Charles University in Prague
Faculty of Mathematics and Physics
Department of Distributed and Dependable Systems

Tomas Martinec

User manual for the MSIM debugger

(this manual is derived from the thesis)

Last update: November 10, 2013

1. User manual

Users are supposed to understand debugging concepts in general. This manual
helps with the initial setup and describes more important GUI elements of the
Eclipse IDE.

1.1 Downloads

The user needs to get these packages:

1. Eclipse with appropriate plugins

Eclipse Classic (or For Java Developers) 4.3.1 is required. Newer versions
of eclipse are likely to work too, but it is not guaranteed. Note that you
should not use official CDT plugin for C/C++ development, because our
own version will be installed. The packages will be installed through the
Eclipse installation dialog.

The Eclipse packages are also available on our servers:

32-bit versions:
http://aiya.ms.mff.cuni.cz/"martinec/eclipse/
eclipse-standard-kepler-SR1-linux-gtk.tar.gz
http://aiya.ms.mff.cuni.cz/"martinec/eclipse/
eclipse-standard-kepler-SR1-win32.zip

64-bit versions:
http://aiya.ms.mff.cuni.cz/"martinec/eclipse/
eclipse-standard-kepler-SR1-1linux-gtk-x86_64.tar.gz
http://aiya.ms.mff.cuni.cz/ "martinec/eclipse/
eclipse-standard-kepler-SR1-win32-x86_64.z1p

2. MSIM that supports GDB debugging

Unfortunately, the distribution packages are not available now. Users have
to build MSIM from sources under the bazaar version system. The sources
can be obtained from Launchpad and use the following command to do so:

bzr branch lp:~fyzmat/msim—private—tm/trunk

3. patched GDB-7.6.

Currently, a special version of GDB must be built from sources too. Here
is the source package:

http://aiya.ms.mff.cuni.cz/ martinec/gdb/gdb-7.
6-patched-msim-debugger.tar

http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32.zip
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32.zip
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk-x86_64.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-linux-gtk-x86_64.tar.gz
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32-x86_64.zip
http://aiya.ms.mff.cuni.cz/~martinec/eclipse/eclipse-standard-kepler-SR1-win32-x86_64.zip
http://aiya.ms.mff.cuni.cz/~martinec/gdb/gdb-7.6-patched-msim-debugger.tar
http://aiya.ms.mff.cuni.cz/~martinec/gdb/gdb-7.6-patched-msim-debugger.tar

1.2

1.

2.

Installation

Unpack the Eclipse Classic, run it and choose your workspace folder.

Open the menu Help -> Install new software and add the following update
site:

http://aiya.ms.mff.cuni.cz/"martinec/msim-debugger/msim.
debugger .update.site,

Uncheck Group items by category, select all the plugins and run the instal-
lation.

Build MSIM by following commands:

cd /path/to/msim/sources
./ configure
make

After these commands you should see built binary of MSIM in the bin di-
rectory. Put the built binary into the same directory where your msim.conf
is located.

For cygwin users: A problem with linking the readline library was en-
countered in Cygwin.

The readline is located in the ncurses library. If the ncurses was missing
the configure script might not recognize the readline library. As a quick fix
change the following line in the configure script:

#original line:
LIBS="-1readline $LIBS"

#changed line:
LIBS="—1lreadline —lncurses $LIBS"

Additionally, add the -lncurses option to the LIBS variable in src/
Makefile. Also, you might have to change the following lines in that make-
file:

#original lines:
$ (TARGET) : $(OBJECTS) $(DEPEND)
$(CC) $(CFLAGS) $(LIBS) —o $@ $(OBJECTS)

#changed lines:
$ (TARGET) : $ (OBJECTS) $ (DEPEND)
$(CC) $(CFLAGS) —o $@ $(OBJECTS) $(LIBS)

Build GDB by following commands:

cd /path/to/gdb/sources
./ configure —target=mips
make

These commands should create the GDB executable gdb in the gdb directory.

http://aiya.ms.mff.cuni.cz/~martinec/msim-debugger/msim.debugger.update.site
http://aiya.ms.mff.cuni.cz/~martinec/msim-debugger/msim.debugger.update.site
src/Makefile
src/Makefile

1.3 Setting up a new project

Copy sources of your program for MSIM to the chosen workspace. Open the
Eclipse and create a new project. Choose Makefile project with existing code under
the C/C++ group. Select the toolchain that is appropriate for your platform
(Linuz GCC for linux and Cygwin GCC for windows).

Now you should see the structure of your project in Package Explorer or in
Project Explorer. Change the optimization flags in your makefiles to -0O0 and
add the -g option for GCC. Rebuild your project. The project should be built
according to the rules of your makefile.

