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Zhengwei Qi† Petr Tůma‡ Walter Binder*

* Università della Svizzera italiana (USI), Switzerland
† Shanghai Jiao Tong University, China
‡ Charles University, Czech Republic

§ Universidad Privada Boliviana, Bolivia

jysunhy@sjtu.edu.cn, yudi.zheng@usi.ch, lubomir.bulej@usi.ch, avillazon@upb.edu
qizhwei@sjtu.edu.cn, petr.tuma@d3s.mff.cuni.cz, walter.binder@usi.ch

Abstract
The multi-process architecture of Android applications combined
with the lack of suitable APIs make dynamic program analysis
(DPA) on Android challenging and unduly difficult. Existing analy-
sis tools and frameworks are tailored mainly to the needs of security-
related analyses and are not flexible enough to support the develop-
ment of generic DPA tools. In this paper we present a framework
that, besides providing the fundamental support for the development
of DPA tools for Android, enables development of cross-platform
analyses that can be applied to applications targeting the Android
and Java platforms. The framework provides a convenient high-level
programming model, flexible instrumentation support, and strong
isolation of the base program from the analysis. To boost developer
productivity, the framework retains Java as the main development
language, while seamless integration with the platform overcomes
the recurring obstacles hindering development of DPA tools for
Android. We evaluate the framework on two diverse case studies,
demonstrating key concepts, the flexibility of the framework, and
analysis portability.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

General Terms Languages, Measurement

Keywords Dynamic analysis, Dalvik Virtual Machine, Android,
Java Virtual Machine, bytecode retargeting and instrumentation

1. Introduction
Android has become the dominant software platform for mobile
devices and the most popular platform among mobile software
developers. The growth in dominance and popularity is accompanied
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by a rising number and complexity of mobile applications, which
in turn increase the demand for appropriate software development
tools. This concerns especially program analysis tools that provide
insight into the application behavior and help in tasks such as finding
bugs, identifying design and performance problems, or determining
important traits of third-party code.

When developing program analysis tools, particular challenges
emerge with dynamic program analysis (DPA) [14]. To observe the
dynamic application behavior, DPA tools need to integrate with the
programming model and the execution environment of the target
platform—developing DPA tools thus requires understanding the de-
tailed operation of the execution platform, which likely occurs at an
entirely different level of abstraction than application development.
A good example that illustrates the challenges involved are tools
that examine various security aspects of Android applications; such
tools employ a variety of approaches to observe the program events
of interest, ranging from modifications of the operating system ker-
nel [6, 7, 9] and customization of the virtual machine [6, 10, 13],
through various instrumentation techniques [5, 8, 12, 22], to running
the virtual machine in a CPU emulator [18, 26].

As the range of approaches used by security analysis tools amply
illustrates, Android lacks the means to develop DPA tools using
a high-level programming model, without resorting to complex
platform-specific implementation. To address this drawback, we
present a new DPA development framework that remedies the lack of
tooling support in the Dalvik Virtual Machine (DVM) and provides
a high-level, aspect-oriented programming model for developing
DPA tools in the resource-constrained environment of Android. In
summary, the paper presents the following contributions:

• We modify the DVM to enable development of DPA tools. In
particular, our modifications provide support for (a) handling
of essential events such as class loading and initialization, (b)
tracking of virtual machine, thread, and object lifecycle, and
(c) exportable object identities, application event notifications,
and component communication tracking. These modifications
constitute an indispensable DPA tooling support on the DVM.

• We introduce a high-level programming model for DPA tools
on the DVM which features an aspect-oriented specification
of the desired instrumentation. The model permits a compact
implementation of DPA tools even for applications consisting of
multiple communicating components in multiple processes, as it
is common on Android.



• We combine the DVM tooling support with the DPA program-
ming model in a framework that features load-time application
instrumentation, high code coverage (including coverage of core
class libraries and component communication) and strong analy-
sis isolation.

• We evaluate our approach on two case studies, one implementing
a dynamic analysis for collecting application code coverage
data on Android and Java platforms, the other implementing
a dynamic analysis for detecting runtime use of permissions
in Android applications. These case studies demonstrate the
basic concepts of the programming model, the flexibility of our
framework, and analysis portability.

This paper is organized as follows. In Section 2, we provide
background essentials necessary for establishing the context of our
work. We then present a high-level view of the framework, outlining
the major design decisions in Section 3, and reviewing the program-
ming model in Section 4. We complement the overall perspective
with a discussion of the fundamental design and technical issues and
the responsibilities tied to the deployment and execution of dynamic
analyses in Section 5. We demonstrate and evaluate the framework
on case studies presented in Section 6, and review related work in
Section 7. Finally, we discuss the strengths and limitations of our
approach in Section 8 and conclude in Section 9.

2. Background
In this section we aim at establishing the context of our work. We
first provide an overview of the Android platform essentials and
then review our prior work on bytecode instrumentation, modulariza-
tion and composition of dynamic program analyses, and techniques
for achieving high analysis coverage and strong isolation of the
observed program from the analysis. Either of the following subsec-
tions can be skipped if the reader is familiar with the topic.

2.1 The Android Platform
Android applications are written in the Java programming language.
To facilitate reuse and separation of concerns, applications are
built from mutually interconnected application components. Each
component plays a specific role and serves as an entry point to an
application. The Android application framework defines four types
of application components. Each type serves a distinct purpose and
has a corresponding lifecycle.

Components responsible for interacting with users are called
activities, each representing a single screen with a user interface.
Activities are not supposed to perform any long-running operations
or work for remote processes—this is the responsibility of service
components. Services run in the background so as not to block
user interaction with an activity, and do not provide any user
interface—they are only accessible through an API provided to other
components. If an application wants to expose private persistent data
to other applications, it has to define a content provider component,
which provides read/write access to the data, subject to application-
defined restrictions. The last component type is a broadcast receiver,
which allows an application to receive notifications about system-
wide events.

Application components can communicate with other compo-
nents using several mechanisms. For high-level communication
among loosely-coupled components, the Android core framework
provides a message passing system based on intents, messaging
objects that are primarily used to start activities, to start/stop and
bind services, and to broadcast system-wide event notifications. An
intent identifies an action to be performed and the data to operate
on. An implicit intent does not specify the name of the target com-
ponent and will be delivered by the Android core framework to any

component advertising the ability to perform the requested action
with the requested data. An explicit intent specifies the name of the
target component directly.

When a more tightly-coupled interaction with a service is re-
quired, a component can use an intent to bind to a service, obtaining
in return a service object that can be used to interact with the service
directly in one of three ways. When connected to a service running
in the same process, a component can directly invoke the service’s
API methods. If a service executes in a different process, a compo-
nent has to use either asynchronous messaging or remote procedure
calls (RPC) to interact with the service.

At the OS level, the high-level inter-process communication
(IPC) mechanisms are implemented using the binder, a low-level
IPC mechanism for indirectly-addressed point-to-point bulk data
exchange between processes. The endpoints of the communication
are identified by a binder token, a system-wide identifier that can be
shared among processes. Sending data from one process to another
is called a transaction, and except in case of special transactions,
the communication is synchronous and follows the request-reply
model. The client is therefore suspended until the server provides a
response.

Android is a Linux-based multi-user operating system, where
applications execute in a private sandbox; each installed application
has a distinct user ID, executes in a separate process, and can
only access its own files. Data and resources can be shared only
through the IPC mechanisms provided by the platform. In this way,
the Android system implements the principle of least privilege,
contributing to platform security [23].

Android applications, while written in Java, execute in the Dalvik
Virtual Machine (DVM), which is similar to a Java Virtual Machine
(JVM) in that it provides a managed execution environment with
garbage collection, but conceptually implements a register-based
instruction set architecture (ISA) in contrast to the stack-based
ISA implemented by the JVM. Consequently, application classes
need to be converted from Java bytecode to Dalvik bytecode before
deployment. By default, application components belonging to the
same application execute in a single DVM instance. However, any
application component can be configured to execute in a separate
process, and thus a separate DVM.

