
Formalization of Invariant Patterns for the
Invariant Refinement Method

Tomáš Bureš, Ilias Gerostathopoulos, Jaroslav Keznikl,
Frantǐsek Plášil, and Petr Tůma

Charles University in Prague
Faculty of Mathematics and Physics

Prague, Czech Republic
{bures,iliasg,keznikl,plasil,tuma}@d3s.mff.cuni.cz

Abstract. Refining high-level system invariants into lower-level soft-
ware obligations has been successfully employed in the design of ensemble-
based systems. In order to obtain guarantees of design correctness, it is
necessary to formalize the invariants in a form amenable to mathemati-
cal analysis. This paper provides such a formalization and demonstrates
it in the context of the Invariant Refinement Method. The formalization
is used to formally define invariant patterns at different levels of abstrac-
tion and with respect to different (soft) real-time constraints, and to
provide proofs of theorems related to refinement among these patterns.

Keywords: architecture refinement, requirements, assume-guarantee

1 Introduction

Invariant-based design is advantageous for designing adaptive self-organizing sys-
tems formed by ensembles of autonomic components [7–9] – see e.g. SOTA [1] –
as it explicitly captures the valid states of the system, i.e., the invariant proper-
ties of a correct system. Such ensemble-based systems [2] operate autonomously
in an open-ended environment, and invariants are well-suited for capturing the
properties of a component with respect to its environment.

The problem of invariant refinement is that the requirements of a system
are typically described in a much higher level of abstraction than the properties
(invariants) of the individual constituents of system architecture (components,
component processes, ensembles). The transition from high-level obligations to
low-level constraints includes a number of design choices without firm borders
and guidelines, and thus is prone to errors.

In our work we have proposed to bridge this gap by gradual step-wise refine-
ment (decomposition) of invariants, which ends up with detailed specification
of the behavior of the involved architectural elements – ensembles, components.
We call this approach Invariant Refinement Method – IRM [2, 10]. IRM how-
ever requires the steps of the refinement to be well-defined (ideally formally), so
that the refinement itself represents a proof of the correctness of the design. In

other words, it is necessary to have (formal) means allowing for deciding upon
the correctness of the refinement.

Having a formal framework that formalizes these relations allows for (i)
design-time guarantees of design correctness, i.e., guarantees that the system
design truly addresses the high-level requirements, and (ii) runtime monitoring,
i.e., detection of discrepancies in system design during execution.

In this paper we provide such a formal framework, and also provide math-
ematical proofs of “correctness by construction”, as a continuation of the work
presented in [10]. To do so, we first describe and formalize the invariant con-
cept and invariant refinement in the light of our running example (Section 2).
We then provide a formal account of the invariant patterns that can guide the
IRM design (Section 3), and provide the main contribution of the paper, i.e.,
the set of theorems and lemmas that formally ground the relations between the
invariant patterns (Section 4). Finally, we discuss some of the implications of
our approach and conclude (Section 5).

Personal Note: Ideas presented in this paper have been inspired by the work of
Martin Wirsing in the field of formal software engineering of autonomous service-
components. We have known Martin for a long time, and we have been able to
stay up-to-date with the advancements of his research group at LMU, as one of
the authors has been a visiting professor at LMU for the past years. We have also
had the opportunity to work with him and his colleagues from his department
in the ASCENS project, which he was coordinating. Cooperating with Martin
is always both enjoyable and inspiring, not only because of his firm knowledge
and fresh ideas, but also because of his kind and welcoming personality.

1.1 Running Example

To illustrate the IRM-based design, we use a running example from the ASCENS
e-mobility case study [14]. In this case study, electric vehicles (e-vehicles) have
to coordinate in order to reach particular places of interest (POIs) within cer-
tain time constraints specifying the expected POI arrival and departure times,
as prescribed by the drivers’ daily schedules (calendars). At the same time, e-
vehicles compete for stopovers in limited energy charging stations (CSs) along
their route. Specifically, each e-vehicle has to plan its individual trip according
to the driver’s calendar and the (perceived) available time slots for charging at
each relevant charging station. This results in a fully decentralized – and thus
scalable – system.