Open Run -> Debug Configurations... dialog. Create a new C/C++ MSIM
Application launch configuration. Fill in the name of your project and the de-
bugged binary that contains debugging information. For example, kernel.elf or
kernel.raw. Note that the default Eclipse binary search will miss *.raw files, be-
cause it is not very usual suffix. Thus, the binary might have to be specified
manually.

Switch to the Msim launch options tab. Here you have to configure paths for
the built MSIM and GDB. The GDB ini file is not usually needed. Write the
name of your main function, if you want to stop in it after the launch.

Debugging should work now. You can launch the debugging session.

For cygwin users: The source filenames are referenced from the root (/)
directory and the Eclipse might not be able to locate them. Thus, you will have
to specify their location after the first launch. Click on the Edit source lookup path
in the code editor after launching and add Filesystem directory to your cygwin
installation (e.g. C:|cygwin).

1.4 Debugging views

This section contains screenshots of important GUI views. The relevant GUI
elements are marked and described.

Views can be activated in the Window -> Show view menu.

D @ @ <Java> - kalisto/kernel/main.c - Eclipse SDK

File Edit Source Refactor Mavigate Search Run Project Window Help
Civ B v @ | BHVOVQy | @ v H & sjava>
P
[€ main.c 22] 0xbfcO0000 [n| printer.h =8

=

*

&
* After the initialization is complete, application processors ®ﬂ

* points are allowed to proceed. @ @W=
,-_JI,-' arol
uuid bsp start (void) %

P @ int a = 5;

/* Say hello :-) We write a small message after each =
initialization stage to make it easier to see E
where things go wrong. Should that happen, ™
of course. */ (

@ print ("Initializing Kalisto\n");

/* Initialize TLB. We are running in an unmapped
segment, initializing TLB is therefore not E
strictly necessary, but it might help

as an example for later assignments. #*/ D::(*D
print ("cpu@: Address translation ..."); . e
amat +1k 0.
35 Debug £3(13) ® v =0l
— B msim [C/C++ MSIM Application]
- 1 kemel.elf

— ¢ Thread [3] 3 (Suspended : Container)
ap_start() at main.c:134 0x80002690
= start() at head.5:146 0x8000034c

+ g Thread [2] 1 (Suspended : Breakpoint)

Figure 1.1: Source view with other views in the side toolbar.

Name Notes

‘ 1 Source view ‘ ‘
2 Place for breakpoints Right click to open menu and toggle or en-
able/disable source-level breakpoints
3 Line where the debugged
thread is stopped

‘ 4 Memory Browser view ‘ ‘
‘ 5 Variables view ‘ ‘
‘ 6 Registers view ‘ ‘
‘ 7 Breakpoints view ‘ ‘
‘ 8 TLB Contents view ‘ ‘
‘ 9 Physical Memory view ‘ ‘
‘ 10 Console view ‘ ‘
‘ 11 Project Explorer view ‘ ‘
‘ 12 Disassembly view ‘ ‘
‘ 13 Debug view ‘ ‘

Table 1.1: Marked GUI elements of the view [1.1]

a Memory Browser 3 g 1010 e v
| 0x4000| (1) v T w
0x4000 <Traditional> S@DKBDDDMEB <Traditional>

@Bﬂﬂﬂrﬂﬂﬂ
pee481e

3C028000 8C426880 8FC30010 0R43102B ...<.hB.. .A.— C
BxBB00E4020 19480018 00OOOOOD BFC20010 2442FFFE . .@. . .A.@YyBS$
0x00004030 AFC2001C 8FC2001C 8C420004 00021023 .. A~ ..B.#
0x00004040 8FC30010 0621021 AFC20020 8FC40020 . .A. ATLA
0x00004050 OCOOOECB AOO60064 BFC20020 90420004 E.. .« A...B
Bxboob4060 103032088 0004000/~RFC20020 8C430000 .20. A...C
Bxpoop4070 8FCZ20010 -E;'Z:-l.";ljljlﬁZlBZl 8FC40020 ..A. ’.b. .A
9x00004080 00402821 24060001 OCOBOEAT ooooBoEE !(@. 5§..
0x00004090 BFC40014 0COOOE7A 0O0OPOEO D3COES21 ..A.zZ coaa A
Bx000040A0 B8FBFEBZC SFBEOOZE 27BDOO3G 0ZELOBOE L. | 0.%'..a
OxBOO040E0 BE000088 DOODOOOD BEREERER DoppREEE ..., cea
Bx000040C0 27BDFFF8 AFBEOOO4 B3AOFO21 00EOEE2E Bys" gL
BxB0B00E40D0 ©8801034 000OOOOD 27BDFFES AFEFEOL4 4. .., eys”
Ox00PP40E® AFBEGO1M O3AOF021 AFC40018 30028000 ..%71d ...A"

00402821 24060001 BCOBOEAT DoREEEEE

Figure 1.2: Memory browser view.