Launching a new DVM instance entails considerable latency due
to VM bootstrap and initialization of the core libraries. Because the
system needs to start and terminate processes frequently, the over-
head of DVM initialization would be detrimental to performance.
Android therefore starts a special process called Zygote early during
system boot, which only bootstraps the DVM and initializes the
core classes. The Zygote thus becomes a live snapshot of a freshly
initialized DVM. Thanks to the copy-on-write implementation of
the fork() system call, this snapshot can be efficiently duplicated
when requested; that is, whenever a new DVM instance is needed,
the Zygote process is simply forked, producing a child DVM which
is almost immediately ready to execute application code.

2.2 Prior Work
This work is part of our ongoing effort aimed at simplifying the
development of dynamic program analyses for modern managed
platforms. Observing the runtime behavior of a program, which lies
at the heart of dynamic program analysis, is generally plagued by
a multitude of issues [14]. To simplify DPA tool development, we
aim at providing a comprehensive framework that addresses those
issues while balancing several antagonistic requirements: simplicity,
meaning that it should take away most of the complexity not inherent
to a particular analysis; isolation, meaning roughly that observing a
program does not cause it to deviate from the path it would ordinarily
take; coverage, meaning the ability to observe all relevant events
during execution, including both user code and system code; and



performance, meaning the minimization of slowdown caused by the
analysis.

In general, the developer of a DPA tool has to deal with two
principal concerns at different levels of abstraction. One concern
is the design and implementation of the analysis itself, which
comprises the analysis algorithms, data structures for maintaining
analysis state, and reaction to base program events that drive the
analysis. The other concern is ensuring that the events of interest
occurring in the base program will be reported to the analysis; this
often requires modification of the base program code or special
hooks in the execution platform.

In our previous work, we tackled various aspects of DPA tool
development. In DiSL [17], we provide a domain-specific aspect lan-
guage that enables rapid development of efficient instrumentations.
The code to be inserted into the base program is expressed using
snippets of Java code, with the desired location of the code specified
declaratively in snippet annotations. In FRANC [1], we provide
support for modularization of DPA tools, enabling composition of
analysis tools from modules capturing recurring instrumentation
and analysis tasks. Finally, in ShadowVM [16] we provide a system
for dynamic analysis of programs running within the JVM, which
achieves strong isolation and high coverage. The ShadowVM ap-
proach is based on executing the analysis code in a separate JVM,
asynchronously with respect to the observed program. The observed
program is instrumented using DiSL to emit the events of interests,
which are then forwarded to the analysis executing in the separate
JVM.

We necessarily build on our previous efforts—we rely on DiSL
for instrumentation, and on the ShadowVM concept of separate
analysis server for isolating analysis execution from the base pro-
gram. The novelty of this work lies in enabling development of DPA
tools on Android, which goes far beyond mere reuse of existing
components, both in scope and effort. In targeting the Android plat-
form, we enable development of cross-platform analyses using a
common programming model, which allows using a single analysis
for both Android and Java platforms. To achieve that, we address
many specific design and technical issues, such as support for appli-
cations executing in multiple virtual machines, inter-component and
inter-process communication, and many others, which we present in
the following sections.

3. DPA Framework Architecture
The design of the DPA framework seeks to accommodate the major
dynamic analysis requirements—high coverage, strong isolation,
programming simplicity and acceptable performance—in the con-
text of applications that follow the Android component model. The
most visible trait of the design is the separation of analysis from
the executing application, which is not common in conventional
DPA frameworks, where it may appear reasonable to colocate the
analysis with the executing application to achieve low overhead
in accessing the application state. With applications consisting of
multiple components possibly executing in separate DVM instances,
colocating the analysis with the application would result in distribut-
ing the analysis state with the application components. This might
not matter with analyses that can partition their state to mirror the
partitioning of the application, but in general, partitioning analysis
state would needlessly complicate the analysis code.

The component model also brings the existence of multiple entry
points; instead of being launched through a single entry point, as is
common with desktop and server applications, each application
component can be activated by the system independently. The
components execute in response to asynchronous messages (intents)
sent by other components. In fact, an application can also integrate
components from other applications by using implicit intents that do
not specify a specific receiver. The potentially complex control flow
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Figure 1: The ShadowVM architecture for Android.

is another factor for separating the analysis from the application.
It also necessitates that the DPA framework tracks the component
communication and informs the analysis about the implied control
flow.

Finally, Android applications execute in what is (at least from
the perspective of contemporary desktop and server platforms) a
resource-constrained environment. While it is possible to execute
the analysis server in the Android environment, doing so would
typically make it compete for resources with the analyzed applica-
tion. We therefore execute the analysis on a remote system, which
is fed with the observed events. The remote execution also con-
tributes to comfortable analysis development. The analysis code is
not constrained to those Java features available on Android. It can
also interface directly with the common development environments,
for example for reporting results. On the DPA framework side, the
remote analysis execution requires adjusting for the differences be-
tween the DVM and the JVM platforms, in particular the difference
in the bytecode formats used by the two environments.

Motivated by the factors outlined above, the overall DPA frame-
work architecture is depicted in Figure 1. At its core is the observed
system, where the analyzed application executes in potentially mul-
tiple DVM instances. The application is instrumented to notify the
analysis about events of interest through the new event API, added
to the DVM as a part of our DVM extension. The communication
takes place through the Analysis Communication Service (ACS),
which forwards the notifications to a separate analysis server. The
instrumentation itself is done by the instrumentation server, which
takes care of injecting the code that generates event notifications into
the application as directed by the aspect-oriented analysis model.

Although the entire design is geared to deliver strong isolation
between the application and the analysis, the analysis developer
is shielded from many of the separation issues by the DPA pro-
gramming model. The model allows the developer to retain Java as
the instrumentation language, masking the fact that the application
DVM and the analysis JVM use different bytecode. The event notifi-
cations carry the necessary contextual information that allows the
analysis to identify the application components where the events
originate, to track the communication between components, and to
handle special situations such as DVM forking. We describe the
DPA programming model next, and then return to the more advanced
aspects of the DPA framework implementation.



Figure 2: Overview of the programming model as an event-based
system.

4. DPA Programming Model
The programming model follows from the requirement for strong
isolation and is essentially a distributed event-processing system,
as illustrated in Figure 2. An instrumented base program executes
on the observed system, producing event notifications that drive the
analysis. Both the instrumentation and the analysis execution are
isolated from the observed system.

An analysis developer is responsible for identifying the events
of interest and for generating the corresponding event notifications
during program execution. The code of the observed program thus
needs to be instrumented to include hooks that trigger invocation of
analysis stubs, which use the framework-provided Event API to gen-
erate event notifications. The hooks are represented as DiSL snippets
(c.f. Section 2.2) that are woven into the code of the observed pro-
gram; this is performed in a dedicated VM, which allows retaining
Java as the instrumentation language. When intercepting common
events, such as method entry/exit, basic-block entry/exit, monitor
entry/exit, object allocation, or field read/write, the developer can
reuse existing snippets from a library of instrumentations. For cer-
tain events that are impossible to capture via instrumentation, such
as the VM lifecycle or an object being freed by the garbage collector,
the notifications are generated automatically by the framework.

The framework buffers the notifications and delivers them to
the analysis, while respecting the ordering configuration required
by the analysis. The available ordering configurations include,
among others, global and per-thread ordering. Global ordering
is provided for analyses that typically observe global application
behavior and need to correlate events from all application threads.
Per-thread ordering can be used for analyses with relaxed ordering
requirements, to avoid completely serializing the base program, and
to execute analysis code in a matching number of threads.

The notifications are delivered in form of method invocations
on an analysis class deployed in a separate analysis VM. For user-
defined analysis events, the interface of the analysis class is deter-
mined by the developer. To receive the framework-generated events,
the analysis class needs to implement event-specific interfaces to
subscribe to those events.