To simplify the presentation of our approach, we assume for the running
example that each vehicle has a single driver and a single destination POI. This
results in the scenario where the goal of every vehicle is to reach its POI in
time, while visiting charging stations during the trip if necessary. The charging
stations may however become unavailable at any time and thus it is necessary
to introduce monitoring of charging stations and potential re-planning.

2 Background

2.1 Invariant refinement

In principle, IRM employs invariants to describe a desired state of the system-
to-be at every time instant; i.e., to describe the operational normalcy of the
system-to-be, essential for its continuous operation. When using IRM to design
ensemble-based systems, the objective is to refine the overall system goal(s) in
an iterative way and end up with the invariants that concern the individual
constituents of system architecture – components, component processes, and
ensembles.

The refinement is performed by decomposing a higher-level invariant into a
set of lower-level sub-invariants (AND-decomposition). In order for the decom-
position of a parent Ip into the children Is1, . . . , Isn to be an actual refinement,
the conjunction of the children have to entail the parent, i.e., it has to hold:

Is1 ∧ . . . ∧ Isn ⇒ Ip (entailment)
Is1 ∧ . . . ∧ Isn 6⇒ false (consistency)

This type of decomposition is applied iteratively, starting from the high-
level invariants that reflect system-level goals and ending with low-level ones
that refer to a single component or an ensemble of components. The outcome is
a graph capturing the structural elaborations and design decisions at different
abstraction levels. Since each decomposition step may involve a design decision,
it is important to ensure that this decision complies with the entailment and
consistency conditions.

Invariant refinement of the running example. An invariant-based design
of a system targeting the running example is presented in Figure 1. A description
of each individual invariant follows.

(1) This is the main goal of the scenario.
(2) This expresses a specific requirement on the designed system and the vehi-

cle’s planner input in particular. In this context, a plan is a black-box giving
for each time instance the expected position of the vehicle at that time.

(3) This reflects the assumption that the plan is always realistic (i.e., that it is
actually possible to follow it given the traffic and car characteristics), and
that the driver would follow it precisely.

(4) This expresses the assumption that charging station availability does not
change too quickly and that the initial set-up of the environment is “planning-
friendly”.

(5) A specific system requirement that constrains the input and timing of the
planner. In particular, we assume read consistency with respect to the belief
(i.e., new plan is always based on the same or newer belief than the previous
plan). Moreover, (5) and (6) together represent the design decision of divid-
ing the activity of computing the plan from remote data into two activities
of (i) creating a local belief of the remote data and (ii) computing the plan
from the local belief.

(1) The vehicle reaches its

destination in time

(4) When considering CS
data no older than 10
minutes, the planner

schedules reaching the

destination in time.

(3) The vehicle’s position is
always in sync with the

current plan.

(6) The belief of the vehicle
over CS data is at most 4

minutes old.

(8) The vehicle updates its
belief (over CS data)

periodically every 2 minutes.

(2) The vehicle’s plan is
always based on CS data at

most 6 minutes old.

(5) The vehicle's plan is
always computed from the
local belief (over CS data) at

most 2 minutes old.

(7) The vehicle computes
the plan from the local

belief (over CS data)

periodically every 1 minute.

Fig. 1. Invariant refinement of the running example.

(6) A specific system requirement that constrains the timing of charging station
monitoring and belief updating.

(7) A specific system requirement precisely determining the input and timing of
the planner. In particular, we assume real-time periodic computation.

(8) A specific system requirement precisely determining the timing of CS moni-
toring. In particular, we assume (distributed) real-time periodic monitoring.

Note that the invariant-based design such as the one presented in Figure 1
is hardly ever a product of a top-down design process. In practice, a mixed
top-down/bottom-up process is followed, where sub-invariants are identified by
asking “how can this invariant be satisfied” and parent invariants are identified
by asking “why should this invariant(s) be satisfied”.

