarks

• Assume cold cache, no interference with other 
components

• Different configurations
• Different Associativity, Line Size 

• Burst mode (load full line at once)

• SRAM and SDRAM (latency for first word)



Evaluation: Object Cache Configuration

• Line Size
• Object sizes vary depending on benchmark

• 16 words sufficient for all benchmarks

• Associativity
• Few „active objects“ (2-8) relevant

• Realistic? Benchmarks are all we have

• Burst Mode
• Line fill (avoids valid bit) does not work well enough

• Coincides with average case observation

• Small benefits from 4-word burst (SDRAM)



Evaluation: Hitrate

• Results close to measured average case 
performance
• 43%-91% hit rate

• For some benchmarks, not a lot of locality

• Analysis also needs improvements

• Revealed a few weaknesses in the analysis
• Does not take positive effect of aliasing into account

• Does not use known loop bounds when counting number 
of distinct objects



Conclusion

• Designers need to take predictability into account
• Need WCET to verify temporal behavior

• Unpredictable architecture: gross overestimations → 
waste of resources

• WCET Analysis techniques for quantitative 
estimate of „worst-case performance predictability“

• Implementation and analysis for the split cache 
architecture to be finished


	A Code Policy Guaranteeing Automated Flow Analysis
	High Level WCET Analysis
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