An analysis method corresponding to an event receives as its
arguments the data from notifications generated by the hooks in the
observed program. The data can be either primitive values or object
references, with the latter reified as ShadowObject instances when
delivered to the analysis. The mapping between references in the
observed program and the shadow objects is a partial1 function, i.e.,
a reference from the observed VM will always map to the same
shadow object. A ShadowObject is the basis of the Shadow API
provided by the framework. Besides representing object identity,
it provides access to class information and allows an analysis to
associate state with any ShadowObject instance. Instances of the
String, Thread, and Class classes in the observed program are

1 The mapping is only performed for objects that are exposed to analysis.

1 p u b l i c f i n a l c l a s s Context {
2 p u b l i c i n t userId ();
3 p u b l i c i n t processId ();
4 p u b l i c String processName ();
5 p u b l i c Collection <ShadowObject > shadowObjects ();
6 p u b l i c s t a t i c Collection <Context > contexts ();
7 }

Figure 3: The Context representing a VM.

reified as specialized ShadowObject instances—a ShadowString,
providing the string value, a ShadowThread, providing basic thread
attributes, and a ShadowClass, providing reflective information
(any class loaded by the observed VM will have a corresponding
ShadowClass instance on the analysis VM). Any other state-related
data from the observed program need to be explicitly extracted
by the hooks that reify analysis events and marshalled into event
notifications.

4.1 Virtual Machine Context
Because the components of an Android application can execute in
multiple DVM processes, an analysis may receive events originating
from different processes. To determine event origin or to distinguish
between events from different virtual machines, the framework
can (optionally) associate context information with each event
notification delivered to an analysis.

To receive the context information, the last parameter in the
signature of a user-defined analysis method must be of type Context,
shown in Figure 3. When invoking such a method in response to a
particular event notification, the framework will pass a Context
instance as an argument to the method. The Context instance
represents the VM in which a particular event originated and can
be only created by the framework. The information identifying a
virtual machine is immutable and represents the Context identity.
A Context instance can be therefore used as a key in associative
data structures. In addition, a Context provides access to all shadow
objects associated with the VM it represents.

To receive framework-generated notifications for special events,
an analysis class needs to implement the corresponding listener
interfaces. Figure 4 shows interfaces for various lifecycle event
notifications. The signatures of the receiver methods are prescribed
by the framework, therefore the Context parameter is always
included where appropriate.

The onObjectFree() notification signals that a particular object
has been released by the GC, and is the last notification referring
to that object. The onThreadStart() and onThreadExit() notifica-
tions delimit the start and the exit of a thread in a VM and are the
first and the last notifications for that thread. The onVmStart() no-
tification captures the creation of a new VM on the observed system
and is the very first event for that context. The parent context will
be null for a standalone/bootstrap VM—the Zygote in the Android
case. The DVM instances forked off the Zygote to run an applica-
tion or a service will receive the Zygote context as their parent. The
onVmExit() notification signals the exit of a VM and is the very last
notification for that context. We note that due to the distributed na-
ture of Android applications, this notification alone is not sufficient
to detect the end of application execution—user-defined hooks need
to be employed to detect when different application components are
being shut down.

4.2 Inter-process Communication Events
In addition to the resource lifecycle events, the framework also
generates notifications for inter-process communication events, with
the corresponding listener interfaces shown in Figure 5. We discuss
these separately, because they are instrumental in addressing the



1 i n t e r f a c e ObjectFreeListener {
2 v o i d onObjectFree (ShadowObject object , Context ctx);
3 }
4 i n t e r f a c e ThreadStartListener {
5 v o i d onThreadStart (ShadowThread parent ,
6 ShadowThread thread , Context ctx);
7 }
8 i n t e r f a c e ThreadExitListener {
9 v o i d onThreadExit (ShadowThread thread , Context ctx);

10 }
11 i n t e r f a c e VmStartListener {
12 v o i d onVmStart (Context parent , Context ctx);
13 }
14 i n t e r f a c e VmExitListener {
15 v o i d onVmExit (Context ctx);
16 }

Figure 4: Resource lifecycle events.

1 i n t e r f a c e RequestSentListener {
2 v o i d onRequestSent(Endpoint target ,
3 NativeThread client , Context ctx);
4 }
5 i n t e r f a c e RequestReceivedListener {
6 v o i d onRequestReceived(Endpoint target ,
7 NativeThread client , NativeThread server , Context ctx);
8 }
9 i n t e r f a c e ResponseSentListener {

10 v o i d onResponseSent(Endpoint target ,
11 NativeThread server , Context ctx);
12 }
13 i n t e r f a c e ResponseReceivedListener {
14 v o i d onResponseReceived(Endpoint target ,
15 NativeThread server , NativeThread client , Context ctx);
16 }

Figure 5: Inter-process communication events.

design challenge related to the multi-process architecture of Android
applications.

The Android application framework provides the IBinder inter-
face, which represents the base interface of a remotable object and
serves as an abstraction of the low-level binder mechanism (c.f.
Section 2.1). Transactions performed using the IBinder interface are
by default synchronous, unless a special flag requesting one-way
transaction (to an out-of-process target) is used. The high-level IPC
mechanisms, such as intents, messaging, and RPC, are implemented
using the IBinder abstraction.

An analysis designed to observe high-level Android communica-
tion can observe most of the high-level behavior using user-defined
instrumentation. But when the control reaches native code that uses
the low-level binder API to perform a transaction, the last step of an
IPC operation becomes opaque. To make this last step observable,
our DPA framework generates event notifications corresponding
to a transaction client sending a request and receiving a response,
and to a transaction server receiving a request and sending a re-
sponse. Each notification includes a Context representing the VM
in which the event occurred, along with an Endpoint representing
the transaction’s target binder token, and NativeThread instances
representing threads (not necessarily corresponding to application
threads) involved in the communication. With this information, an
analysis can identify and distinguish among individual transactions.

We emphasize that these notifications only provide the necessary
means to enable development of analyses that observe communica-
tion between application components and correlate IPC events from
multiple virtual machines. Additional user-defined hooks in the An-
droid core libraries are required to capture and track communication
from the high-level abstractions (intents, messaging, RPC) used by
the application to the lower-level layers using the binder kernel API.

4.3 Analysis State Replication
Analyses that need to shadow base-program objects typically as-
sociate their state with the shadow objects using associative data
structures. To relieve analysis developers from repeatedly imple-

1 p u b l i c c l a s s ShadowObject {
2 ...
3 p u b l i c Object getState ();
4 p u b l i c <T> T getState (Class <T> type);
5 p u b l i c v o i d setState (Object state);
6 p u b l i c Object setStateIfAbsent (Object state);
7 }
8
9 i n t e r f a c e Replicable {

10 Replicable replicate ();
11 }

Figure 6: API for management of analysis state.

menting mapping between shadow objects and analysis state, the
ShadowObject class provides a convenience API, shown in Figure 6
(lines 3–6), which allows attaching arbitrary analysis-specific data
to a ShadowObject instance. However, this API is not sufficient for
platforms such as Android, where multiple virtual machines can be
executing components of a single application.

The general contract for a ShadowObject instance is that it rep-
resents the identity of a single object. However, when a new VM is
started by forking a parent VM, the objects allocated on the parent
VM prior to the fork are duplicated in the child VM. Consequently,
any shadow objects associated with the parent VM should be cloned
as well, so as to maintain the ShadowObject contract of represent-
ing a single object in a single virtual machine. The framework nat-
urally honors the contract by cloning the ShadowObject instances
before issuing the onVmStart() notification to the analysis, but it
does not know how to clone analysis-specific data.

This is not a concern if the analysis only targets application
classes, because their instances will never be created in the Zygote,
and thus will never be cloned when creating a new DVM for the
application components. However, when an analysis also targets
core libraries (many of which are initialized in the Zygote), the
developer has to provide a replication strategy for the shadow state.

Any state data attached to a ShadowObject that is being cloned
is expected to implement the Replicable2 interface, shown in
Figure 6 (lines 9–11), so that it can be replicated for the new
ShadowObject clone. If the analysis never attaches state to shadow
objects created during Zygote initialization, the framework will have
no need for state replication, and the state class will not need to be
replicable.

5. Advanced Technical Challenges
The programming comfort provided by our DPA programming
model—compared to the DPA approaches listed in the introduction—
requires extensive design effort on the part of the DPA framework,
which abstracts away from numerous details of the underlying
platform. We describe the more elaborate issues step by step, starting
with the mechanisms related to code instrumentation and following
with the event notification generation and delivery.