2.2 Invariant formalization

In general, the goal of invariant-based system design is to formally capture prop-
erties of a valid system. Thus, we will first discuss the necessary characteristics
of such formalization (i.e., characteristics implied by the domain).

In the domain of (soft) real-time component ensembles, the way of expressing
properties of a valid system is, as indicated by the running example, to capture a
valid evolution of knowledge values in time. To do that, the underlying formalism
has to provide means for referring to knowledge values at arbitrary time instants.
When generalized, we can say the formalism needs to refer to timed sequences
of knowledge values (i.e., timed streams of data), which provide a complete view
on the knowledge value evolution in time.

This is explicitly formalized in the following definitions, where we consider

time to be a non-negative real number, i.e., T def
= R+

0 .

Definition 1. (Knowledge and its valuation) Knowledge is a set K = {k1, . . . kn}
of knowledge elements, where the domain of ki is denoted as Vi. Knowledge val-
uation of element ki is a function T → Vi which for each time t yields a value
of ki (denoted ki[t]).

Definition 2. (Invariant) An invariant is a predicate (in a higher-order predi-
cate logic with arithmetic) over knowledge valuation and time.

In general, an invariant may refer to the knowledge valuation at an arbitrary
time point/interval.

As further illustrated by the running example, when formalizing system de-
sign, it is critical to introduce formal assumptions about the environment of
the system. Although this is often omitted in informal design approaches, with-
out explicit assumptions the formalized system design is neither complete nor
correct. Thus we differentiate between two types of invariants:

– System invariants reflect properties of the individual architectural elements
of the system. Their validity is to be ensured by the implementation of the
system.

– Assumptions reflect the properties of the system’s environment assumed by
system invariants. Validity of these invariants is usually out of control of the
designer and is necessary for correct operation of the implementation.

For example, invariant (2) from the running example is a system invariant
while invariant (4) is an assumption.

3 Invariant patterns

In general, the form of invariants is not explicitly restricted. However, at par-
ticular levels of abstraction (when describing architectural elements) there are
several patterns virtually omnipresent in any invariant-based design [10]. It is
thus beneficial to have means for concise and consistent representation of such
invariant patterns.

General invariants. At the highest abstraction level, general invariants relate
to system-level goals. They capture the operational normalcy of a system by re-
lating the past and current knowledge valuations to future knowledge valuations.
Therefore, a general invariant can have an arbitrary internal structure.

Present-past invariants. At a lower abstraction level, the invariants express
that some knowledge is based on other knowledge, which, at the same time, is
no older than a particular time interval – lag. This reflects the fact (abstracted
by general invariants) that software systems cannot employ future knowledge to

maintain their operational normalcy, but have to depend on present and/or past
knowledge instead.

In this case, such invariants typically capture that there is a particular rela-
tion (frequently capturing a post-condition P of a computation) between current
knowledge and knowledge no older than the lag L. In the idealized case where
all components have always up-to-date beliefs and their actions are instant the
lag is equal to zero. In general, though, the lag is inversely proportional to the
observed precision (assuming that precision depends on the oldness of observed
data) and robustness (as in the case of real-time software control systems).

Definition 3. (Present-past invariants) For a predicate P capturing the relation
between valuation of knowledge elements I1, . . . , In and O1, . . . , Om, and the lag
L, the expression PLp−p[I1, . . . , In][O1, . . . , Om] denotes the following present-past
invariant:

∀t ∈ T,∃t1, . . . , tn : 0 ≤ t− ti ≤ L, i ∈ 1..n :

P (I1[t1], . . . , In[tn], O1[t], . . . , Om[t])

In this context, we call I1, . . . , In “input” variables and O1, . . . , Om “output”
variables of the invariant so as to denote the correspondence of these variables
to the inputs/outputs of the computation that is responsible for maintaining the
invariant.

