
Charles University in Prague
Faculty of Mathematics and Physics

Department of Distributed and Dependable Systems

Tomá² Martinec

User manual for the MSIM debugger
(this manual is derived from the thesis)

Last update: November 10, 2013

1. User manual

Users are supposed to understand debugging concepts in general. This manual
helps with the initial setup and describes more important GUI elements of the
Eclipse IDE.

1.1 Downloads

The user needs to get these packages:

1. Eclipse with appropriate plugins

Eclipse Classic (or For Java Developers) 4.3.1 is required. Newer versions
of eclipse are likely to work too, but it is not guaranteed. Note that you
should not use o�cial CDT plugin for C/C++ development, because our
own version will be installed. The packages will be installed through the
Eclipse installation dialog.

The Eclipse packages are also available on our servers:

32-bit versions:
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/

eclipse-standard-kepler-SR1-linux-gtk.tar.gz

http://aiya.ms.mff.cuni.cz/~martinec/eclipse/

eclipse-standard-kepler-SR1-win32.zip

64-bit versions:
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/

eclipse-standard-kepler-SR1-linux-gtk-x86_64.tar.gz

http://aiya.ms.mff.cuni.cz/~martinec/eclipse/

eclipse-standard-kepler-SR1-win32-x86_64.zip

2. MSIM that supports GDB debugging

Unfortunately, the distribution packages are not available now. Users have
to build MSIM from sources under the bazaar version system. The sources
can be obtained from Launchpad and use the following command to do so:

bzr branch lp :~ fyzmat/msim−private−tm/ trunk

3. patched GDB-7.6.

Currently, a special version of GDB must be built from sources too. Here
is the source package:

http://aiya.ms.mff.cuni.cz/~martinec/gdb/gdb-7.

6-patched-msim-debugger.tar

1

http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32.zip
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32.zip
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk-x86_64.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk-x86_64.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32-x86_64.zip
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32-x86_64.zip
http://aiya.ms.mff.cuni.cz/~martinec/gdb/gdb-7.6-patched-msim-debugger.tar
http://aiya.ms.mff.cuni.cz/~martinec/gdb/gdb-7.6-patched-msim-debugger.tar

1.2 Installation

1. Unpack the Eclipse Classic, run it and choose your workspace folder.

2. Open the menu Help -> Install new software and add the following update
site:

http://aiya.ms.mff.cuni.cz/~martinec/msim-debugger/msim.

debugger.update.site.

Uncheck Group items by category, select all the plugins and run the instal-
lation.

3. Build MSIM by following commands:

cd /path/ to /msim/ source s
. / c on f i gu r e
make

After these commands you should see built binary of MSIM in the bin di-
rectory. Put the built binary into the same directory where your msim.conf
is located.

For cygwin users: A problem with linking the readline library was en-
countered in Cygwin.

The readline is located in the ncurses library. If the ncurses was missing
the con�gure script might not recognize the readline library. As a quick �x
change the following line in the con�gure script:

#o r i g i n a l l i n e :
LIBS="− l r e a d l i n e $LIBS"

#changed l i n e :
LIBS="− l r e a d l i n e − l n c u r s e s $LIBS"

Additionally, add the -lncurses option to the LIBS variable in src/

Makefile. Also, you might have to change the following lines in that make-
�le:

#o r i g i n a l l i n e s :
$ (TARGET) : $ (OBJECTS) $ (DEPEND)

$ (CC) $ (CFLAGS) $ (LIBS) −o $@ $ (OBJECTS)

#changed l i n e s :
$ (TARGET) : $ (OBJECTS) $ (DEPEND)

$ (CC) $ (CFLAGS) −o $@ $ (OBJECTS) $ (LIBS)

4. Build GDB by following commands:

cd /path/ to /gdb/ sour ce s
. / c on f i gu r e −−t a r g e t=mips
make

These commands should create the GDB executable gdb in the gdb directory.

http://aiya.ms.mff.cuni.cz/~martinec/msim-debugger/msim.debugger.update.site
http://aiya.ms.mff.cuni.cz/~martinec/msim-debugger/msim.debugger.update.site
src/Makefile
src/Makefile

1.3 Setting up a new project

Copy sources of your program for MSIM to the chosen workspace. Open the
Eclipse and create a new project. ChooseMake�le project with existing code under
the C/C++ group. Select the toolchain that is appropriate for your platform
(Linux GCC for linux and Cygwin GCC for windows).

Now you should see the structure of your project in Package Explorer or in
Project Explorer. Change the optimization �ags in your make�les to -O0 and
add the -g option for GCC. Rebuild your project. The project should be built
according to the rules of your make�le.

Open Run -> Debug Con�gurations... dialog. Create a new C/C++ MSIM
Application launch con�guration. Fill in the name of your project and the de-
bugged binary that contains debugging information. For example, kernel.elf or
kernel.raw. Note that the default Eclipse binary search will miss *.raw �les, be-
cause it is not very usual su�x. Thus, the binary might have to be speci�ed
manually.

Switch to the Msim launch options tab. Here you have to con�gure paths for
the built MSIM and GDB. The GDB ini �le is not usually needed. Write the
name of your main function, if you want to stop in it after the launch.