Bytecode. As mentioned earlier, Android application classes must be
translated from the stack-based Java bytecode to the register-based
Dalvik bytecode for execution. Manipulating the Dalvik bytecode
represents an added burden on DPA analysis development without
any technical merit—the Dalvik bytecode was developed primarily
to circumvent licensing issues. With a plethora of mature tools for
manipulating Java bytecode, there is little interest in duplicating
the effort for directly manipulating the Dalvik bytecode, which is
(officially) only ever produced by conversion from Java bytecode.
We therefore use bytecode retargeting tools to convert between the

2 The Cloneable interface in Java is generally considered broken, because
a successful cast of an Object to a Cloneable does not allow calling the
clone() method on the result.



two representations as necessary, and adjust the instrumentation
process accordingly.

When instrumenting Android application classes, the instrumen-
tation server extracts the classes to be instrumented from the cor-
responding .dex file, converts them from Dalvik to Java bytecode
using the bytecode retargeting tool, and instruments the resulting
Java classes using DiSL. The hooks employed by the analysis are
expressed as Java code snippets and are compiled into Java bytecode,
which is used by DiSL directly, without any transformation. After
instrumentation, the server converts the instrumented classes back
to Dalvik bytecode, repackages them into a .dex file, and sends it
back to the DVM via the ACS.

Batch class loading. The Java language specification requires that
classes are initialized lazily, in general immediately before first
access but not sooner. The JVM also loads the classes lazily—just
before initialization. It is therefore customary to instrument classes
at load time (otherwise it is difficult to enumerate the exact set of
classes belonging to the application). In contrast, the DVM loads
(maps) classes into memory from per-application .dex files, in which
all classes are laid out to facilitate memory mapping and constant
deduplication [23]. Before loaded into memory, these .dex files still
need to be optimized specifically to the runtime into .odex formatted
files. These .odex files are cached to boost loading time for other
DVM instances. The DVM thus reads the .odex files, maps multiple
classes at the same time, and then initializes them lazily when they
are needed. As a consequence, the DVM does not support class
redefinition, and does not allow instrumenting individual classes
upon loading or before initialization—once mapped into memory,
the class code cannot be changed.

To preserve the concept of instrumentation at load time—
essential to relieve the developers from instrumenting the appli-
cation manually before installation—we modify the DVM class
loading process to instrument classes in batches before they are
mapped to memory. To enable different instrumentation strategies,
we also make sure the .odex files won’t be cached by removing
the caches at boot time. Before mapping a .dex file, the modified
DVM sends it via the ACS to the instrumentation server, which
instruments the classes and sends back another .dex file which is
then optimized and mapped to memory. This ensures that both the
application classes and the associated libraries are instrumented.

Core libraries. When the Android system starts, the first DVM
process—the Zygote—loads and initializes the core classes. All sub-
sequent DVM instances (obtained by forking the Zygote) therefore
share the code of the core libraries. This concerns full coverage anal-
yses, which require instrumentation of the core libraries, because it
is technically impossible to only instrument the core libraries for the
application that is being analyzed—the instrumentation is present at
all times.

To prevent flooding the analysis with events from the core li-
braries generated due to activities of other applications, the instru-
mentation is equipped with a bypass functionality [19]. The instru-
mentation is only enabled in the analyzed application, and bypassed
with minimum overhead in the other applications.

Reflective information. Connected to class loading is the issue of
providing reflective information, available to the analysis through
ShadowClass instances. The reflective metadata is extracted by the
analysis server from the bytecode of loaded classes. To achieve that,
the modified DVM sends an internal notification to the analysis
server prior to class initialization, and the analysis server in turn
requests the class bytecode from the instrumentation server and
creates the corresponding ShadowClass instance containing the
reflective information. The analysis notifications that depend on

that particular ShadowClass to be available are delayed until the
ShadowClass is created.

Generating analysis event notifications. Following the loading
and instrumentation phases, the major responsibility of the DPA
framework is to generate notifications for the analysis events as
directed by the aspect-oriented snippet code. The code inserted by
instrumentation into the application typically assumes the form of
simple hooks, which capture the application state that is relevant to
the event being reified and use the Event API to generate the event
notifications. The hooks themselves are provided by the analysis
developer and woven into application code.

The code that actually generates the event notifications resides
in a separate (stub) class and invokes the native helper methods
of the Event API—provided by the modified DVM—to create a
notification, marshal the captured state data into it, and submit
it for delivery to the analysis. The code is always of the same
restricted form and can be therefore generated. Each notification
is automatically augmented with an identifier of the DVM process,
so that the analysis server can locate the Context representing the
DVM process from which the notification originated.

Object identity. The DPA programming model provides the analysis
with a convenient abstraction for the identities of objects that have
been exposed to the analysis. On the JVM, support for exportable
object identities—that is, identities that can be used outside the
analyzed application—can be implemented through a specialized
tool building API, the JVMTI [24]. The DVM, however, does not
provide such an API.

To maintain correspondence between the objects in the observed
DVM and their ShadowObject counterparts on the analysis server,
we have extended the DVM to support object tagging, or, the
ability to associate an arbitrary long integer value with any object.
All objects passed into an event notification are tagged with a
unique (within the DVM) identifier. Whenever an object identifier
is received in the event notification, the analysis server uses the
DVM process identifier from the notification to locate the Context
in which to look for or create the corresponding shadow object.

Generating special event notifications. Besides generating notifica-
tions for the analysis events from the aspect-oriented snippet code,
the DPA framework must also generate notifications for certain es-
sential events that are impossible or unduly difficult to capture by
instrumentation. This includes events related to lifecycle of various
DVM resources, as well as events related to low-level inter-process
communication.

Among the lifecycle events, the onObjectFree() notification is
the most common. Without this notification, an analysis would not
be able to determine when to free the shadow objects, and would
therefore be bound to run out of memory on a long enough execution.
Again, the notification can be implemented on the JVM through a
specialized tool building API, but no such API exists for the DVM—
we have therefore modified the DVM to emit the notification when
releasing a tagged object, that is, an object that has been exposed to
the analysis.

To produce the onVmStart() notifications, the Zygote was
modified to emit an internal notification to the analysis server after
initializing the bootstrap DVM, and after creating a new DVM
by forking itself. The internal notification triggers the creation
of a new Context for the new DVM, as well as cloning of all
shadow object instances (and possibly replication of the attached
state data) associated with the parent DVM. The onThreadStart()
notification is generated before the DVM creates a thread, while
the onThreadExit() notification is generated when the thread’s
resources are released—just after the thread had been detached
from the DVM.



The notifications for inter-process communication events are
produced from hooks in the binder communication API (native
implementation of the transact() and onTransact() methods). To
identify the communicating threads, the transaction data is extended
to include the thread identity of the sender thread. This is similar to
IPC taint tracking [10].

Together, our modifications of the DVM can form a new tool
interface for use by other tools independent of our DPA frame-
work. In addition to these modification, we introduce two details
related to the notification transport layer—notification buffering and
notification delivery.

Notification buffering. The framework extension of the DVM em-
ploys carefully designed buffering and threading strategies to enable
asynchronous analyses while respecting ordering constraints. Events
produced by the application threads are stored and marshalled into
buffers in the context of the Event API invocations. Completed
buffers are then sent to the ACS. This is handled by a dedicated
thread in all DVM instances except the Zygote, where this is han-
dled on the main thread. When the Zygote is about to fork off a
new DVM, all notification buffers are flushed to ensure that the
child DVM does not send out events originating in the parent. After
forking the Zygote, a dedicated sending thread is created in the child
DVM.

Notification delivery. For each event notification received from
the ACS, the analysis server unmarshals the data, determines the
corresponding VM Context, maps object identifiers to shadow
objects, and invokes the appropriate analysis method. User-defined
analysis event notifications are dispatched according to the selected
notification ordering model, which allows processing notifications
from multiple base program threads in matching number of analysis
threads. The framework-generated special event notifications are
dispatched in a dedicated analysis server thread. The internal
threading model in the analysis server guarantees proper ordering
of the special event notifications with respect to the analysis event
notifications originating in the base program.

6. Case Studies
In this section we present two case studies to illustrate the use of
our framework for developing dynamic analyses for Android. The
first case study is a conventional dynamic analysis for determin-
ing application code coverage. The second case study is a custom,
Android-specific analysis that allows tracing the usage of permis-
sions in Android applications.

The case studies were evaluated with an implementation of our
framework, built on Android 4.1 Jelly Bean (API level 16). The
bytecode retargeting was performed using the dex2jar3 tool. We
used the standard Android ARM emulator to run our framework,
with the instrumentation and analysis servers running in separate
JVMs on an Ubuntu Desktop Linux host with 8 GB of RAM.