Name

Notes

1 Expression input

You can type here any expression that spec-
ifies an address

Go to the specified ad-
dress

Create a new tab ‘

Tabs for browsing memory ‘

Address column of the tab ‘

Y| Ot = | W

Column with hex-dumped
memory

It is possible to change the memory by writ-
ing desired hexadecimal values in this col-
umn.

7 Column with ASCII-

dumped memory

It is possible to change the memory by writ-
ing desired ASCII chars in this column.

Table 1.2: Marked GUI elements of the view [1.2]

[£] main.c 2 [¢] print)= Variables &3 = B8

:; == et ©
void bsp_start (v po .o Type Value
{
int a = 5; Ll ok _
/* Say jello)= aaa unative_t 0
f”ltlallga - » thread thread t* 0x0
where thim) (:
le course. + [gltem tem_t {]’
¥ print ("Initii| 4+ (® stack_blc uint8 t[4096] | Oxc
1] *
/¢ Initialize » stack top void 0x0
segment, 1 -
strictly NlName : a
as an exam Details:5
print ("cpu: Default:5 (:)
o init_tlb (); Decimal:5
print (" OK\n Hex : 0x5
L Binary:1@81
/* Initialize Octal:es
print ("cpu@: Y

Figure 1.3: Variables view.

Name Notes

1 Table with local variables | The rows contain an identifier, a type, and
a value of the related local variable. The
user can change values of variables in the
last column.

2 Details for values ‘

Table 1.3: Marked GUI elements of the view [1.3]

Name Notes

1 Table with registers The rows contain a name of the register and
its value. The user can change values of reg-
isters in the column with values. Changed
registers are colored.

2 Details for values

Table 1.4: Marked GUI elements of the view (1.4l

= 0O

A

— &% General Registers

st ZEro 0
i at @ 0
it vO 0
ot vl 10
it a0 10
it al 0

General Purpose and FPU Regis

Mame : a2
Hex:0x14
Decimal:28
Octal:024
Binary:101ee
Default:28

L)e

Figure 1.4: Registers view.

)

S’
T WELTERNCLTE

& .o main.c [line: 144]
& .o main.c [line: 153]
& # main.c [expression: 'c']

(& e main.c [line: 77]

2

Figure 1.5: Breakpoints view.

Name

Notes

1 List of breakpoints Both normal and memory breakpoints are

listed.
‘ 2 Remove all breakpoints ‘

3 Additional options The user can set a memory breakpoint in
this menu. Another way of setting a mem-
ory breakpoint is via the menu Run -> Tog-
gle Watchpoint.

Table 1.5: Marked GUI elements of the view [1.5]

e oloNoI0oYONOR

Index e sk G ASID V D Frame C

0 0x0 Dxfﬁfeﬂﬂ@ 0xff {0} 0| Ox0 0x0

Ob Ox1 | Oxffffe000; O ; Oxff ; 0; O OxO 0x0

la 0x0 | Oxffffe000; O Oxff { 0 0 0x1000 | Ox0

1b Ox1 | Oxffffe000; 0 Oxff { 0} 0: Ox2000 i Ox0

28 0x0 | Oxffffe000; 0 Oxff { 0 0: Ox2000 { Ox0

2b 0x1 | Oxffffe000: O Oxff : 0! 0 0x4000 ; Ox0

3a 0x0 | Oxffffe000; 0 Oxff | 0] 0 Ox3000 { Ox0

3b Ox1 | Oxffffe000; O Oxff { 0} 0 Ox6000 | OxX0

43 0x0 | Oxffffe000; O Oxff { O: 0 0x4000 | 0x0

4b Ox1 | Oxffffe000; O Oxff { 0! O OxBOOOD i OX0 «

Figure 1.6: TLB Contents view.
Name Notes
1 Index column Each row reflects translation of one page to one frame.

Note that a TLB entry for the R4000 processor maps
a pair of the following pages to two frames. The used
way of displaying a TLB entry is separating it into
two rows.

2 Page index Address of a virtual page divided by size of one page.

3 Mask TLB hit occurs when wvirtual address & mask ==

page_index. This value is derived from the PageMask
register. Bits 0-12 are always zeroes, bits 13-24 are
set by the debuggee, and bits 25-31 are always ones.
See [?] |p. 81] for more details.