Debugging should work now. You can launch the debugging session.

For cygwin users: The source �lenames are referenced from the root (/)
directory and the Eclipse might not be able to locate them. Thus, you will have
to specify their location after the �rst launch. Click on the Edit source lookup path
in the code editor after launching and add Filesystem directory to your cygwin
installation (e.g. C:\cygwin).

1.4 Debugging views

This section contains screenshots of important GUI views. The relevant GUI
elements are marked and described.

Views can be activated in the Window -> Show view menu.

Figure 1.1: Source view with other views in the side toolbar.

Name Notes

1 Source view

2 Place for breakpoints Right click to open menu and toggle or en-
able/disable source-level breakpoints

3 Line where the debugged
thread is stopped

4 Memory Browser view

5 Variables view

6 Registers view

7 Breakpoints view

8 TLB Contents view

9 Physical Memory view

10 Console view

11 Project Explorer view

12 Disassembly view

13 Debug view

Table 1.1: Marked GUI elements of the view 1.1.

Figure 1.2: Memory browser view.

Name Notes

1 Expression input You can type here any expression that spec-
i�es an address

2 Go to the speci�ed ad-
dress

3 Create a new tab

4 Tabs for browsing memory

5 Address column of the tab

6 Column with hex-dumped
memory

It is possible to change the memory by writ-
ing desired hexadecimal values in this col-
umn.

7 Column with ASCII-
dumped memory

It is possible to change the memory by writ-
ing desired ASCII chars in this column.

Table 1.2: Marked GUI elements of the view 1.2.

Figure 1.3: Variables view.

Name Notes

1 Table with local variables The rows contain an identi�er, a type, and
a value of the related local variable. The
user can change values of variables in the
last column.

2 Details for values

Table 1.3: Marked GUI elements of the view 1.3.

Name Notes

1 Table with registers The rows contain a name of the register and
its value. The user can change values of reg-
isters in the column with values. Changed
registers are colored.

2 Details for values

Table 1.4: Marked GUI elements of the view 1.4.

Figure 1.4: Registers view.

Figure 1.5: Breakpoints view.

Name Notes

1 List of breakpoints Both normal and memory breakpoints are
listed.

2 Remove all breakpoints

3 Additional options The user can set a memory breakpoint in
this menu. Another way of setting a mem-
ory breakpoint is via the menu Run -> Tog-
gle Watchpoint.

Table 1.5: Marked GUI elements of the view 1.5.

Figure 1.6: TLB Contents view.

Name Notes

1 Index column Each row re�ects translation of one page to one frame.
Note that a TLB entry for the R4000 processor maps
a pair of the following pages to two frames. The used
way of displaying a TLB entry is separating it into
two rows.

2 Page index Address of a virtual page divided by size of one page.

3 Mask TLB hit occurs when virtual_address & mask ==
page_index. This value is derived from the PageMask
register. Bits 0-12 are always zeroes, bits 13-24 are
set by the debuggee, and bits 25-31 are always ones.
See [?] [p. 81] for more details.

4 Global bit ASID is ignored if this bit is set. Note that this bit
is never directly accessed by the debuggee. It is com-
puted during a TLB write as logical AND of EntryLo0
and EntryLo1 global bits.

5 ASID Address space identi�er of the entry. Note that the
current ASID is stored in the EntryHi register.

6 Valid bit This bit is set if the page-to-frame translation of this
row is enabled.

7 Dirty bit This bit is set if the page is writeable.

8 Frame Address of the translated physical frame.

9 Coherency bits Three coherency bits. Not used in MSIM.

Table 1.6: Marked GUI elements of the view 1.6.

Figure 1.7: Physical memory view. The usage is the same as for the Memory
browser view

Figure 1.8: Console view.

Name Notes

1 Console output Useful for seeing MSIM output or GDB/MI commu-
nication.

2 Terminate de-
bugging session

3 Select another
console

Table 1.7: Marked GUI elements of the view 1.8.

Figure 1.9: Project explorer view. The Kalisto project is currently loaded.

Figure 1.10: Disassembly view.

Name Notes

1 Disassembly view C source is merged into the instructions.
The �rst column holds addresses of instruc-
tions or lines of the C code. The second col-
umn contains instructions and the C code.
Symbols are added to the known addresses.

2 Place for breakpoints Right click to open menu and toggle or en-
able/disable instruction-level breakpoints.

3 Line where the debugged
thread is stopped

4 Search input Any expression that speci�es an address can
be typed here.

Table 1.8: Marked GUI elements of the view 1.10.

Figure 1.11: Debug view.

Name Notes

1 Debug view All the processes, their threads and call
stacks are listed. The user selects the cur-
rent thread by choosing it in this view.

2 Resume

3 Interrupt

4 Terminate debugging ses-
sion

5 Step into

6 Step over

7 Step out

7 Toggle instruction-level
debugging

This enables the user to do instruction-level
stepping.

Table 1.9: Marked GUI elements of the view 1.11.

	User manual
	Downloads
	Installation
	Setting up a new project
	Debugging views