We note that the purpose of these case studies is solely to
showcase some of the concepts provided by the framework, as
well as substantiate our claims with a working implementation. At
this point, we do not make any performance claims, because using
a full system emulator does not allow us to undertake an extensive
performance evaluation.

6.1 Code Coverage Analysis
Code coverage is generally used to judge the effectiveness of a
test suite and the quality of individual tests [20]. Code coverage
metrics span from high-level program elements, such as classes and
methods, to lower-level code elements, such as basic block, lines of

3 https://code.google.com/p/dex2jar

code, or individual instructions. Branch coverage belongs among
the lower-level metrics and represents the percentage of branches
executed at least once in a program in response to a particular input.

The Android SDK supports collecting coverage data for test
suites. This was originally based on EMMA4, which provided
mainly high-level coverage metrics, and is now based on JaCoCo5,
which also provides many low-level coverage metrics.

To collect test coverage data for an application requires instru-
menting the application code prior to deployment. This process
also produces metadata that serves to identify various program and
code elements. The tools are integrated into the Android SDK build
system to simplify their usage for the developer. When the instru-
mented application is deployed, the tests are run using a custom
implementation of the Instrumentation class from the android.app
package, which also retrieves the collected coverage data when the
tests finish executing. Because of tight integration with the SDK,
replacing or extending the test coverage tool supported by Android
SDK is cumbersome—a developer would need to either modify
the existing test runner, or create a custom implementation of the
Instrumentation class.

To demonstrate the strengths of our framework, we implemented
a dynamic analysis to collect branch, basic block, method, and class
coverage metrics for an application. The tested application can be
deployed unmodified, because the framework will instrument the
application when it starts. There is no need to plug our analysis into
the SDK or the testing framework—all the developer needs is to
deploy the application and run the tests.

We now overview the two aspects of a DPA tool implementation—
the instrumentation, responsible for capturing the events of interest
in the base program, and the analysis, responsible for producing
results based on the observed events. We then provide a short
evaluation of the resulting analysis.

Instrumentation. To capture the events required for the analysis,
we recasted JaCoCo’s probe insertion strategy for branch and basic-
block coverage6 in DiSL. For branch coverage, the instrumentation
code identifies conditionals and assigns every branch in every
method a local identifier (from 0 to local − 1, where local is the
number of branches in a method. A sum of the number of branches in
all methods provides the total number of branches in a class. This is
performed for each instrumented class, and is similar to the metadata
collection step when using other coverage tools—except when using
DiSL, the information is inlined into the code inserted into the base
program during instrumentation and becomes the payload of an
analysis event notification. Other hooks capture branch execution,
producing analysis event notifications containing an identifier of the
branch in the currently executing method. For basic-block coverage,
we track entry to and exit from each basic block, and maintain a
bitmap representing the executed basic blocks for each method. We
do not show the DiSL instrumentation here, because it is outside
the scope of this paper. We instead focus on demonstrating the
use of the DPA framework programming model in the analysis
implementation.

Analysis. The responsibility of the analysis is to gather coverage
data based on the received event notifications. The skeleton of the
analysis is shown in Figure 7. We only show code for recording
branch coverage, because the code for recording basic-block cover-
age is similar. For brevity, we omit the public modifiers and some
of the implementation details in the listing.

The CodeCoverageAnalysis class (as shown) defines handlers
for three analysis event notifications (lines 21–41), represented

4 http://emma.sourceforge.net
5 http://www.eclemma.org/jacoco
6 http://www.eclemma.org/jacoco/trunk/doc/flow.html
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1 c l a s s CodeCoverageAnalysis VmExitListener {
2 / / Per−m et h o d a n a l y s i s s t a t e
3 s t a t i c c l a s s CoverageState i m p l e m e n t s Replicable {
4 String className; / / m e th o d owner
5 b o o l e a n [] branchExecuted; / / b r a n c h c o v e r a g e b i t m a p
6 i n t branchesTotal; / / number o f b r a n c h e s p e r c l a s s
7
8 p r i v a t e CoverageState(String , b o o l e a n [], i n t ) { ... }
9

10 CoverageState(String className , i n t local , i n t total) {
11 t h i s (className , new b o o l e a n [local], total);
12 }
13
14 @Override Replicable replicate () {
15 r e t u r n new CoverageState(className ,
16 new b o o l e a n [branchExecuted.length], branchesTotal );
17 }
18 }
19
20 / / A n a l y s i s m e t h o d s c o r r e s p o n d i n g t o e v e n t n o t i f i c a t i o n s
21 v o i d registerMethod(ShadowString className ,
22 ShadowString methodSig , i n t total , i n t local) {
23 / / A s s o c i a t e per−m e th o d s t a t e w i t h t h e s i g n a t u r e
24 i f (methodSig.getState () == n u l l ) {
25 methodSig.setStateIfAbsent(new CoverageState(
26 className.getValue(), local , total ));
27 }
28 }
29
30 v o i d commitBranch(ShadowString methodSig , i n t idx) {
31 CoverageState s = methodSig.getState(CoverageState. c l a s s );
32 s.branchExecuted[idx] = t r u e ;
33 }
34
35 v o i d endAnalysis () {
36 / / C a l c u l a t e b r a n c h c o v e r a g e f o r a l l p r o c e s s e s
37 f o r (Context ctx : Context.contexts ()) {
38 f o r (ShadowObject o : ctx.shadowObjects ()) {
39 ... / / g e t s t a t e t o c o m p u t e c o v e r a g e
40 }}
41 }
42
43 @Override v o i d onVmExit(Context ctx) {
44 ... / / C a l c u l a t e b r a c h c o v e r a g e p e r p r o c e s s
45 }
46 }

Figure 7: Skeleton of the code coverage analysis related to collecting
branch coverage data.

by the registerMethod(), commitBranch(), and endAnalysis()
methods.

The metadata and branch coverage information for a method is
held in instances of the CoverageState class (lines 3–18), which
also implements the Replicable interface to support shadow state
replication (c.f. Section 4.3). A replica contains a copy of the
metadata, but the coverage data is reset (lines 14–17).

The registerMethod() notification is emitted when a method is
executed, and in response the analysis associates a lazily-instantiated
CoverageState with the ShadowString instance representing the
method signature (lines 21–28).

The commitBranch() notification is emitted when a branch is ex-
ecuted, and in response the analysis updates the state associated with
the indicated method signature by setting a bit corresponding to the
executed branch to true (lines 30–33). Because registerMethod()
notifications are always delivered before commitBranch() notifica-
tions, we can assume the shadow state to be always present in the
latter.

Because DVM instances usually do not terminate (unless killed
by the system), the reporting of the coverage data must be triggered
explicitly using the endAnalysis() notification. The handler for that
notification simply collects and prints the data from ShadowObject
instances in each VM Context (lines 35–41). To avoid losing cov-
erage data when a DVM does terminate, the analysis class imple-
ments the VmExitListener interface, thus subscribing to receiving
the onVmExit() notifications, to which it reacts by outputting the
coverage data for the terminated process (not shown).

Evaluation. The goal of this evaluation is to demonstrate basic
concepts of the programming model provided by our framework,
and to show that: (a) our analysis tool produces valid results, (b)
the tool is cross-platform and that bytecode retargeting does not

Table 1: Coverage results for GrinderBench, collected using JaCoCo
on the JVM, and using our code coverage analysis (CCA) on the
JVM and DVM. Results for CCA also include coverage data for the
system libraries. [T] stands for the total number, while [E] stands for
the number of executed branches, basic blocks, method, and classes.

BC Branches Basic Blocks Methods Classes

App/package % [T] [E] [T] [E] [T] [E] [T] [E]

(JaCoCo/JVM)
GrinderBench 55.3 1673 925 — — 505 380 102 85

(CCA/JVM)
GrinderBench 56.5 1636 925 2229 1494 478 380 93 85

(CCA/DVM)
GrinderBench 55.3 1672 925 2278 1467 505 380 102 85

(CCA/JVM)
java.* 9.7 12024 1170 16663 2200 4156 749 265 153
sun.* 11.6 2994 346 4019 644 908 204 95 55

(CCA/DVM)
java.* 2.6 28819 753 40730 1393 11681 553 1140 118
dalvik.* 2.8 432 12 772 27 284 13 50 7
libcore.* 3.5 2557 89 3669 163 1112 63 123 22

invalidate its results, and (c) the tool can be used with actual Android
applications.