4 Global bit ASID is ignored if this bit is set. Note that this bit
is never directly accessed by the debuggee. It is com-
puted during a TLB write as logical AND of EntryLo0

and EntryLol global bits.

5 ASID Address space identifier of the entry. Note that the
current ASID is stored in the EntryHi register.
6 Valid bit This bit is set if the page-to-frame translation of this
row is enabled.
‘ 7 Dirty bit ‘ This bit is set if the page is writeable. ‘
‘ 8 Frame ‘ Address of the translated physical frame. ‘

‘ 9 Coherency bits ‘ Three coherency bits. Not used in MSIM. ‘
Table 1.6: Marked GUI elements of the view [1.6]

@il Physical Memory &3 =
0x4000| ﬂ 'Go New Tab
0x4000 <Traditional= 2
0x00004000 00402821 OCOBBEAT {@. §... "
0x00004010 3CO28000 8FC30010A.
0x00004020 1040001B 8FC20010 ..@. ..A.
0x00004030 AFC2001C 8C420004 A ..B
0x00004040 8FC30010 AFC20020 ..A. AT
0x00004050 OCOOOECB 8FC20020 E... AL
0x00004060 10303208 8FC20020 .20. AL
0x00004070 8FC20010 00621021 ..A. 1.b.
0x00004080 00402821 OCOBBEAT ({@. §.

Figure 1.7: Physical memory view. The usage is the same as for the

[browser vieul

@

El console 2 Ewpl LE & & = Bvijy T O
msim [C/C++ MSIM Application] gdb

|
®

Figure 1.8: Console view.

Name Notes

1 Console output | Useful for seeing MSIM output or GDB/MI commu-
nication.

2 Terminate de-
bugging session

3 Select another
console

Table 1.7: Marked GUT elements of the view [1.8]

.5 Project Explorer i3 g g ¥ =0

- == kalisto
+ ¥ Binaries
&= contrib
= doc
&= kemel
= user
%5 msim - [x86/le]
& Makefile
£ msim.conf
2] README
source.txt
|5 tests.sh v

+ + 4+ o+ o+

Figure 1.9: Project explorer view. The Kalisto project is currently loaded.

@

|Enter|0caﬁgn here & ey F9 e 7
> 80002540 1i v6,5 &
80002544 sw vB,16(s58)
78 print ("Initializing Kalisto\n");
80002548: lui v@,0x8080 @

2000254cC: jal BxBeep43ad <print=
200025580 : addiu a8,ve, 17468
76 print ("cpu@: Address translation ..."});
20082554 ; lui vb,8x8000
B8002558: jal 8x808043a4 <print=
@15525542: addiu aB,ve, 17492
e 77 init tlb ();
20002560 : jal ©x88003830 <init tlb>
20002564 : nop
78 print (" OK\n");
88002568 lui v@,8xBE00
Beee256¢C: jal 8x808043a4 <print=
20002570 : addiu a@,ve,17524 v

Figure 1.10: Disassembly view.

Name Notes

1 Disassembly view C source is merged into the instructions.
The first column holds addresses of instruc-
tions or lines of the C code. The second col-
umn contains instructions and the C code.
Symbols are added to the known addresses.

2 Place for breakpoints Right click to open menu and toggle or en-
able /disable instruction-level breakpoints.

3 Line where the debugged
thread is stopped

4 Search input Any expression that specifies an address can
be typed here.

Table 1.8: Marked GUT elements of the view [1.10l

00 0NMO.00

%> Debug &2 i3 [T i ¥ =08

— B msim [C/C++ MSIM Application]
- 1 kemnel.elf
— ¢ Thread [3] 3 (Suspended : Container)
ap_start() at main.c:134 0xB80002690
start() at head.5:146 0x8000034c @
— ¢ Thread [2] 1 (Suspended : Breakpoint)

bsp_start() at main.c:65 0x80002540

start() at head.5:138 0x80000338
— of® Thread [1] 2 (Suspended : Container)
ap_start() at main.c:134 0x80002690
start() at head.S:146 0x8000034c

wd gdb
gl Msim
Figure 1.11: Debug view.
Name Notes
1 Debug view All the processes, their threads and call

stacks are listed. The user selects the cur-
rent thread by choosing it in this view.

2 Resume

3 Interrupt

Terminate debugging ses-
sion

Step into

|
Step over ‘
Step out ‘

N | | O ot

Toggle instruction-level | This enables the user to do instruction-level
debugging stepping.
Table 1.9: Marked GUI elements of the view [1.11l

e

	User manual
	Downloads
	Installation
	Setting up a new project
	Debugging views

