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Abstractions, Architecture, Mechanisms, and
a Middleware for Networked Control

Scott Graham, Girish Baliga, and P. R. Kumar

Abstract—We focus on the mechanism half of the policy-mecha-
nism divide for networked control systems, and address the issue of
what are the appropriate abstractions and architecture to facilitate
their development and deployment. We propose an abstraction of
“virtual collocation” and its realization by the software infrastruc-
ture of middleware. Control applications are to be developed as
a collection of software components that communicate with each
other through the middleware, called Etherware. The middleware
handles the complexities of network operation, such as addressing,
start-up, configuration and interfaces, by encapsulating applica-
tion components in “Shells” which mediate component interac-
tions with the rest of the system. The middleware also provides
mechanisms to alleviate the effects of uncertain delays and packet
losses over wireless channels, component failures, and distributed
clocks. This is done through externalization of component state,
with primitives to capture and reuse it for component restarts, up-
grades, and migration, and through services such as clock synchro-
nization. We further propose an accompanying use of local tem-
poral autonomy for reliability, and describe the implementation as
well as some experimental results over a traffic control testbed.

Index Terms—Abstractions, architecture, mechanisms, middle-
ware, networked control, networked embedded control systems,
third generation control.

I. INTRODUCTION

A. A Historical Perspective

T HE first generation of platforms for control systems in the
electronic age that began with the vacuum tube was based

on analog computing1. This created a need for theories to use
the technology of operational amplifiers. The challenge was met
by Black, Bode, Nyquist and others, who developed frequency
domain based design methods. A second era of digital control
systems commenced around 1960, based on the technology of
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1Mindell [1] provides a detailed account of how control, communication and
computation were intertwined in the first half of the twentieth century.

digital computers. It too created a need for new theories for ex-
ploiting the capabilities of digital computing, which was met by
the explosion of work on state-space based design by Kalman,
Pontryagin, and others.

Now, about fifty years later, we may be on the threshold of
a third technological revolution in control platforms. This is
driven by advances in VLSI hardware, wireline and wireless
communication networking, and advanced software such as
middleware. There has been tremendous growth in embedded
computers, with 98% of microprocessors now sold being em-
bedded [2]. In communication, besides the Internet, we may be
on the cusp of a wireless revolution with Wi-Fi (IEEE 802.11x)
experiencing double-digit growth since 2000 [3].

Less recognized is that software engineering has also evolved
significantly in the last two decades. Although many basic ideas
such as object oriented programming and distributed computing
were mooted early on, they have been brought to fruition only
recently due to better understanding of software management
and advances in hardware. In particular, experience in design
of large and complex software programs has been well codified
and widely reused through design patterns such as Strategy and
Memento [4], software frameworks such as Model-View-Con-
troller (MVC) [4], and software development processes such
as eXtreme Programming (XP) and Rational Unified Process
(RUP) [5]. The development and widespread use of software
libraries and infrastructure such as middleware has drastically
reduced development cycle times, and resulted in better soft-
ware. A good indicator of advances made is that the level of
abstractions, particularly in programming languages, is much
higher today. Software design primitives have evolved from reg-
isters and variables to libraries, components, messages, and re-
mote procedure calls. A typical mid-range automobile has about
45 micro-controllers connected by Controller Area Networks
(CAN) and uses complex software [6]. This has thrust software
engineering into a central role [7] since the development and
testing of complex software is expensive and fraught with nu-
merous problems. There is much impetus to reuse previously
developed and tested software, since it not only reduces the ef-
fort and expenses involved, but also enables sharing of valuable
experience. About 40% of the software for the Boeing 777 air-
plane was of the commercial-off-the-shelf (COTS) variety [8].

These developments present new opportunities for control, as
well as several challenges. Properly harnessed, they can poten-
tially revolutionize control system platforms and lead to a new
era of system building.

B. Importance of Abstractions and Architecture

In order for networked control systems to proliferate, they
will need to be made easy to design and easy to deploy. This is
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the objective in this paper. The goal addressed is how to reduce
the design and development time. This also requires alleviation
of the burden on the control system designer to be an expert in is-
sues which lie outside the domain of control, by minimizing the
attention needing to be paid to extraneous details. An analogy is
general purpose computing, where a computational platform is
easily usable by multiple users with different applications. An-
other analogy is general purpose networking where computers
can be easily interconnected to communicate with each other
regardless of the envisaged application.

These objectives require the identification of well designed
abstractions, the design of a matching architecture, and the de-
velopment of a supporting middleware. It is also important to
provide services that render design easy and quick, as well as
design principles that enhance reliability. This paper can be
regarded as focusing on the “mechanism” half of the mecha-
nism-policy divide. The development of a holistic and system-
atic theory, that has been the grand project of control systems
research since the 1950s, can be regarded as the other “policy”
half of the mechanism-policy divide.

An analogy with the developments leading to modern compu-
tation and computer science is appropriate. The work of Alonzo
Church and Alan Turing laid the theoretical foundations of se-
quential computing. They independently developed formal sys-
tems to define and model the notion of computable functions [9].
However, it was John von Neumann’s subsequent ideas about
organizing these concepts into an architecture that is the basis
of today’s sequential computers. It led to the practical realiza-
tion of the theoretical ideas. In particular, the stored program
concept [10] was a significant breakthrough. It has led to the
development of simple and uniform mechanisms to write, test,
and maintain complex programs today. The von Neumann ar-
chitecture had a wide influence on the first generation of dig-
ital computer engineers in the 1950s. Till the mid 1960s, com-
mercial computers produced by IBM, Burroughs, UNIVAC, and
others, were still custom built machines. However, the IBM 360,
first shipped in June 1966, changed all that. It was the first com-
mercially successful general purpose computer, with the name
360 (degrees) intended to market its “all round” general pur-
pose capabilities. The 360/370 series introduced the notion of
compatibility in computers [11]. All computer hardware was
built to a common set of abstractions such as instruction sets,
memory models, etc. Consequently, the same software could
run on all the different machines in this series. This standardiza-
tion tremendously reduced software development costs. More
importantly, it solved problems due to changing customer re-
quirements by supporting seamless upgrades of hardware and
software. This interface between hardware and software is what
today allows hardware and software designers to develop their
products separately, resulting in the proliferation of serial com-
putation. In contrast, parallel computation lacks such a “von
Neumann bridge” [12], which, arguably, has stifled its prolif-
eration.