To validate the implementation of our analysis, we compare the
results produced by our analysis tool to results produced by JaCoCo
when run on the JVM, with the GrinderBench7 suite as the base
program. The suite contains 5 reproducible benchmarks targeting
embedded Java devices, and provides a workload sufficient for the
validation. The first block of results in Table 1 shows the coverage
data for the GrinderBench suite, collected using JaCoCo and our
code coverage analysis tool (CCA) on the JVM.

We observe that the numbers of actually executed (the “[E]”
columns) branches, methods, and classes produced by our tool are
identical to those produced by JaCoCo. The total numbers (the
“[T]” columns) of branches, methods, and classes differ, because our
tool collects summary metadata during instrumentation, which is
performed at load time, whereas JaCoCo collects metadata for all
classes in a given .jar file.

To confirm that the analysis can be used even after bytecode
retargeting, we used it to collect coverage data for the GrinderBench
suite on the DVM. Because GrinderBench is not an Android
application, we could not use the normal process for launching
Android applications. Instead, we used an isolated DVM launched
directly, without the Zygote. The second block of results in Table 1
shows the coverage data obtained using our tool. Note that the
results do not show coverage data collected using JaCoCo, because
the integration of JaCoCo with the new Gradle-based build system
in the Android SDK is still unstable, and we did not manage to get
it running.

We again observe that the numbers of executed branches, meth-
ods, and classes are identical to the results obtained with both tools
on the JVM. The total numbers of methods and classes match the
results produced by JaCoCo on the JVM, but differ from those pro-
duced by our tool on the JVM. This is because when running on
Android, our framework has to instrument the classes in bulk (and
not one-by-one as loaded by a JVM), thus obtaining the same sum-
mary data as JaCoCo. The total number of branches is off-by-one,
which was caused by an optimization during bytecode retargeting.
A conditional statement using an empty then branch and non-empty
else branch (2 branches in total) was transformed into a statement
with an inverted condition and only the then branch, reducing the

7 http://www.grinderbench.org/
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Table 2: Coverage results for the ImplicitFlow4 application from
DroidBench, with 4 different human actions.

BC Branches BBC BasicBlocks

Scenario/Method % [T] [E] % [T] [E]

(1–bad user)
checkUsernamePassword 0 2 0 60 5 3
lookup 17 6 1 33 6 2

(2–good user, bad password)
checkUsernamePassword 50 2 1 60 5 3
lookup 50 6 3 67 6 4

(3–good user and password)
checkUsernamePassword 50 2 1 60 5 3
lookup 50 6 3 67 6 4

(4–sequence of scenarios 1–3)
checkUsernamePassword 100 2 2 100 5 5
lookup 83 6 5 100 6 6

total number of branches by one. Finally, we observe a slight mis-
match both in the total number and the number of executed basic
blocks compared to results produced by our tool on the JVM. This
was again caused by an optimization, this time eliminating empty
branches targeted by tableswitch bytecode instructions, thus reduc-
ing the amount of basic blocks, resulting in a slight bias in the
coverage results.

Despite the slight bias in the basic block coverage, we note that
our framework allowed us to use a single implementation of the
code coverage analysis to collect coverage data on both the JVM
and the DVM. In addition, thanks to strong isolation of the analysis
from the base program, our analysis can easily collect coverage data
even for classes in the core libraries. The coverage of system classes
when running GrinderBench is shown in the third block of results
in Table 1. As expected, GrinderBench mostly uses the Java API
(java.*). On the Android platform, several Android specific classes
are used due to class loading and I/O (dalvik.* and libcore.*).

To show that the tool can be used with Android applications
written using the Android application framework and component
model, we applied the analysis tool to DroidBench8, which is a set
of real-life Android applications for validating static and dynamic
security tools. Using our tool, we collected coverage data for the
ImplicitFlow4 application from the DroidBench suite, shown in
Table 2. While the application itself is very simple—it presents two
input fields for user name and password, and a button for submitting
the credentials—we test it in four different scenarios, yielding
different coverage. Scenario 1 corresponds to a user submitting
the credentials with incorrect user name, Scenario 2 corresponds
to submitting correct user name, but incorrect password, Scenario
3 corresponds to submitting correct user name and password, and
Scenario 4 performs scenarios 1–3 in sequence. We verified that
coverage results obtained using our tool for two key methods,
checkUsernamePassword() and lookup() are correct.

In summary, using our framework we developed a cross-platform
code coverage analysis tool, in modest amount of code and without
having to worry about low-level platform-specific details. With
respect to the goals of this evaluation, we have shown that the
analysis (a) produces valid results on the JVM, (b) is cross-platform
and robust with respect to bytecode retargeting, and (c) can be used
with real-world Android applications. In addition, we did not need
to plug the analysis into the Android testing framework, instrument
applications prior to installation, or modify their manifest files.
We were also able to collect coverage data system-wide, for all
processes—including shared code in the core library.

8 http://sseblog.ec-spride.de/tools/droidbench/

6.2 Permission Usage Tracking
The Linux kernel underneath the Android system provides basic
security mechanisms and isolation to Android applications. How-
ever, it does not exert any control over what applications can do
and how they communicate with each other. The Android platform
provides applications with numerous services that are sensitive in
nature, e.g., a service to initiate phone calls. To prevent malicious
software from abusing the services, access to them is restricted and
requires user’s consent. The Android platform therefore employs a
concept of permissions that an application needs to use the restricted
APIs. Each application declares the set of required permissions in
its manifest file, and the user is required to grant the requested set of
permissions to the application prior to installation. Failure to obtain
any of the requested permission aborts the application installation.
During execution, whenever an application calls a restricted API
through its respective proxy, a call on behalf of the application will
be made to the System Server process (which provides all system
services) to check whether the calling process is permitted to use
the API.

An important motivation for this case study is the fact that the
user is made aware of the permissions required by the application
only at installation time, and is only allowed to either grant all the
permissions, or none. When using the application, the user is not
aware when and in what context the application uses these per-
missions. This allows a seemingly benign application to acquire
permissions that are later used for malign purposes, or trick vul-
nerable overprivileged applications to perform undesired actions
on behalf of another application. While static analyses can detect
usage of sensitive APIs and map them to actual permissions using
Stowaway [11], the static analysis may fail in cases where dynamic
loading and reflection are used.

We therefore developed a simple dynamic analysis to detect
runtime usage of API permissions and to pinpoint their usage to
application methods by providing the user with a calling context
leading to the permission check. Because all API permission checks
are performed by invoking a remote service on the system server, the
analysis has to cope with distributed nature of these invocations, and
the calling context therefore spans multiple processes. Consequently,
the analysis is also able to detect permission usage transitively,
i.e., in situations where one application requests a service from
another application, which leads to a permission check. This is
made possible by utilizing the support for IPC events provided by
our framework, which allows us to connect the permission check in
the System Server with the calling application thread.

We now again review the instrumentation used to obtain the
events of interest, demonstrate the use of IPC events in the analysis
implementation, and conclude with a short evaluation.

Instrumentation. To detect permission usage, we instrument meth-
ods and classes of the Android framework that are related to permis-
sion checks. This involves primarily the checkPermission() method
in the ActivityManagerService class. From these invocations, we
extract the name of the permission that is being checked. The events
corresponding to invocation of these methods merely indicate per-
mission usage. To pinpoint them to specific locations in applications
on whose behalf the permission checks were made, we also need
events that allow the analysis to track calling context across pro-
cesses. We therefore instrument entry to and exit from all methods,
which allows us to identify the application method causing a permis-
sion check. We also instrument all method invocations in a method
body, which allows us to identify a particular invocation that caused
the check.

Analysis. The responsibility of the analysis is to identify the method
invocation which ultimately resulted in a permission check, across
multiple process boundaries. The skeleton of the analysis is shown
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in Figure 8. For brevity, we omit the public modifiers and some
of the implementation details (specifically, the ThreadState and
Logger classes) in the listing.

