
Cyclic Executive for Safety-Critical 
Java on Chip-Multiprocessors

Anders P. Ravn (AAU)
Martin Schoeberl (DTU)

Friday, 20August, 2010



Outline

Cyclic executive

Advantages and disadvantages

Cyclic executive on a CMP

Schedule generation

Implementation for SCJ

Summary

Friday, 20August, 2010



Cyclic Executive

Static schedule of tasks

No preemption

Organized in minor and major cycles

Used in safety-critical applications

Friday, 20August, 2010



Advantages

Deterministic schedule

Easy communication & precedents constraints

Simple implementation

Simple context switch

Fewer context switches

WCET friendly

Friday, 20August, 2010



Disadvantages

Constraints on task periods

Long running tasks need to be split

Deadline miss influences all tasks

Friday, 20August, 2010



WCET Analysis

Considers individual tasks

Scheduling effects are usually ignored

Cost of preemption and dispatch

Cost of scheduling

Cache trashing due to a task switch

Analysis works well for CE

Friday, 20August, 2010



Safety-Critical Java

Three levels:

L0 cyclic executive

L1 preemptive, static schedule, single 
mission

L2 nested missions

CMP considered only for L1 and L2

Friday, 20August, 2010



Cyclic Ex. on CMP

Keep the CE advantages and relax constraints

Long running tasks can have their own CPU

Schedules are synchronous on the cores

Tasks are allowed to migrate

Cheap on chip-multiprocessors

Friday, 20August, 2010



Two processors

Three tasks

Schedulable only with 
migration of task A

Migration Example

T C

Task A 2 1

Task B 4 3

Task C 4 3

Core 1 A B B B

Core 2 C C C A

Friday, 20August, 2010



Shared Resources

Easy on uniprocessor CE

Options for CMP CE

Locks with blocking (spin lock)

Precedence constraints in the schedule

Non-blocking queues between tasks

Friday, 20August, 2010



Precedence Constr.

Tasks that share a resource 

One writes, another reads or writes

Not allowed to run in parallel

Part of the schedule generation

More schedule flexibility with simple task 
model: read - execute - write

Friday, 20August, 2010



Schedule Generation

Schedule generation is NP-complete

We use model checking (UppAal)

No restrictions on minor frames

Each task represented by one automaton

Check the tasks until global t > SCM(Ti)

Results in one possible schedule or failure

Friday, 20August, 2010



Uppaal Model

One automaton per task

Parameterized with

T, C, and D

Number of processors: p

Local time: t

Local execution time: r

Friday, 20August, 2010



Implementation

Prerequisites

Common passive fine grain clock

No interrupts needed

Schedules are synchronous

Schedule is a simple table of slot times and 
Runnables

Friday, 20August, 2010



Implementation

Use a Java CMP (JOP)

Each core has its own clock

Scheduler in Java - just a few lines of code

Deadline overrun can be querried

Friday, 20August, 2010



Departure from SCJ

CMP at Level 0 ;-)

Runnable instead of BAEH

Task migration is allowed

One Runnable per Frame

Overrun detection (late)

getCurrentProcessor()

Friday, 20August, 2010



Summary

Cyclic executive on a CMP combines

deterministic schedule with

more processing power

Model checking used for schedule generation

Runtime implementation is very simple

Friday, 20August, 2010