The development of appropriate abstractions and matching
architecture has been fundamental to the proliferation of other
successful technologies too. The reason for the success of net-
worked communication is, arguably, fundamentally its architec-
ture, and, only secondarily, the algorithms involved, though of

course they too are very important. In the Open Systems Inter-
connection (OSI) architecture [13], each layer provides a ser-
vice to the layer above it, and in turn can be oblivious to the
details of layers beneath it. These capabilities make networks
robust and evolvable, and give longevity to the basic design.
For example, over the course of the years, different versions
of the transport layer protocol, TCP, have been proposed and
deployed, without necessitating a change in other layers. The
overall design allows heterogeneous systems to be composed
in a plug and play fashion, making them amenable to massive
proliferation, and has resulted in the Internet. The massive pro-
liferation has led to reduced cost per unit over the long run, and
resulted in minimizing deployment costs for new networks, fur-
ther stimulating proliferation. A similar role has been played
in digital communication by Shannon’s source/channel separa-
tion, one of the rare architectural principles resulting from math-
ematical theory. Source coding is often performed in software
by algorithms such as JPEG, while channel coding techniques
such as QPSK are performed in hardware by network interface
cards [14]. Closer home, in control, it is a standard abstraction
to view the plant separately from its controller. This is however
obvious only in retrospect, and, even now, is not routine in other
fields; for example, it is difficult to routinely simulate new poli-
cies in manufacturing system simulation software where plant
and controller are intermixed. Another architectural result, also
one with a mathematical foundation, is the separation of estima-
tion and control, which considerably simplifies design of control
systems.

The situation in control systems today is similar to that of
computers in the early 1960s, with the critical present require-
ment being a well designed organizing architecture that will
make them amenable to massive proliferation. Complex sys-
tems design can involve a basic trade-off between architecture
and performance. A system designed with a more extensible
architecture has redundancies to improve design flexibility,
while a system optimized for performance has tighter coupling
between sub-systems at the cost of lower design flexibility.
While the latter approach is better in the short term, the former
is better in the long term. Improved design flexibility implies
easier system extensibility, and modular design. Additional
functionality to address changing requirements can be incorpo-
rated much more easily into systems which have an architecture
that allows for evolution. Modular design allows different
sub-systems to be developed separately and then integrated
into operational systems. Further, these sub-systems can be
changed, or even reused in other systems, with minimal impact
on the rest of the system. All this results in systems that are
more reliable and have a longer useful lifetime. Moreover,
more general architecture allows recovery or even enhancement
of system performance by facilitating sophisticated self-opti-
mization capabilities. As an example, we will show how one
may deploy mechanisms such as automated software migration
to optimize the use of resources and loop delays at run-time,
by designing a sufficiently rich software infrastructure that
supports such mechanisms.

There are several key challenges. Distributed operation in-
troduces problems due to concurrency and non-determinism in
program execution. The network complicates the system fur-
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Fig. 1. Networked control system: Software component architecture.

ther with configuration, operational, and maintenance problems.
While present networking technology provides some network
abstractions, there remain numerous configuration details, such
as determining network addresses and protocols, which need to
be resolved in each application. These details occupy substantial
portions of design time and effort, motivating the need for even
higher-level abstractions. Another issue is that wireless links are
prone to unpredictable delays and high losses. Hence, support
for methodologies to facilitate control system design in the pres-
ence of such characteristics will have to be provided. What is
required is an infrastructure that supports reusable solutions for
common problems.

One caveat is in order. Just as general purpose computing
is not targeted at high performance problems such as scientific
computing, so also “general purpose” control may be inappro-
priate for situations where only a highly coupled solution, highly
customized in hardware and software, can meet stringent re-
quirements. However, even then, in an extensible architecture,
one could embed lower level custom code in key subsystems to
enhance performance.

C. Summary of Contributions

Rather than implementing a classical control system as
simply a software program involving the control laws and
plant interfaces, it is preferable to use a component archi-
tecture [15]–[17], which consists of decomposing it into
components, which are autonomous software modules with
well-defined functionalities. As an example, ,

, , , and , are all
possible components in Fig. 1. A component architecture
has several benefits. It allows individual components to be
developed separately and integrated later, which is impor-
tant for development of large systems. Since components are
well-defined, they can be replaced without affecting the rest
of the system. For instance, a zero-order hold filter can be
dynamically replaced by a Kalman filter without having to
change the remaining software or restarting an operational
system. Software reuse is promoted, since a component such
as a control algorithm tested on one system can be transplanted
into others. Mechanisms that support component interface
specification, including sequence and types of component

interactions and format and contents of messages exchanged,
and explicit specification of design assumptions, can simplify
integration problems while reusing components.

Component based design is based on primitives such as com-
ponents and messages, which are at a higher level of abstrac-
tion than sockets and processes supported by operating sys-
tems. These abstractions can be created by software infrastruc-
ture such as middleware, which has emerged as a preeminent
framework to develop large distributed applications. Since sys-
tems integration and testing constitute the most expensive de-
velopment activities in the engineering of complex software [5],
a lot of effort has been directed at the development of software
tools and architectures. Many successful applications have been
developed using a CORBA based architecture [18]. Currently,
IBM [19], Microsoft [20], and SUN [21] promote their middle-
ware based technologies as platforms for software engineering.
We anticipate that the next generation of control applications
will also follow this path, and present such a proposal.

The middleware we have developed is called Etherware. It re-
quires that the control system designer only write the logic of the
control law in components, without being burdened with how it
will be executed. The information flow between components is
routed through the middleware, without a component needing
to be aware of where a destination component is executing, thus
providing location independence of components. The middle-
ware also supports semantic addressing. It further supports fa-
cilities such as migration, whereby a Kalman Filter
can migrate to a more computationally powerful node or a node
with lesser latency between it and the sensor, or between it and
the actuator. The middleware also provides features to enhance
reliability, a key performance requirement for control systems.
It allows automatic restart upon failure of a component, through
mechanisms such as checkpointing of the state.

The middleware employs several Design Patterns [4] that
codify good design solutions, capturing best practices, thus
leading to much better reuse of design. We have incorporated
the design patterns of Strategy, Memento, and Facade in
Etherware. The Strategy pattern has led to replaceable control
laws, Memento has resulted in component state check-pointing
mechanisms, and Facade has allowed a simple and uniform
middleware interface.

The major abstraction that we propose and which the mid-
dleware realizes is a Virtually Collocated System, which allows
control engineers to design control laws for networked systems
using the same techniques as for centralized systems, i.e., as
though the distributed application were executing on a single
computer. The control system designer need not concern her-
self with extraneous details of a networked system, and needs to
focus only on the details relevant to the control law. It can po-
tentially significantly reduce design time for networked control.