During refinement of a general invariant into (a conjunction of) present-past
invariants, it is necessary to introduce assumptions to guarantee that main-
taining the operational normalcy based on the current and/or past knowledge
valuation will eventually result in reaching the operational normalcy based on a
future knowledge valuation – e.g. assumption (4) in Figure 1.

Activity invariants. Another frequent form of timed invariants, used at a lower
level of abstraction, closely reflects properties of a (soft) real-time activity while
assuming read consistency with respect to the input knowledge of this activity,
i.e., that each output knowledge valuation is based on the same or newer input
knowledge valuation than the previous one. This is illustrated in Figure 2.

In this case, an activity invariant captures that the output knowledge val-
uation changes only as a result of performing the activity. Moreover, although
reading the input knowledge of the activity, as well as computing and writing
the output knowledge, takes some time, it never (altogether) exceeds the corre-
sponding time limit (i.e., lag).

More rigorously, at any time the output knowledge valuation corresponds
to the outcome of the activity applied on input knowledge valuation not older
than the lag. Moreover, each output is based on same or newer inputs than the
previous output.

Definition 4. (Activity invariant) For a predicate P reflecting the post-condition
of an activity with inputs I1, . . . , In and outputs O1, . . . , Om, and for lag L, the

time

I1

I2

O

0

0

0

1

1

1

2

2

4

t1a2(t1)a1(t1) a1(t2) t2a2(t2) a1(t3)a2(t3) t3

≤L ≤L ≤L

valuation

Fig. 2. Illustration of a valid knowledge valuation with respect to an activity where
the output O represents sum of inputs I1 and I2, while meeting lag L.

expression PLact[I1, . . . , In][O1, . . . , Om] denotes the following activity invariant:

∃a1, . . . , an : T→ T,∀t ∈ T, 0 ≤ t− ai(t) ≤ L, ai non-decreasing, i ∈ 1..n :

P (I1[a1(t)], . . . , In[an(t)], O1[t], . . . , Om[t])

where the non-decreasing function ai gives for each time t the corresponding
time t′ such that the valuation of Ii at t′ was “used to compute” the valuation
of O1, . . . , Om at t, as shown in Figure 2.

Process invariants. At the lowest level of abstraction (i.e., in the leaves of the
invariant decomposition), an activity invariant that captures local computation
(i.e., with no distributed knowledge involved) while assuming read consistency
is refined into an invariant capturing a periodic real-time component process –
a process invariant.

Compared to activity invariants, process invariants introduce the additional
constraint that the activity is performed exactly once in every period. The period
thus becomes an elaboration of the activity lag, and the output knowledge eval-
uation is determined by the release time (time at which a task becomes ready
for execution) and finish time in each period [3].

Specifically, such an invariant captures that if the current time is before the
finish time of the process in the current period, then the outputs are the same as
in the previous period (i.e., they correspond to the inputs used in the previous
period). Otherwise, the outputs correspond to the inputs at the release time of
the process in this period.

Definition 5. (Process invariant) For a predicate P reflecting the post-condition
of a periodic real-time process with inputs I1, . . . , In, outputs O1, . . . , Om, and

period L, the expression PLproc[I1, . . . , In][O1, . . . , Om] denotes the following pro-
cess invariant:

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[R(p− 1)], . . . , In[R(p− 1)], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[R(p)], . . . , In[R(p)], O1[t], . . . , Om[t])

where E(n) : N0 → T = n · L, i.e., the end of the n-th period. R(n) and F (n)
denote the release and finish time of the real-time process in the n-th period.

Note that unlike activity invariants, there is the same R for each I, reflecting
that at the release time the process reads all the inputs atomically.

Exchange invariants. Similar to a process invariant, an activity invariant at
the lowest level of abstraction that captures establishment of a belief (that can
be addressed by ensemble knowledge exchange) while assuming distributed read
consistency is refined into an invariant capturing periodic knowledge exchange
of an ensemble – an exchange invariant.