The PermissionUsageAnalysis class (as shown) defined han-
dlers for three analysis event notifications (lines 2–23), represented
by the boundaryStart(), boundaryEnd(), and permissionUsed()
methods.

The boundaryStart() and boundaryEnd() notifications enable
the analysis to maintain a call-stack for each thread. In response to
these notifications, the analysis obtains a ThreadState instance for
the corresponding thread and pushes or pops an invocation boundary
to or from the call stack associated with the per-thread state (lines 2–
7 and 9–14). The permissionUsed() notification indicates that a
permission check occurred for the given permission. In response
to this notification, the analysis finds all threads in the call-chain
spanning multiple processes and associates with each the permission
(lines 16–23).

The analysis then defines four handlers for the framework-
generated IPC event notifications (lines 25–66), represented by
the onRequestSent(), onRequestReceived(), onResponseSent(),
and onResponseReceived() methods. These notifications enable
the analysis to reconstruct the call-chain across threads in multiple
processes, and trigger the reporting of used permissions along with
the location in the application which triggered a check for those
permissions.

The onRequestSent() notification indicates the start of a binder
transaction in a client thread. In response to this notification, the
analysis just records the event in the history of events received for the
client thread (lines 25–30. The onRequestReceived() notification
indicates that the request has been received by a server thread.
Because this notification originates in a different process and may be
received out-of-order by the analysis server, the analysis first ensures
that it has received the onRequestSent() notification corresponding
to the target from the client. The event is then recorded in the
history of events received for the server thread (lines 32–41).
The onResponseSent() notification is handled similarly to the
onRequestSent() notification, the analysis just updating the server
thread event history (43–48). Finally, the onResponseReceived()
notification indicates the end of the binder transaction, and triggers
the reporting of used permissions. In response to this notification,
the analysis first ensures that it has received the onResponseSent()
notification corresponding to the target and the client from the server.
If the application used any permissions, they are reported along with
the call stack in the client thread leading to their usage. In the last
step, the analysis clears the event history related to the transaction
(lines 50–66).

Evaluation. The goal of this case study is primarily to demonstrate
the use of the special IPC event notifications generated by our
framework in an analysis implementation. Consequently, in this
evaluation we aim at showing that our analysis tool can be run with
actual Android applications and provide results that may escape
detection by static analysis.

To make the results verifiable, we apply the tool to an ap-
plication from the DroidBench suite, specifically the Reflec-
tion_Reflection4X9 application, which was designed to confuse anal-
ysis tools by its use of reflection to invoke privileged APIs. The appli-
cation invokes the getDeviceId() method in theTelephonyManager
class, and the sendTextMessage() method in the SmsManager
class. These APIs perform a permission check on behalf of the
application to determine whether the application is authorized to
invoke the API. The permission check passes through another
process before reaching the ActivityManagerService class in the

9 https://github.com/secure-software-engineering/DroidBench/
tree/master/eclipse-project/Reflection_Reflection4

1 c l a s s PermissionUsageAnalysis i m p l e m e n t s ... {
2 v o i d boundaryStart(ShadowString signature ,
3 ShadowThread thr , Context ctx) {
4 / / U p da t e c a l l−s t a c k on m e th o d e n t r y / b e f o r e i n v o c a t i o n
5 ThreadState state = ThreadState.get(ctx , thr);
6 state.pushBoundary (signature.getValue ());
7 }
8
9 v o i d boundaryEnd(ShadowString signature ,

10 ShadowThread thr , Context ctx) {
11 / / U p da t e c a l l−s t a c k on m e th o d e x i t / a f t e r i n v o c a t i o n
12 ThreadState state = ThreadState.get(ctx , thr);
13 state.popBoundary (signature.getValue ());
14 }
15
16 v o i d permissionUsed(ShadowString permission ,
17 ShadowThread thr , Context ctx) {
18 / / A s s o c i a t e p e r m i s s i o n w i t h t h r e a d s i n t h e c a l l−c h a i n
19 ThreadState state = ThreadState.get(ctx , thr);
20 f o r (ThreadState caller : state.getCallers ()) {
21 caller.addPermission(permission );
22 }
23 }
24
25 @Override v o i d onRequestSent(Endpoint target ,
26 NativeThread client , Context ctx) {
27 / / Add t h i s e v e n t t o c l i e n t e v e n t h i s t o r y
28 ThreadState clientState = ThreadState.get(client );
29 clientState.recordRequestSent(target , ctx);
30 }
31
32 @Override v o i d onRequestReceived(Endpoint target ,
33 NativeThread client , NativeThread server , Context ctx) {
34 / / E n s u r e c o r r e s p o n d i n g o n R e q u e s t S e n t ( ) was r e c e i v e d
35 ThreadState clientState = ThreadState.get(client );
36 clientState.waitForRequestSent(target );
37
38 / / Add t h i s e v e n t t o s e r v e r e v e n t h i s t o r y
39 ThreadState serverState = ThreadState.get(server );
40 serverState.recordRequestReceived(target , client , ctx);
41 }
42
43 @Override v o i d onResponseSent(Endpoint target ,
44 NativeThread server , Context ctx) {
45 / / Add t h i s e v e n t t o s e r v e r e v e n t h i s t o r y
46 ThreadState serverState = ThreadState.get(server );
47 serverState.recordResponseSent(target , ctx);
48 }
49
50 @Override v o i d onResponseReceived(Endpoint target ,
51 NativeThread server , NativeThread client ,Context ctx){
52 / / E n s u r e c o r r e s p o n d i n g o n R e s p o n s e S e n t ( ) was r e c e i v e d
53 ThreadState serverState = ThreadState.get(server );
54 serverState.waitForResponseSent(target , client );
55
56 / / P r i n t u s e d p e r m i s s i o n s and t h r e a d c a l l−s t a c k
57 ThreadState clientState = ThreadState.get (client );
58 i f (clientState.permissionCount () > 0) {
59 Logger.reportPermissionUsage(clientState );
60 clientState.clearPermissions ();
61 }
62
63 / / D i s c a r d n o t i f i c a t i o n r e l a t e d t o t h i s t r a n s a c t i o n
64 clientState.discardEventHistory(target , server );
65 serverState.discardEventHistory(target , client );
66 }
67 }

Figure 8: Skeleton of permission usage analysis.

System Server. The actual interaction for the getDeviceId() method,
as recovered by our tool, is illustrated in Figure 9 as a combi-
nation of sequence diagrams spanning multiple processes. The
MainActivity component of the application triggers the invocation
of the getDeviceId() method on the TelephonyManager, which
uses a proxy to invoke the method remotely on the Phone service
running in a different process. The communication across process
boundaries is implemented as a binder transactions. Before per-
forming the invocation on the Phone class, the PhoneSubInfoProxy
uses the ActivityManagerProxy to trigger a permission check on
behalf of the activity. The ActivityManagerProxy again uses the
binder to perform a remote invocation of the checkPermission() on
the ActivityManagerService hosted by the System Server, where
use of the READ_PHONE_STATE permission is detected by
the analysis. When control returns to the application component,
the use of the permission is reported along with the corresponding
location in application code. The situation is similar when invoking
the sendTextMessage() method on the SmsManager class, we
therefore do not illustrate it here.

https://github.com/secure-software-engineering/DroidBench/tree/master/eclipse-project/Reflection_Reflection4
https://github.com/secure-software-engineering/DroidBench/tree/master/eclipse-project/Reflection_Reflection4


Figure 9: Multi-process interaction resulting from an activity invoking a restricted API method on a Phone service, triggering a permission
check in the System Server.

Figure 10: Console output for the sample in analysis server

The output of the analysis tool for the Reflection_Reflection4X
application is shown in Figure 10. Whenever a permission usage
is detected, the tool outputs the name of the permission along with
the call-stack in the application component triggering a permission
check. We verified the results by checking the source code of the
application and the Android framework.

In summary, using our framework, we managed to develop a
simple dynamic analysis that can obtain information about applica-
tion behavior which is often hidden from static analysis tools. We
developed this analysis entirely in Java, without having to modify
the application in any way, and without having to deal with low-
level deployment issues. The use of special IPC events generated
by our framework was essential for observing the inter-component
communication and for reconstructing the call-chain across process
boundaries.