Architecturally, we propose that this abstraction be regarded
as a Virtually Collocated System Layer (VCL) that resides above
the Transport Layer. It can be regarded as a replacement for the
Presentation and Session Layers, which are anyway absent in
the TCP-IP architecture.

We propose an accompanying principle of Local Temporal
Autonomy for design of reliable networked control systems,
where the goal is to design components so that they can function
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for a limited period of time even when neighboring compo-
nents fail, thus allowing them to migrate, or for a neighbor to
restart. This facilitates robustness, reliable system evolution,
development and debugging. We show how Kalman Filters,
Receding Horizon Control, and Actuator Buffers, can all be
used to provide Local Temporal Autonomy.

We identify services that are useful across a range of control
systems and show how they can be supported. One example is
distributed time. This is useful since networked control systems
employ time-driven computing in addition to the usual event-
driven computing. We show how such services are supported
through a middleware feature called “Filters.”

We have implemented the middleware on a laboratory
testbed2 featuring a networked system of cars, vision sensors,
wireless and wired networks, and the full range of control
hierarchy including regulation, tracking, trajectory generation,
planning and scheduling, along with a discrete event system for
liveness and safety.

This paper does not address the issue of theories needed for
networked control. It only focuses on the mechanism half of the
mechanism-policy division of research. Continuing theoretical
effort, conducted on the policy front, is needed to fully realize
the potential of networked control. The current situation is that
technology has overtaken theory in some respects, in that we
do not know how to optimally utilize the capabilities already
supported in the middleware. We conclude by providing some
examples of theoretical challenges for future research.

II. DESCRIPTION OF IMPLEMENTATION

While describing the middleware, how the networked control
system is to be implemented, and what functionalities the mid-
dleware can provide, it is helpful to refer to specific illustratory
examples. Hence we provide a brief account of the networked
control testbed, see Fig. 2, on which all of the above has been
implemented. It consists of a set of remote controlled cars with
no on-board computational capabilities. Each car is controlled
by radio transmitter over a dedicated radio frequency channel
connected to the serial port of a laptop through a micro-con-
troller, which converts discrete commands from the laptop into
analog controls specifying the speed and steering angle in dis-
crete steps. Commands can be sent at a rate of up to 50 Hz,
i.e., one command every 20 ms. Each car has a chassis top with
uniquely coded color patches that are used to identify its po-
sition and orientation. The cars are monitored using a pair of
ceiling mounted cameras. The video feed from each camera is
processed by an image processing algorithm executing on a ded-
icated desktop computer. This feedback is available at the rate
of 10 Hz, i.e., one update every 100 ms. All computers in the
testbed are connected optionally by a wired Ethernet or by an ad
hoc wireless network with IEEE 802.11 [23] PCMCIA cards.

The architecture of the control application3 is illustrated in
Fig. 1 where the control software components in the testbed are
shown. The camera feed is processed in com-
ponents. A data fusion component, called the ,

2Movies are available at [22].
3It should be specifically noted that this is distinct from the primary focus of

this paper, the architecture of the middleware, the infrastructure over which the
application is run.

Fig. 2. Networked control system: traffic control testbed.

combines the sensor data from both vision systems and dis-
tributes the position and orientation information for each car
via the communication network. Individual cars are operated
by corresponding that implement Receding
Horizon Model Predictive Control. Incoming sensor data is
passed to a module which implements a
Kalman Filter. Its prediction of future states is fed to the

, thus buffering it against delays and jitter of
the communication system. A software module, called the

, feeds commands to the radio-control system. The
is designed to buffer a small horizon of future

commands, so that it can tolerate brief control outages, and
stopping the car if the is inoperative for too
long. A resides above the and
oversees the operation of the testbed. The need
to be given trajectories to operate the respective cars. They
are generated by the , which also ensures global
properties such as safety, the avoidance of car collisions, and
liveness, the elimination of traffic gridlocks. The
generates trajectories along a pre-specified network of roads,
using algorithms described in [24]. Briefly, blocks of the
road network are modeled as bins in a corresponding graph.
The planning problem is formulated as finding shortest paths
in a graph, and the scheduling problem is modeled as as-
signing cars to bins while avoiding collisions and gridlocks.
Finally, the also receives feedback from the

, forming a higher-level control loop. Due to
hardware constraints, the component for each car,
and the component for each camera, must be
executed on respective computers. All other components can
execute on any computer in the testbed.

We have tested the system with up to eight cars operating si-
multaneously, and closely following pre-specified trajectories.
Examples of traffic scenarios implemented are pursuit-evasion
where a set of software controlled cars follow a manually con-
trolled car, and automatic collision avoidance; see the videos
at [22].
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III. NETWORKED CONTROL SYSTEM REQUIREMENTS

We begin by identifying requirements for common func-
tionalities needed for general networked control applications
that should be part of a control-specific middleware. They may
be grouped into Operational Requirements, Non-functional
Requirements, and Management Requirements.

A. Operational Requirements

1) Distributed Operation: Connecting diverse components
executing on different nodes on a network leads to numerous
problems, including the need to locate and connect related com-
ponents across a network, and support the exchange of mes-
sages between connected components. Examples of the prob-
lems that arise are initializing the components, connecting them,
developing protocols for their interaction, and synchronizing
their operation to resolve conflicts. In the traffic control testbed,
the and the various execute on dif-
ferent computers.

2) Location Independence: This is an abstraction that pro-
vides an addressing scheme for components that is independent
of their actual location in the network, important for design of
distributed operations. It allows components to communicate
without distinguishing between local and remote components.
It also allows integrating components uniformly in different
network configurations. For example, in the traffic testbed, the
ability to easily switch between wired and wireless networks,
which use different addressing schemes, requires such details to
be abstracted away from the components. The abstraction also
supports the future use of other networking technologies such
as Bluetooth [25], without having to update component code.

3) Service Description: Connecting components in a net-
work involves determining if appropriate components are ex-
ecuting in the system. If several such components are available,
then the most suitable component has to be selected. This re-
quires mechanisms to specify and discover services provided
by components. A car controller that knows the geographic lo-
cation of its car should be able to connect directly to a sensor
covering that location, without having to know about sensor lo-
cations in the network.

4) Interface Compatibility: Integrating independently devel-
oped software components can lead to interface incompatibili-
ties; e.g., the set of functions defined in the interface of a sensor
module may not be compatible with the functions required by a
controller component. This can be eliminated if standard inter-
faces are specified and supported for compatibility.