Contrary to process invariants, exchange invariants assume that the input
values might have been read at different times, since the inputs are potentially
distributed (however, the times have to fit into the same period). Another differ-
ence is that exchange invariants consider also the knowledge propagation delays
stemming e.g. from delays in data transfer over the network. An exchange invari-
ant thus models a composite activity consisting of (i) knowledge transfer (with
an upper bound on its duration), and (ii) periodic evaluation of the membership
condition and knowledge exchange.

An important assumption is that each component executes the incoming
knowledge exchange (i.e., knowledge exchange that updates the local compo-
nent’s knowledge) on its own, while the other components asynchronously send
the required input knowledge. These composite activities may be partially over-
lapping to cater for situations where the knowledge transfer time is larger than
the knowledge exchange period.

Definition 6. (Exchange invariant) Let P be a predicate reflecting the post-
condition of a periodic knowledge exchange with inputs I1, . . . , In, outputs O1, . . . ,
Om, and period L. Provided that it takes at most T for the knowledge to be-
come available at the component executing the knowledge exchange, the expres-
sion PL,Texc [I1, . . . , In][O1, . . . , Om] denotes the following exchange invariant:

∃a1, . . . , an : T→ T,∀t ∈ T, 0 ≤ t− ai(t) ≤ T, ai non-decreasing, i ∈ 1..n :

∃R,F : N→ T : E(x− 1) ≤ R(x) < F (x) < E(x) ∀x ∈ N,
∀p ∈ N,∀t ∈ 〈E(p− 1), E(p)) :

t < F (p)⇒ P (I1[a1(R(p− 1))], . . . , In[an(R(p− 1))], O1[t], . . . , Om[t])

t ≥ F (p)⇒ P (I1[a1(R(p))], . . . , In[an(R(p))], O1[t], . . . , Om[t])

where E(n) : N0 → T = n · L, i.e., the end of the n-th period. R(n) and F (n)
denote the release and finish time of the real-time knowledge exchange in the
n-th period. Finally, ai gives for each time t the corresponding time t′ such that
the valuation of Ii that was available to the component executing the knowledge
exchange at t was sent to the component at t′.

Note, that there is a (potentially) different ai for each Ii, reflecting that
the inputs can be sent to the component executing the knowledge exchange at
different times. Moreover, there is the same t for each Oi, which corresponds to
the assumption, that knowledge exchange is unidirectional, i.e., it writes only
into the knowledge of one component, and thus the writes can be atomic.

3.1 Illustration of invariant patterns on the running example

Using the above-defined invariant patterns, the case-study invariants can be
formalized as follows. Note that the patterns are not applicable for invariants 1
and 3, and are only partially applicable for invariant 4 (only for the left hand side
of the implication), since 1 is a general invariant and 3 and 4 are assumptions.

(1) The vehicle reaches its destination in time:

∃t ∈ T, t ≤ DEADLINE : v.pos[t] = DEST

(2) The vehicle’s plan is always based on CS data at most 6 minutes old:

Plan6min
p−p [t, v.pos, v.charge, CS1, . . . , CSn][v.plan]

where the Plan predicate denotes the post-condition of the planning algo-
rithm given the current time, current position, current charge, and CS data.

(3) The vehicle’s position is always in sync with the current plan:

∀t ∈ T : v.pos[t] = v.plant

(4) When considering CS data no older than 10 minutes, the planner schedules
reaching the destination in time.

Plan10min
p−p [t, v.pos, v.charge, CS1, . . . , CSn][v.plan]

⇒ ∃t′ ∈ T, t′ ≤ DEADLINE : v.plan[t](t′) = DEST

(5) The vehicle’s plan is always computed from the local belief (over CS data)
at most 2 minutes old.

Plan2min
act [t, v.pos, v.charge, v.belief][v.plan]

(6) The belief of the vehicle over CS data is at most 4 seconds old.

Belief4min
p−p [CS1, . . . , CSn][v.belief]

where the Belief predicate denotes the condition of the vehicle’s belief being
equal to the CS data.

