
Asynchronous Event Handling
and Safety Critical Java

Andy Wellings* and Minseong Kim

* Member of JSR 302

2 - 21

Structure

 Threads or event handling
 Why JSR 302 decided to use event handlers
 The JSR 302 concurrency model
 Known inconsistencies in the model
 Revised model
 Conclusions

3 - 21

Concurrency Models: Threads

 Support standardised across OSs
 Supported in most real-time languages
 Well established and problems well

understood
 real-time scheduling
 priority inversion control
 deadlocks (if use locks)
 composability and scalability

4 - 21

Concurrency Models: Events and
their Handlers

 More light-weight than threads
 Typically handlers are executed by one or

more implementation-defined server threads
 Communication between handlers can be

more straight forward if handler-server
mapping known

 Real-time scheduling is more difficult

5 - 21

RTSJ

 Supports both real-time threads and
asynchronous event handlers

 Version 1.1 has consistent support for
periodic, aperiodic and sporadic activities
using either approaches

6 - 21

SCJ Design Goals

 To define a subset of Java augmented with
the RTSJ to support safety-critical systems
development

 To support a programming model that is
sufficiently limited to enable certification of
applications using standards such as DO-
178B Level A

7 - 21

Safety-critical Java

 Safety critical software varies considerably in
complexity from application to application
 At one end of the spectrum, the application consists of a

single thread executing a single function on a single
processor with a simple timing constraint

 At the other end, the application is multi-threaded
executing in multiple modes on multiple processors

 The RTSJ computation model is too rich and expensive for
most safety critical systems
 remove redundant features

8 - 21

Threads or Events?

 RT threads do not have an easily identifiable section of code
that represents the work to be done on each release
 It is the area of code inside a loop that is delimited by a call to the

waitForNextPeriod or waitForNextRelease methods

 In contrast, an event handler has the handleAsyncEvent
method which exactly contains this code
 Hence static analysis tools are more easily facilitated

 A bound asynchronous event handlers is equivalent to a
real-time thread in functionality and its impact of scheduling
 little is lost by its use over that of real-time threads

9 - 21

The Mission Concept

 A mission consists of a bounded set of limited schedulable
objects

 For each mission, a specific block of memory is defined
called mission memory
 Objects created in mission memory persist until the mission is terminated,

and their resources will not be reclaimed until the mission is terminated

 A mission starts in an initialization phase during which
objects may be allocated in mission memory and immortal
memory by an application
 There is no garbage-collected heap

10 - 21

Missions continued

 All schedulable objects are created during the initialization
phase
 When a mission's initialization has completed, its execution phase is entered,

and all the created schedulable objects are started
 During the execution phase, no new schedulable objects can be created

 When a schedulable object is started, its initial memory area
is a scoped memory area that is entered when the
schedulable object is released, and is exited (i.e., emptied)
when the schedulable object completes that release
 This scoped memory area is not shared with other schedulable objects. Hence

SCJ has simplified many of the complexities that are inherent in the full RTSJ
memory management model

11 - 21

Missions and Handlers

 All handlers are managed by the enclosing mission hence use of the
RTSJ classes themselves is prohibited

 There is no support, for example, for:
 on-line feasibility analysis
 sporadic release parameters
 dynamic priorities
 cost monitoring or enforcement
 dynamic binding between events and their handlers
 manipulation of fireCount

 The restricted programming model is enforced by the removal of
methods (and constructors) and the provision of new classes and a new
interface to support mission management

12 - 21

Managed Schedulable Objects

 Objects that are mission-aware and therefore register themselves with a
mission manager when they are created

 They also provide cleanup code that can be invoked by the manager
when the mission terminates

 The ManagedEventHandler abstract class is an RTSJ bound
asynchronous event handler that is mission aware

 SCJ supports periodic and aperiodic versions of this class
 The new classes are defined in the javax.safetycritical package and are

fully implementable using standard RTSJ

The SJC Event
Handling Hierarchy

14 - 21

Compliance Levels for SCJ Programs

 Level 0
 Single mission sequencer, essentially a cyclic executive
 Main programming abstraction: non-self suspending periodic event handlers

 Level 1
 Single mission sequencer, essentially fixed priority scheduling
 Main programming abstraction: non-self suspending periodic and aperiodic

event handlers

 Level 2
 Nested mission sequencers, essentially fixed priority scheduling
 Main programming abstraction: periodic and aperiodic event handlers and

simple real-time threads – can self suspend but not while holding nested
locks

15 - 21

Inconsistencies in SCJ

 With RTSJ
 ASEH are mapped to server threads
 Most implementations do a N handlers to 1

thread mapping, with late binding
 BASEH has a 1 to 1 Mapping

 With SCJ
 All handlers are BASEH
 At level 0 there is effectively a N to 1 Mapping
 At Levels 1 and 2 it is 1 to 1

16 - 21

Observations

 If ASEH are non-self suspending then it is
sufficient to have one server thread per
priority level (per machine) to support any
number of handlers.

 If ASEH can potentially-suspend, in the
worst case, you need one thread per
handler

 RTSJ does not restrict handlers, SCJ does

17 - 21

A more consistent SCJ Model

 ASEH are non self suspending
 BASEH are potentially self suspending
 Level 0 and Level 1 handlers should be

based on ASEH
 Level 2 can choose between ASEH and

BASEH

A Revised SJC
Event Handling
Hierarchy

19 - 21

Summary

 A level 0 application can only use the PeriodicEventHandler
class
 As this is an asynchronous event handler that is defined to be non

self-suspending, a single server thread can be used.

 A level 1 application can only use the PeriodicEventHandler
and the AperiodicEventHandler classes.
 Again, as these are non self-suspending asynchronous event

handlers, server technology can be used
 It is up to the implementation to decide how best to map the

handler to the underlying threading model
 This approach must be documented to facilitate timing analysis
 Note that a single server thread allocated to each handler is still a

valid implementation approach with this model

20 - 21

Summary continued

 A Level 2 application can use all types of event handlers
as long as the program conforms to the implied constraints
 As the handler type is clearly identified, static analysis tools can

easily determined if potentially self-suspending operations are being
called

 The implementation is free to optimize the support for non self-
suspending handlers

21 - 21

Unfortunately

 Java does not support multiple inheritance and as a
consequence the support for managed events handlers has
to be replicated

 It is this replication that is ugly and one of the reason why
only bound asynchronous event handlers are used in the
current SCJ

 Another reason is the increase in complexity of the run-
time environment to support the mapping of event
handlers to threads

 However, we note that on a single processor this is a static
mapping determined by the handlers priority

	Asynchronous Event Handling and Safety Critical Java
	Structure
	Concurrency Models: Threads
	Concurrency Models: Events and their Handlers
	RTSJ
	SCJ Design Goals
	Safety-critical Java
	Threads or Events?
	The Mission Concept
	Missions continued
	Missions and Handlers
	Managed Schedulable Objects
	Slide Number 13
	Compliance Levels for SCJ Programs
	Inconsistencies in SCJ
	Observations
	A more consistent SCJ Model
	Slide Number 18
	Summary
	Summary continued
	Unfortunately