5) Semantics: Incongruent assumptions in the implementa-
tion of components can lead to problems. The interaction be-
tween different software components is usually based on an im-
plicit finite state machine (see Fig. 6), with exchanged messages
assumed to be in specific formats. However, current interface
description languages such as the CORBA IDL [26] do not pro-
vide a mechanism to specify these assumptions properly. For
example, suppose the in Fig. 1 is implemented so
that it checks for an update at the before com-
puting controls. This assumes that responds im-
mediately, returning an update if available, and none otherwise.
However, if is implemented so that it checks

with for updates before responding, the addi-
tional delay may lead to failure as is also waiting
for an update. Hence, and may
have consistent interfaces, but the interaction semantics may
still be incompatible. Consequently, there must be additional
provision for specifying interaction semantics in interface de-
scriptions.

6) Distributed Time: Components executing on different
computers do not share common clocks, and need a mechanism
to correctly translate time. For example, time-stamps on remote
sensor updates must be properly translated to local time to
avoid collisions.

B. Non-Functional Requirements

These are features that are not necessarily required for the
correct operation of the system, but support for which would
significantly improve system performance.4

1) Robustness: Robustness being a fundamental requirement
for the viability of networked control, component failures must
be contained and their effect on the overall system minimized.
For instance, the failure of a faulty sensor module should not
immediately cause a connected controller to fail as well. This
requires dependencies between components to be eliminated or
replaced by use-only if available relationships as much as pos-
sible.

2) Delay-Reliability Trade-Off: Reliable delivery of data
over a network introduces additional delay due to retransmis-
sion of lost or re-ordered packets. However, some components
may not require reliable delivery, and should therefore be able
to trade-off reliability for lower average delay. For example,
time-stamped sensor updates are more useful when delays
are smaller, even though a few updates may be lost over the
network.

3) Other Requirements: Algorithms should have good scal-
ability. Security is also a key requirement and the system must
be protected from misbehaving or malignant components.

C. Management Requirements

These are required for starting, managing, and updating com-
ponents in an operational system.

1) Startup: Programmable interfaces to startup procedures
that allow the specification of dependencies between compo-
nents help ensure correct overall system initialization. For in-
stance, a controller component may need to be started up before
a related actuator component.

2) System Evolution: It is necessary to be able to migrate
or update components at run-time. Component migration is re-
quired to optimize the configuration of software components
to balance or reduce communication and computational loads.
For example, a in the testbed can be migrated
to another computer, where it is closer to the corresponding

or less loaded computationally, thus reducing loop
delay. Supporting such run time optimization allows changing
controllers to address evolving plant goals, without having to
restart the whole system.

4Strange as the terminology may seem, these may actually be more important
than functional requirements.
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IV. ETHERWARE

We now present Etherware, a middleware for networked con-
trol. We begin with the design considerations, followed by the
usage model and architecture.

1) Application Design: Control loops have to be closed over
communication channels that are unreliable, especially in the
case of a wireless network. We can mitigate this by employing
various application design strategies, particularly the principle
of local temporal autonomy. As an example, noisy feedback to
the controller is filtered using , which im-
plements a Kalman Filter. However, what is of more interest to
us here is that, architecturally, the interposed State
can continue to provide position estimates of the cars, even if
sensor measurement updates are lost or delayed, thus enhancing
the local temporal autonomy of the downstream consumer of
sensor information, , from the producer, .

We further enhance reliability by using receding horizon con-
trol where the controller sends a sequence of future controls that
can be used to control the car for a longer period, rather than
sending just one control input [27]. Future controls are stored in
an Actuator Buffer at the actuator, and used in case updates are
delayed or lost. A similar buffer at the controller holds future
way-points from Supervisor.

By providing support for such strategies in the middleware,
the cost of application design complexity can be reduced. Since
critical components can now endure some delays, we have been
able to implement the entire system using only soft real time
control5.

2) Stability Considerations: Robustness requires the ability
to restart application components efficiently to maintain
system stability. For example, if in Fig. 1 fails
due to a software error, then restarting it should not require
reestablishing communication with , reini-
tializing , or re-establishing state, as
these delays could cause system instabilities and result in car
collisions.

This motivates a simple and uniform design to externalize
component state, so that it can be reinitialized with this state,
and restarted at the same node or even migrated to a different lo-
cation and restarted there. Etherware enforces component state
externalization as a basic architectural precept. Each component
is instantiated with an initial state, and is required to support a
state check-pointing mechanism. On a check-point request, it
has to return a state object that can be used to reinitialize it upon
restart, update, or migration.

Maintenance of communication channels across such
changes is also supported in Etherware. Identifiers for com-
munication channels can be saved as part of the check-pointed
state, allowing restarted or upgraded components to con-
tinue using previously established channels. It also provides
communication continuity to other components during such
changes.

3) Message Based Communication: Components in net-
worked control systems have to respond to changes as soon as

5We are presently incorporating real-time support into Etherware [28].

possible. Upon detecting a safety violation, may
not be able to wait for an acknowledgment from
before it takes action. Over a wireless channel in particular,
delays can be large due to deep fading and queued packets.
Another important consideration is the presence of dependen-
cies in push-based communication channels. For example, the
controller cannot wait for the updates from the sensor before
sending controls to since updates may be delayed or
lost. Conventional middlewares for transaction based systems
such as CORBA [26] use synchronous communication where
a component sending a message is blocked until it receives
a reply. This leads to complex design with each component
requiring multiple threads of control, since a separate receiving
thread is required for blocking on each channel. On the other
hand, asynchronous operation eliminates this source of com-
plexity since a component is not blocked when sending a
message.

Based on these considerations, Etherware has been devel-
oped as a message-oriented middleware. Message based com-
munication requires a specification of message formats. Sup-
port for interface and semantic compatibility during changes
and component reuse requires this specification to be flexible,
extensible, and backward compatible. Flexibility is the ability
to easily incorporate changes in the interface and semantics of
a component, and extensibility supports ease of adding specifi-
cations for new functionality, while still honoring the original
specifications used by older components to communicate with
it. Based on these requirements, we have used XML [29] as the
language for messages, with all communication in Etherware
through well-formed XML documents with appropriately de-
fined and extensible formats. For platform independence, and
due to availability of support for XML, Etherware has been im-
plemented using the Java programming language [30]. While
these choices incur some additional processing overhead, we be-
lieve that the use of open standards and advances in computer
hardware compensate for this.

4) Architecture: An important architecture design decision
was to choose an execution model for active components,
such as sensors, which need their own threads of control. We
decided to go with thread-per-active-component instead of
process-per-active-component model for the following reasons.
First, support for Thread management is much better than
support for Process management in Java. For instance, support
for thread prioritization and thread interruption is available in
a standardized and platform-independent interface. Second,
since Threads are much lighter-weight entities than Processes,
their creation and update time is much smaller. This is well
illustrated in Section VIII-A where we see that a Process restart
is on the order of seconds, while a Thread restart is on the order
of tens of milliseconds. Finally, having one Etherware process
per computer makes it easier to define and use resources such as
published network ports for remote communication. However,
individual active components can create and manage their
own processes if necessary. For instance, due to programming
language and platform constraints, the com-
ponents for cars in the testbed create and manage processes to
collect data from the frame grabbers connected to the camera
outputs.