(7) The vehicle computes the plan from the local belief (over CS data) periodically
every 1 minute.

Plan1min
proc [t, v.pos, v.charge, v.belief][v.plan]

(8) The vehicle updates its belief (over CS data) periodically every 2 minutes.

Belief2min
exc [CS1, . . . , CSn][v.belief]

Naturally, the usage of invariant patterns particularly simplifies the lower-
level, more technical invariants that capture computation activities. This allows
for more concise and consistent invariant-based design.

4 Correctness by construction

A simplification of invariant-based design is not the only benefit of using the
invariant patterns during invariant-based design. The main advantage is the
ability of formal reasoning on the level of patterns instead of reasoning on the
level of predicate logic upon knowledge valuations (since state-of-the-art theorem
provers for such complex logics still do not have the necessary performance).

Thus, we propose a formal framework allowing for formal reasoning on the
level of invariant patterns.

4.1 Basic pattern relations

First, we elaborate on the basic relations of the invariant patterns which cor-
respond to the natural relations among the related software concepts of activ-
ity/activity with read consistency/process/ensemble.

A straightforward observation for a present-past invariant is that, given a
particular knowledge valuation, if the outputs are always based on inputs within
the given time limit, increasing the limit maintains this property. A similar obser-
vation holds for activity invariants. This is formalized in the following theorem.

Theorem 1. (Maximal lag refinement) For K ≤ L:

PKp−p[I1, . . . , In][O1, . . . , Om]⇒ PLp−p[I1, . . . , In][O1, . . . , Om]

PKact[I1, . . . , In][O1, . . . , Om]⇒ PLact[I1, . . . , In][O1, . . . , Om]

Proof. A direct corollary of the lag/activity invariant definition. In particular,
the existence of ti such that 0 < t− ti ≤ K in PKp−p[I1, . . . , In][O1, . . . , Om] guar-

antees the existence of ti such that 0 < t−ti ≤ L in PLp−p[I1, . . . , In][O1, . . . , Om]
(similarly for ai and 0 < x− ai(x) ≤ L). �

One can also observe that the requirement of read consistency of inputs in
addition to the time limit (in activity invariants) is a stronger requirement than
the time limit only (in present-past invariants); this is formalized in the following
theorem.

Theorem 2. (Activity invariant implies present-past invariant) Assuming that
I = I1, . . . , In and O = O1, . . . , Om, it holds:

PLact[I][O]⇒ PLp−p[I][O]

Proof. The existence of t1, . . . , tn for PLp−p[I][O] is given by a1, . . . , an of PLact[I][O].
In particular, ∀t we set ti = ai(t). �

A similar theorem can be formulated for the process and activity invariants.
Here, the idea is that, in reality, a periodic process is actually a strict refinement
of an activity with read consistency and time limit on input data. However,
instead of considering the same time limit for both invariants as in previous
cases, the activity invariant needs twice the time limit of the process invariant.
This also complies with the well-known fact in the area of real-time scheduling: in
order to achieve a particular end-to-end response time with a real-time periodic
process, the period needs to be at most half of the desired response time [3]. For
our invariant patterns, this fact is formalized in the following theorem.

Theorem 3. (Process invariant implies activity invariant) Assuming that I =
I1, . . . , In and O = O1, . . . , Om, it holds:

PLproc[I][O]⇒ P 2L
act[I][O]

Proof. Without loss of generality let us assume that |I| = |O| = 1. Given t ∈ T
let p =

⌈
t
L

⌉
. The required a : T → T for P 2L

act[I][O] is given by R and F from
PLproc[I][O] as follows:

a(t) =

{
R(p− 1) if t < F (p)
R(p) if t ≥ F (p)

First, we prove that 0 < t− a(t) ≤ 2L. Since p =
⌈
t
L

⌉
, then also (p− 1) ·L ≤

t ≤ p · L. According to Definition 5, E(p − 1) ≤ R(p) < F (p) ≤ E(p), where
E(p) = p·L. Therefore, given the properties of R, F , and a(t), we have E(p−2) ≤
R(p − 1) ≤ a(t) and a(t) < t. Together, we have (p − 2) · L ≤ a(t) < t ≤ p · L.
Therefore, 0 < t− a(t) ≤ 2L.