7. Related Work
Existing dynamic analyses for Android are implemented using
different techniques and at different levels of the Android platform,
ranging from the application/framework level (Java) [5, 8, 12, 22],
through native library level [6, 10, 13], OS kernel/driver level [6, 7,
9], to emulator level [18, 26]. Most of the work on dynamic analysis
has been done in the context of Android security, and only few of
the existing tools provide a framework for developing new analysis
tools.

DroidScope [26] is an emulator-level analysis platform for
Android that rebuilds two levels of semantic information: OS and

Java. It provides an instrumentation interface for writing analysis
plugins, such as API tracing (capturing invocation an execution of
methods), native instruction tracing (gathering each instruction with
operand and values), Dalvik instruction tracing (decode instructions
with values and symbolic information) and taint tracking (keep
track of data propagation). Similar to our approach, DroidScope
provides an event based interface for dynamic analysis development.
However, the available events are low-level and analyses need
to be developed using native code. User-defined events are not
supported, and the analyses cannot be deployed on real devices,
because DroidScope is bound to the Android emulator. The support
for dynamic analysis development using DroidScope is thus more
similar to a low-level binary instrumentation tool. In contrast, our
approach allows developing both analysis and instrumentation in
Java, and provides the developer with a high-level programming
model and convenient abstractions.

The In-Vivo [5] approach for Android is based on inserting
hooks for monitoring and dynamic analysis into application byte-
code. The analysis code is mixed with the application code and the
instrumentation is performed directly on the device. This has several
drawbacks. First, running the base program code together with the
analysis code breaks isolation and is bound to introduce perturba-
tions [14]. Second, the transformation of DVM to JVM bytecode
together with the instrumentation are executed as application code,
making the instrumentation of the core library code impossible. Fi-
nally, instrumentation can be resource demanding and therefore not
suitable for devices with limited processing and storage capacities.
Our approach addresses all these issues.

TaintDroid [10] is a dynamic analysis tool for Android that al-
lows detecting unauthorized leakage of sensitive data. It employs
dynamic taint analysis to label data propagating through the system.
TaintDroid applies taints at different levels, facilitated by modifi-
cations to the DVM and the OS (to enable file-level, method-level,
variable-level tracking) and by modifying Android’s IPC core li-
braries (to enable message-level tracking). The latter tracks mes-
sages instead of data within messages to minimize IPC overhead.
Even though our framework does not primarily target taint analysis,
it can be used for basic message-level tracking thanks to IPC event
notifications and full coverage support.

Finally, retargeting Dalvik bytecode to Java bytecode is a general
technique to leverage existing static and dynamic analysis frame-
works for Java on the Android platform. For example, the Dex-
pler [4] plugin allows the Soot [15] framework to operate on Dalvik
bytecode. This in turn allows using AspectJ and Tracematches for
the development of high-level monitoring tools for Android [2], or



using Soot as a basis for FlowDroid [3], a highly precise static taint
analysis for Android applications. Similarly, our framework uses
bytecode retargeting to leverage the ability of DiSL [17] to recon-
cile developer productivity with high instrumentation flexibility and
performance. Thanks to load-time instrumentation, the bytecode
retargeting is completely transparent for the user.

8. Discussion
We now discuss additional benefits and overreaching implications
of our work. We also discuss a few principal limitations, either
due to the platform itself, or due to our choice of DiSL as the
instrumentation language.

Diverse deployment scenarios. The decoupling of the base program
from the analysis advocated by our approach provides DPA tool
developers with a wide range of deployment scenarios. Our mod-
ifications to the Android platform can be deployed on a system
emulator (for example, a QEMU-based ARM emulator running on
an Intel system), a virtual machine in which code executes natively,
or an actual physical device. Our modified DVM uses a local socket
to communicate with the ACS, therefore only the ACS needs a net-
work connection to the instrumentation and analysis servers. This
connection is readily available when running in a system emulator
or a virtual machine. The situation is more difficult when running
on a physical device. Because the wireless network interface only
becomes available after the system finishes booting, we have to send
data over USB, using the Android debugging interface. Our frame-
work allows developing instrumentation-heavy analyses (such as
the object lifetime profiler) that generate an enormous amount (giga-
bytes) of notification data, making the network connection a poten-
tial bottleneck. We consider employing fast on-the-fly compression
to reduce the amount of data in exchange for slight computational
overhead—preliminary testing reveals that the stream of notification
data contains significant redundancy which can be exploited even by
compression techniques focusing on speed, such as LZ4 and LZO.
For light-weight analyses, we can consider running the analysis
server directly in the Android environment, but this arrangement
only makes sense for deployment on a real device.

Cross-platform analysis. One of the most important implications
of our work is that it enables development of analyses that can
be used with applications running on different platforms, without
having to implement the analysis separately for each platform.
Using our framework, both analysis and instrumentation code can
be implemented in Java, with the analysis code deployed on the
analysis server, reacting to event notifications from a platform-
specific front-end. Many DPA tools targeting Java are written in
C or C++, using the JVMTI interface. Such tools cannot be used
with Android application without spending considerable effort at
modifying the DVM.

An example of such a tool is ElephantTracks [25] (ET), which
allows collecting traces for estimating object lifetimes. The latest
ET release is implemented using a mixture of C, C++ and Java, in
roughly 14000 lines of code, with a split of 16:60:24 between the
languages, and can be currently only used with the IBM J9 Java
Virtual Machine. We have implemented an analysis tool similar to
ET using our framework in less than 2000 lines of Java, and can
use it for collecting object lifetime traces and comparing allocation
behavior for applications running on both the DVM and the JVM.

Comprehensive client/server analysis. The support for developing
cross-platform analyses can be taken even further. Many modern
applications consist of a thin client executing in a DVM running
on Android, and a server back-end executing in a JVM running
on a dedicated machine. Our framework lays the ground work
for developing analyses for such applications, with the analysis

code executing on a single, dedicated analysis server, receiving
event notifications from both the client and the server, each running
on a different machine and a different platform. We consider this
particular topic well suited for future work.

Coverage limitations. Achieving full coverage is complicated by the
sharing of core libraries—any class can be instrumented, but there
is a minor limitation involving 6 core classes10 during the DVM
bootstrap. To avoid executing instrumented code in processes that
are not under analysis, we use a per-thread bypass mechanism to
selectively execute either the original or the instrumented code [19].
This mechanism needs a reference to the current thread, which
can be obtained by calling the Thread.currentThread() method.
However, this method is implemented using JNI, which cannot be
called during a short phase in the DVM initialization, because the
JNI environment is not yet available—forcing us to ignore the bypass
mechanism in the critical classes until JNI is ready. Therefore apart
from a very short period during DVM bootstrap, the framework can
provide full coverage for all classes in the core libraries.

Bytecode retargeting. Using DiSL for instrumentation brings about
two additional considerations. DiSL was designed as a general pur-
pose framework for JVM bytecode instrumentation—using it with
Android applications requires converting application bytecode back
and forth between two different representations. This is generally
considered safe, because the bytecode is verifiable and the trans-
formations are formally defined [21], but the developer needs to
be aware that the conversion takes place. We rely on third party
tools for the conversion, which may not be exempt of bugs—indeed,
just transforming the Android core library back and forth (without
instrumentation) using the dex2jar tool results in one class throwing
a verification error on the DVM11.

Bytecode-specific metrics. The second consideration concerns
bytecode-specific metrics, such as the number of instructions in a
method or a basic block, available from certain DiSL components
in form of static information. These metrics are based on Java byte-
code, and may be therefore biased in the context of Dalvik bytecode.
Developers should be aware of this limitation, and adjust the design
of their analyses accordingly—for certain kinds of analyses, this
may require obtaining the static information directly from the Dalvik
bytecode prior to instrumentation.

9. Conclusion
The Android platform was designed and optimized for widespread
deployment on mobile devices, yet lacking fundamental support for
observing applications executing on the Dalvik Virtual Machine. We
overcome the fundamental shortcomings of the Android platform,
and handle its specifics, such as multi-process applications and inter-
process communication. We believe that our framework enables—
and greatly simplifies—development of generic DPA tools for
Android applications, and we demonstrate this on the two diverse
case studies, each showcasing a different aspect of our framework.
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