1496 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 7, JULY 2009

Services provided by the middleware need to be easily
restartable and upgradeable. Supporting this allows basic
versions of services to be deployed initially for resource sav-
ings, and subsequently updated based on changing application
requirements, without having to restart the system. Hence,
invariant aspects of the middleware, which cannot be changed
dynamically, have to be minimized to maximize flexibility.

These considerations have motivated us to adopt a micro-
kernel [31] based design. This consists of using a simple and
efficient kernel, which has only the most basic functionality
needed for minimal operation, and which will not need to be
changed during system operation. This consists of functionality
to deliver messages between components, and primitives for
creating new components. All other middleware functionality
is implemented as components, just as the application is; hence
these can be changed without having to restart the system. This
philosophy of maximizing flexibility has also resulted in the de-
velopment of a bare minimum functional interface for compo-
nents to interact with the middleware. Flexibility is increased
since the above design minimizes the number of aspects in the
functional interface that need to be changed or upgraded during
system operation. For uniformity, application components in-
teract with middleware services with messages, just as though
they were other application components.

A. Etherware Usage Model

We next turn to the programming or usage model for Ether-
ware, that is, the abstractions provided to control engineers and
software programmers using Etherware.

A component in Etherware can participate in control hierar-
chies. For example, Controller in Fig. 1 takes goals from the
higher-level and sends commands to the lower-
level . The of Fig. 1 takes data inputs
from and provides data to .

Etherware is an asynchronous message-based middleware.
Components communicate by exchanging messages, which are
well formed XML documents [29]. XML documents can be di-
rectly manipulated as large strings. However, Etherware also
provides a hierarchy of Java classes which provide various prim-
itives to manipulate the underlying XML document across a
Java based interface. This hierarchy can be extended to support
additional messages with user-defined XML formats, in addi-
tion to the predefined messages with specific XML formats that
are encoded in these classes.

Two basic problems attending message delivery in distributed
systems are discovery and identification of destination compo-
nents. The identification problem is solved in Etherware by as-
sociating a globally unique id, called a Binding, to each compo-
nent. The discovery problem is solved by associating semantic
profiles to addressable components. Each component that needs
to be addressed registers one or more profiles with Etherware. A
profile describes the set of services that a component provides.
For example, a profile for a vision sensor could specify the type
of camera and the geographic region covered by it, and a car
controller could use this information to connect to a relevant vi-
sion sensor.

Fig. 3. Filters for MessageStreams.

All messages have the following three XML tags or con-
stituents:

Recipient Profile: This identifies the recipient of the mes-
sage. A profile can be a service description as above, or the glob-
ally unique Binding of a component.

Content: This represents the contents of the message in-
cluding application specific information.

Time-stamp: Each message has a time-stamp associated
with it which is automatically translated to the local clock
on that computer as a message moves from one computer to
another.

By default, messages are delivered reliably and in order.
However, there may be streams of messages that need to be
delivered using other specifications as well. To identify and
manipulate a stream of messages as a separate entity, Ether-
ware supports the notion of a MessageStream. A component
can open a MessageStream to another component and send
messages through it. MessageStreams have settings that can be
used to specify how messages are delivered through them. For
example, can tolerate a few lost sensor updates
for lower delay, but has no use for old updates. Accordingly,

could open a MessageStream to
requesting unreliable in-order delivery, as shown in Fig. 3. This
means that messages along this pipe will not be retransmitted if
lost, and messages arriving late will be discarded. In addition,
Etherware provides MulticastStreams that support efficient
multi-source multi-cast of messages.

Etherware provides the capability to add, at run time, Fil-
ters that can intercept all messages sent to, or received by, a
component, since it may be necessary to modify messages in a
MessageStream in response to changes in operating conditions.
For example, updates from VisionSensor could get noisy due
to bad lighting conditions, and it is desirable to have the capa-
bility to filter out this noise without having to change Sensor
or the Controller. Fig. 3 shows the effective configuration after
a Kalman filter has been added to the message pipe between

and .
The design of a generic Etherware component is shown in

Fig. 4. It is based on several well known “design patterns” [4]. In
software development, many design problems have a common
recurring theme, and design patterns represent solutions that
exploit the theme. We now consider the various design prob-
lems for Etherware components, and describe how these are ad-
dressed using appropriate design patterns.

Memento: Support for restarts and upgrades requires the
ability to externalize and capture application state. This is solved
by the Memento pattern, wherein component state can be check-
pointed and restored on re-initialization.
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Fig. 4. Programming model for a ��������� in Etherware.

Strategy: System stability is enhanced by the ability to re-
place components without disrupting service. In particular, if
the functional (syntactic) interface used to communicate with
the component is invariant, then components can be replaced
dynamically. In this case, the Strategy pattern is used in con-
junction with the Memento pattern.

Facade: Interaction with various services in the middle-
ware usually requires a component to send messages using func-
tion calls. If the component has to directly call functions on the
various sub-systems, the structure of these subsystems needs to
be programmed in it. This introduces unnecessary dependencies
and makes the component and the middleware hard to evolve, as
changing the middleware architecture will require the software
of all the components to be updated as well. This is eliminated
by using the Facade pattern to provide a uniform functional in-
terface that is independent of the actual middleware architecture.

Components can be active or passive. Passive components do
not have any active threads of control. They only respond to
incoming messages by processing them appropriately and gen-
erating resulting messages if any. Active components have one
or more active threads of control. They can generate messages
based on activities in their individual threads of control. For
example, VisionSensor can be implemented as an active com-
ponent with a separate thread to block on sensor hardware up-
dates, and generate appropriate messages when new sensor data
is available.

B. Etherware Architecture

The architecture of Etherware is based on the micro-kernel
concept shown in Fig. 5. As motivated in Section IV, the Kernel
represents the minimum invariant in Etherware. All other ser-
vices are implemented as components. The Kernel manages all
components on a given computer. The function of the Kernel
is to create new components, and deliver messages between its
(local) components. We allow one Etherware process per node
in the current implementation.