Further, a is non-decreasing since R and F are non-decreasing. Thus, from
PLproc[I][O] we get P 2L

act[I][O]. �

Similarly, it holds that the exchange invariant pattern is a refinement of
the activity invariant pattern with lag equal twice the period of the exchange
invariant pattern plus the time for distributed transfer of the knowledge, as
formulated by the following theorem.

Theorem 4. (Exchange invariant implies activity invariant) Assuming that
I = I1, . . . , In and O = O1, . . . , Om, it holds:

PL,Texc [I][O]⇒ P 2L+T
act [I][O]

Proof. The proof is similar to Theorem 3, differing only in the part relevant
to knowledge transfer over network. For the purpose of the proof, we denote
Ri(p) = ai(R(p)),∀p ∈ N for R and ai from PL,Texc [I][O].

Given t ∈ T let p =
⌈
t
L

⌉
. The required ai : T → T for P 2L+T

act [I][O] is given
by Ri and F from PL,Texc [I][O] as follows:

ai : (t) =

{
Ri(p− 1) if t < F (p)
Ri(p) if t ≥ F (p)

First, we prove that 0 < t − ai(t) ≤ 2L + T . Since p =
⌈
t
L

⌉
, then also

(p − 1) · L ≤ t ≤ p · L. According to Definition 6, E(p − 1) − T ≤ R(p) − T ≤
Ri(p) < F (p) ≤ E(p), where E(p) = p·L (recall that x−aensi (x) ≤ T). Therefore,
given the properties of Ri, F , and a(t), we have E(p− 2)−T ≤ Ri(p− 1) ≤ a(t)
and a(t) < t. Together, we have (p − 2) · L − T ≤ a(t) < t ≤ p · L. Therefore,
0 < t− a(t) ≤ 2L + T .

Further, ai is non-decreasing since Ri and F are non-decreasing. Thus, from
PL,Texc [I][O] we get P 2L+T

act [I][O]. �

4.2 Pipeline decomposition

Here, we present a logical framework that would enable for formal reasoning
about refinement in a particular form of decomposition – pipeline decomposi-
tion, which due to its relative generality covers most practical cases of invariant
decomposition. Specifically, we focus on the level of activity invariants, as they
represent a suitable level of abstraction, generalizing both process and exchange
invariants.

As an important observation, the fact that a decomposition is actually a
refinement of the parent invariant is, with respect to time, largely affected by
sharing of invariant variables among the child invariants. Thus, we introduce the
concept of dependency chain. A vector of activity invariants forms a dependency
chain if some of the output variables of a invariant in the vector are among
the input variables of the next invariant in the vector. This is formalized in the
following definition.

For brevity, we introduce the following notation. Given an activity (or pro-
cess/exchange) invariant PLact[I1, . . . , In][O1, . . . , Om], In(P) denotes the set {I1,
. . . , In}, while Out(P) denotes the set {O1, . . . , Om}.

Definition 7. (Dependency chain) Each vector
(
P1

L1
act, . . . , Pp

Lp

act

)
of invariants

forms a dependency chain iff:

∀i ∈ {1, . . . , p− 1} ∃O, I :

O ∈ Out(Pi) ∧ I ∈ In(Pi+1) ∧O = I

In a pipeline decomposition the children reflect simple pipeline-like flows
among the corresponding activities that refine the parent activity. A formal
interpretation is given in the following definition.