The Kernel has a Scheduler that is responsible for scheduling
all messages and threads. The Scheduler can be replaced dynam-
ically if more complex scheduling algorithms are necessary as
the application evolves. In addition, the Scheduler also provides
a notification service, whereby a component can request to be
notified with alarms after a given delay. This allows components

Fig. 5. Architecture of Etherware.

to wait, without having to create separate threads of control for
this purpose. Components can also register to receive periodic
notifications or ticks. This has been used to implement all soft
real time control in the testbed. The car operates
at 10 Hz, and has been implemented as a passive component.
For periodic activation, it registers with to receive
periodic tick messages every 100 ms.

Each component is encapsulated in its own Shell as shown
in Fig. 5. A Shell presents a facade to the component, and pro-
vides a uniform interface for it to interact with the rest of the
system. Shells also encapsulate component specific information
such as configurations of MessageStreams. Activities involved
in component restart, upgrade, and migration have also been im-
plemented in Shells.

All other functionality in Etherware is provided by service
components. An instance of each service component executes
on each computer. The following basic services are used:

ProfileRegistry: The ProfileRegistry is used to register and
look up profiles of components. Profiles of newly created com-
ponents are registered and recipients of messages addressed
using profiles are determined by the registry. Each node has a
Local ProfileRegistry for components on that node. A network
also has a Global ProfileRegistry for components on all nodes
in the network.

NetworkMessenger: This sends and receives remote mes-
sages, i.e., messages between a local component and a remote
component operating on another computer. Hence, it encapsu-
lates all communication with remote nodes over the network,
including details such as IP addresses, ports, and transport layer
protocols. By default, all messages addressed to remote com-
ponents are forwarded by the Kernel to this service. The Net-
workMessenger is an active component with separate threads to
receive messages from remote nodes.

NetworkTimeService: This service translates time-stamps
of messages as they are transmitted from one node to another. To
implement this, a component is added
as a Filter to the NetworkMessenger, so that it intercepts all mes-
sages that are sent to and received from other nodes. (It should
be noted how easy it is to time-stamp information once we have
the notion of Filters). Time translation is based on computing
clock offsets using the Control Time Protocol [32].

C. Etherware Capabilities

We now describe how the requirements listed in Section III
are addressed in Etherware.
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Fig. 6. Finite state automata for �������� semantics.

1) Operational Requirements: These requirements are ad-
dressed primarily by the Etherware programming model.

Distributed Operation: Components executing on dif-
ferent computers can communicate with each other using the
same primitives as used for local interactions. The following
mechanisms collectively implement location independence in
Etherware. Each component is assigned a globally unique-id
called a Binding. This addressing scheme is independent of
network location and topology. Each Binding is mapped into
a network specific address, such as an IP address, and a com-
ponent id on a given computer. This mapping can change as
components migrate. Local routing of messages on a single
computer is performed by the Kernel. Routing of messages
between computers is done by the NetworkMessenger.

Service Description: This is a consequence of addressable
components being able to register service profiles. A compo-
nent that wishes to access a given service can just address mes-
sages using the appropriate profile. The profile is then matched
with registered profiles by the ProfileRegistry as explained in
Section IV-B. If a match is found, then the message is directly
forwarded to the appropriate component. If not, an appropriate
exception message is returned.

Interface Compatibility: This is primarily achieved by use
of XML documents for communication between components.
Besides, components use a simple and uniform functional inter-
face provided by the Etherware Shell, and as suggested by the
Facade pattern in Section IV-A.

Semantics: This requirement can be properly addressed
by an interface description language (IDL), which is a language
to describe the functional and interaction interface exposed by
a component. The Etherware programming model mandates
message based interactions between components. This requires
components to incorporate interaction semantics that can be
formally specified using a finite state machine [33]. It includes
specification of the messages that a component can send or
receive, and conditions under which it can send or receive
specific messages. Fig. 6 represents the FSA that specifies
Actuator semantics. The labels on the arrows represent mes-
sages and actions, with overbars indicating received messages.
Etherware component semantics can be formally specified in an
executable fashion in the rewriting logic based formal language
Maude [34], as
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Components and systems specified in this fashion can be ver-
ified for validity and correctness using theorem proving tools
in Maude. XML provides the representation for strongly typed
messages, where the type and format of all possible messages
can be defined as part of the interface.

Note that the IDL provided by Etherware is only a language
for specifying component interface and interaction semantics.
The actual semantics for a given component IDL specification
are highly dependent on its domain of operation. For instance,
the IDL specification of a component could
specify the refresh rate using an XML tag called “RefreshRate,”
but for other components to correctly use its sensory output, they
must understand that the “RefreshRate” tag identifies the spec-
ification of the refresh rate of the vision sensor, i.e., they must
have a common shared vocabulary with consistent meanings.

In addition, an Etherware proxy service has also been im-
plemented, which allows formal component specifications in
Maude [34] to interact with regular components in Etherware.
This enables rapid prototyping, where formal specifications
can be checked for both logical correctness and operational
stability. For instance, the module specified above
can be plugged into the actual testbed, and could emulate a real
car in the system.

Distributed Time: This is provided by the NetworkTime-
Service.

2) Non-functional Requirements: These requirements have
been addressed by various architectural features and services in
Etherware.

Robustness: This is facilitated primarily by the use of the
Memento pattern. It allows the effect of component failures to
be contained by efficient check-point and restart mechanisms in
Etherware. The efficiency of these techniques is considered in
Section VIII.

Delay-reliability Trade-off: MessageStreams support
trading off reliability for lower delays. They also provide a
simple mechanism to incorporate support for other QoS re-
quirements.

Other Requirements: The current algorithms for various
services scale well for the testbed requirements. We have tested
them by operating up to eight cars at a time, which represents the
scenario with the maximum load in the system. Further, compo-
nent Shells provide a uniform location to potentially incorporate
security features.

The Etherware architecture essentially trades-off system per-
formance (verbose protocols, java vms, soft real-time operation,
etc.) to support complex functionality and interactions between
components. However, high performance critical control loops
can still be implemented using a locally optimized language and
platform, and these can then be “wrapped” with an Etherware
component to plug it into a larger system. In this design, Ether-
ware acts as an integration platform for complex networked con-
trol systems, with higher-level supervisory control implemented
for soft real-time operation, connected to lower-level critical
control loops implemented on native platforms for hard-real
time operation.

3) Management Requirements: These are addressed using
configuration support and design:

Startup: Start-up configurations and dependencies are
specified to Etherware using a configuration file for each
computer. Etherware ensures that components are initialized
in the correct order. Currently, the absolute order in which
components need to be initialized on a given node is specified,
but support for more complicated dependencies can be easily
supported using a richer dependency evaluation system such as

[35].
System Evolution: System evolution through component

update and migration, is supported by the use of Memento
pattern. Application state is maintained across both operations
using Mementos. Connections using MessageStreams are main-
tained across component updates. As noted in Section IV-A,
MessageStreams and Filters also provide a mechanism for
system evolution without having to change any existing con-
nections between components.

V. SERVICES

In addition to the Etherware infrastructure itself, many con-
trol applications have many common sub-problems whose so-
lutions could be reused. We facilitate such reuse into services
bundled with the middleware. Some of the services that we have
considered are:

1) Distributed Time Management: We have implemented a
clock synchronization algorithm.

2) Plant Delay Estimation: A dynamic delay estimation ser-
vice is of interest for closing loops since delays may change with
time.

3) Component Repositories: Software component reposito-
ries, from where new control software can be downloaded and
installed dynamically into operational systems would be useful
in promoting use of new theories and algorithms.

4) Dynamic System Optimization: This is a useful service
to facilitate automatic determination of optimal system con-
figuration at run-time. For instance, whether to process all the
pixels from the camera at a certain node, thus stressing its com-
putational resource, or to transfer them to another node, thus
stressing the communication network, is a low level decision
that depends on the power of the processor at a node as well
as the current communication traffic load, and should be auto-
matically done. The control designer’s role can thus move to
the higher plane of specifying high level rules or algorithms for
such migration.

VI. A LAYER FOR NETWORKED CONTROL

The Open Systems Interconnections (OSI) [13] architecture
is a standard reference model for networked systems. Our pro-
posed architecture is based on this model, and the mapping be-
tween the different layers is shown in Fig. 7. Central to it is the
abstraction of a virtually collocated system, where information
exchange between application components is supported at the
level of messages exchanged between seemingly local compo-
nents. This abstraction is provided by the middleware, which
hides the details of a networked system such as IP addresses,
network protocols, data formats, and computational resources.
Components can be identified using application specific con-
tent instead of network addresses and ports. They can exchange
information on a regular basis, as information push whenever
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Fig. 7. Mapping from OSI stack to proposed architecture.

Fig. 8. A ������������	
 separating ����	
 and �	��
	�
 can reduce
execution and timing dependencies between them.

updates are available, or as pull on demand by an information
consumer. Hardware or software can be added or removed while
the system is running, and the designer need not deal with issues
like starting up computers in an appropriate order. Also, clocks
are aligned and all sensor and other information is automati-
cally time-stamped. These features correspond to the Session
and Presentation layers shown in Fig. 7. Utilizing the abstrac-
tion of a virtually collocated system provided by middleware,
a system designer can focus on algorithmic code for planning,
scheduling, control, adaptation, estimation, or identification.

VII. DESIGN BASED ON LOCAL TEMPORAL AUTONOMY

Networked control systems will be subject to communication
and node failures as well as component failures. We suggest the
local temporal autonomy design principle: Design components
to tolerate, with graceful degradation, failures in connections to,
and operation of, other connected components. We provide three
illustratory examples.

1) State Estimator: To match the unpredictable character-
istics of the communication network with the predictability re-
quired by control, we insert a buffer, a , before
controllers in the system, see Fig. 8. It removes the execution
and timing dependencies of Controller on the inherently unreli-
able communication channel , since it can be used by Controller
to interpolate between lost sensor updates. Such a design can
take aperiodic sensor data as input, and provide continuous or
periodic outputs to the Controller, the format preferred by dig-
ital control design methodology. This improves local temporal
autonomy of Controller, since it buffers it from failures in the
sensor and the communication channel.

2) Actuator Buffer: Similarly, at the actuator end, instead of
providing just one current control input at each update to an
actuator, by using receding horizon control, a can
provide a window of control inputs up to a time horizon. This
again improves the local temporal autonomy of as it

now has fall-back controls in case subsequent controller updates
do not arrive.

By weakening the dependence between components, these
approaches also facilitate dynamic component upgrade and mi-
gration, in addition to simplifying design and testing.

3) Migration for Self-optimization and Reliability: Compo-
nents in the networked control system can execute at any lo-
cation. Their optimal physical locations depend upon timing
constraints, communication delays, computational loads, etc.,
which may vary during operation. Hence it would be desirable
for the execution of a component to be able to migrate to a better
location within the system. To accomplish migration, the mid-
dleware incorporates several supporting functions such as the
components being able to continue to communicate after the
move. This involves updating the communication information
at each of the nodes or components which communicate with
the migrating component, as well as updating the communica-
tion information at the component itself. To help an application
optimize decisions on when and where to migrate a component,
the middleware must be able to estimate the loads on the phys-
ical resources which will exist before and after the migration,
which can be provided as a middleware service.

VIII. EVALUATION

This section presents three experiments evaluating the perfor-
mance of Etherware mechanisms.

A. Controller Restart

In the first experiment, was restarted several
times. Faults were injected at random by performing an illegal
operation (divide by zero) in , which caused

to raise exceptions and be restarted by Etherware.
The deviation of the actual car positions from the desired
trajectory, as a function of time, is shown in Fig. 9(a). Restarts
are indicated by pointers, and the accompanying numbers
indicate, in milliseconds, the time for each restart. These are
time-stamps at , and include communication and
synchronization times between the restarted and

. The first restart occurred at about 70 seconds into
the experiment, and was followed by two other restarts in
the next 20 seconds. The last three faults were also handled
by the restart mechanisms. We see that the error in the car
position during these restarts was within the system error
bounds during normal operation prior to restart. Two of the
Etherware mechanisms described in Section IV contributed to
the quick recoveries. First, the Shell intercepted exceptions due
to the faults, and restarted it without affecting the
MessageStream connections to the other components. Second,
before termination, the state was check-pointed
according to the Memento pattern, and then used for re-initial-
ization. To illustrate the performance of these two mechanisms,
we also tested the alternative mechanism of restarting the
Etherware process managing the at about 100
seconds after the start. We see that the restart of Etherware
and the took about three seconds, during which
the car position accumulated a large error of about 0.8 meters.
This illustrates the necessity for efficient restarts. Furthermore,
even though the restarted after three seconds,
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Fig. 9. Performances of controller restart, upgrade and migration. (a) error in
car trajectory due to controller restarts. (b) Error in car trajectory due to eon-
troller upgrade. (c) error in car trajectory due to controller migration.

additional error was accumulated before recovery. This was
because the had to reconnect to the other compo-
nents, rebuild the state of the car, and bring it back on track.
These avoidable delays are eliminated through efficient restart
mechanisms in Etherware.

B. Controller Upgrade

In the second experiment, we tested the performance of
software upgrade mechanisms in Etherware. The car is initially
controlled by a coarse that operates myopically.
Etherware is then commanded, at about 90 seconds, to up-
grade the coarse to a better model predictive

. From Fig. 9(b), we see the improvement in the
car operation after update. The involved transients are within
the system error bounds as well. This functionality is due to
three key Etherware mechanisms from Section IV. First, the
Strategy pattern allows one to be replaced by
another without any changes to the rest of the system. Second,
the Shell is able to upgrade the without affecting
the connections to the other components. Finally, the Memento
pattern allows the coarse to check-point its state
before termination. This is then used to initialize the new

. The first mechanism allows for simple upgrades,
while the other two mechanisms minimize the impact of the
upgrade on other components and the car operation.

C. Component Migration

In the third experiment, the support for migration in Ether-
ware was tested. As before, the error in the car trajectory is
shown in Fig. 9(c). The large spike at the beginning of the graph
was the error due to the car trying to catch up with its trajectory.
This is achieved at about 10 seconds into the experiment, after
which the car follows the trajectory within an error of 50 mm. In
particular, the error introduced due to migration is well within
the operational error of the car. Two Etherware mechanisms

enable migration. First, the Memento pattern allows the cur-
rent state of to be captured upon its termination.
Second, the primitives in the Kernel on the remote computer
allow a new controller to be started there with the check-pointed
state of .

IX. RELATED WORK

This section presents an overview of related earlier work in
this area. CORBA [26] is probably the most popular middleware
and has been used in a variety of different domains. It was pri-
marily intended for transactions based business and enterprise
systems. Hence, the trade-offs incorporated in CORBA are not
all compatible with requirements for control systems. For ex-
ample, the specification mandates the use of TCP [36] for reli-
able delivery. This can be a serious limitation if lower delay is
more important than reliability, as such a trade-off cannot be
supported. Popular versions of middleware for control appli-
cations are based on various flavors of CORBA, such as Real
time CORBA [37] and Minimum CORBA [38]. For example,
OCP [39] is based on Real Time CORBA and has been used to
control unmanned aerial vehicles. ROFES [40] implements Real
Time CORBA and Minimum CORBA, and is targeted for real-
time applications in embedded systems. Fault-tolerant CORBA
(FT-CORBA) [26] is the primary OMG specification that ad-
dresses fault tolerance in distributed systems. A key problem
in using CORBA based middleware is that the CORBA inter-
face description language (IDL) is not descriptive enough to
specify key assumptions in component design. In particular, is-
sues involved in semantic compatibility, such as description of
data validity and interaction semantics, cannot be specified. This
leads to numerous problems while integrating independently de-
veloped, yet functionally compatible components. Other inter-
esting approaches include Giotto [41], real-time framework [42]
for robotics and automation, and OSACA [43] for automation.
A good overview of research and technology that has been de-
veloped for implementing reusable, distributed control systems
is provided in [44].

X. THEORETICAL CHALLENGES

Exploiting the capabilities of Etherware poses theoretical
challenges. At the tactical level, we need to be able to opti-
mally exploit middleware capabilities already present, such as
migration, restart, and the services provided. Two examples of
problems that arise are the following. Since the middleware
provides to the controller the actual delay that has already been
incurred by a packet containing a measurement, i.e., random
but known delay, how should one design a controller that is
robust to plant uncertainties? Another is how to optimize the
“migration controller” as empirical delay profiles between
various origin-destination node pairs over a networked system
change.

At the strategic level, there is a need for a cross-domain theory
that is holistic and includes real-time scheduling, plant uncer-
tainties, and hybrid systems. We present an illustrative example.
Consider the car control loop model shown in Fig. 10. The Con-
troller and the Actuator are collocated, see [45], and there is neg-
ligible delay between a issuing a control, and the

effecting it in the car. Suppose the feedback channel
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Fig. 10. Control loop model.

from the Sensor to the Controller is scheduled according to the
renewal task model, [46] where a task is a sequence of jobs that
execute on a specified resource, and where each job has a fixed
computation time and a relative deadline , with the renewal
referring to the fact that a new job is released immediately after
a previous job is completed. A renewal task is characterized by
its task density . In our setting, each job is a compu-
tation of car controls, speed and orientation, to be applied for a
specific time interval.

We model a car itself as an oriented point in a lane, with state
, where is the absolute distance of the car from the center

of the lane, and is the angle of the car to the median of the lane.
As a convention, the direction of traversal of the lane is assumed
to be from left to right in what follows. We assume that a car
has a single non-zero speed , and four steering controls: two in
anti-clockwise direction, and two in clockwise direction, both
allowing motion along circles of radii and with .
Based on the renewal task model for sensory feedback, a car can
move a bounded distance before it is observed again. Since the
car moves at a constant speed , this corresponds to a deadline
of in the renewal task model. Finally, a control is sent
immediately after the car has been observed.

Theorem 10.1: A set of cars can be driven along pre-spec-
ified routes without collisions (safety guarantee) or gridlocks
(liveness guarantee), if the road network has straight single-lane
roads of length at least , and lane-width at
least with ,

, and .
Proof: We provide a brief outline; see [47] for details. First,

it can be proved that a car can be controlled so that it stays within
a road of width . Then it can
be proved that the length of the road is sufficient to keep the
car within its lane when moving from one lane to another at an
intersection. Third, it can be shown that a set of cars in a road
network with single lane roads can be cleared by a supervisory
algorithm described in [24]. This algorithm models the traffic
system as a discrete graph, where a lane is modeled as a se-
quence of bins. The algorithm then moves cars between bins in
discrete time. This establishes the liveness guarantee.

Next, it can be shown that the cars can be scheduled without
collisions by ensuring that at most one car can be in a bin at a
given time. This is enforced during bin transitions by keeping
the bin in front of each car empty. This, in turn, is accomplished
by associating an additional “virtual” car always in front of each
real car. This final step establishes the safety guarantee for the
system.

As we build more complex systems, a challenge is to be able
to automate such proofs of overall system correctness.

XI. CONCLUSION

This paper has focused on the mechanism half of the policy-
mechanism divide, and proposed an abstraction and a middle-
ware based approach to support the design, development, and
deployment of networked control systems. The Etherware de-
sign supports the development of applications as collections of
components. The support for standardized interfaces and seam-
less integration enables the reuse of components in other ap-
plications, which allows the building a library of components
embodying various control algorithms and designs that can be
assembled into working applications in deployed systems. Ap-
plication development consists of specifying the interconnec-
tion of components and their individual configurations. Using
Etherware primitives, system optimization can be supported by
developing algorithms to automatically determine optimal com-
ponent interconnection configurations, and migrate components
accordingly.
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