Definition 8. (Pipeline decomposition) Having a parent invariant PLact, a set

of child invariants
{
Pi
Li
act, i = 1..p

}
forms a pipeline decomposition of PLact iff:

(i) each input variable of the parent is an input variable of exactly one child:

∀I ∈ In(P) ∃!j ∈ {1, . . . , p} : I ∈ In(Pj)

(ii) each output variable of the parent is an output variable of exactly one child:

∀O ∈ Out(P) ∃!j ∈ {1, . . . , p} : O ∈ Out(Pj)

(iii) the decomposition includes only such dependency chains, in which (a) all
input variables of the first invariant are input variables of the parent, (b) all
output variables of the last invariant are output variables of the parent,
(c) for each two consecutive invariants within the dependency chain, the
output variables of the former are exactly the input variables of the latter:

∀C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
, {i1, . . . , iq} ⊆ {1, . . . , p} , C dependency chain:

In(Pi1) ⊆ In(P) ∧Out(Piq) ⊆ Out(P)

∧ ∀j = i1..iq−1 Out(Pj) = In(Pj+1)

(iv) the decomposition includes only such dependency chains that do not share
input/output variables:

∀C1 =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
, {i1, . . . , iq} ⊆ {1, . . . , p} , C1 dependency chain,

∀C2 =
(
Pj1

Lj1
act , . . . , Pjr

Ljr
act

)
, {j1, . . . , jr} ⊆ {1, . . . , p} , C2 dependency chain,

∀PkLk
act ∈ C1,∀Pl

Ll
act ∈ C2 :

C1 6= C2 ⇒
(
In(Pk

Lk
act) ∪Out(Pk

Lk
act)
)
∩
(
In(Pl

Ll
act) ∪Out(Pl

Ll
act)
)

= ∅

An example is the decomposition of (2) into (5) and (6) in the running example.
Intuitively, the definition of pipeline decomposition requires the children to

reflect simple parallel pipeline-like flows (dependency chains) among the corre-
sponding activities that refine the parent activity.

For pipeline decomposition, a straightforward rule for determining refinement
can be formulated. In a correct refinement, provided that the decomposition is
logically consistent with the parent invariant when not considering time, the lag
of the parent invariant should be at least the sum of the lags of the invariants
in the longest (in terms of time) pipeline (i.e., dependency chain) of the decom-
position. Indeed, this intuitive observation was confirmed in our invariant-based
formalism as demonstrated in the following theorem.

Theorem 5. (Activity invariant pipeline refinement) Having invariant PLact

[I1, . . . , In][O1, . . . , Om] and its pipeline decomposition D =
{
P1

L1
act, . . . , Pp

Lp

act

}
,

the decomposition is a refinement of the parent, i.e., it holds that P1
L1
act ∧ · · · ∧

Pp
Lp

act ⇒ PLact, if:

(i) P1 ∧ · · · ∧ Pp ⇒ P , i.e., the decomposition is logically consistent without
considering time

(ii) for each dependency chain C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
in D it holds that∑iq

j=i1
Lj ≤ L, i.e., the lag of the parent invariant is at least the sum of

the lags of the longest (in terms of time) dependency chain among the child
invariants.

Proof. To prove the above theorem, we need to prove that given D, P , and the
assumptions (i) and (ii), the following lemma holds:

P1
L1
act ∧ · · · ∧ Pp

Lp

act ⇒ (P1 ∧ · · · ∧ Pp)
L
act

Then, the correctness of the theorem is an immediate result of this lemma and

the assumption (i). To prove the lemma, let QL
act

def
= (P1 ∧ · · · ∧ Pp)

L
act.

Without loss of generality, let us assume that each dependency chain C =(
Pi1

Li1
act , . . . , Piq

Liq

act

)
in D, its first invariant Pi1

Li1
act in particular, has only one

input variable (i.e., IC). Also, let us assume that C, its last invariant Piq
Liq

act in
particular, has only one output variable (i.e., OC). Similarly, we assume that
all the intermediate invariants within C have exactly one input and one output
variable. This assumption is safe since the multiple input/output variables can
be merged into one as they are referred exactly from one other invariant (which
is also in C).

For the variable IC , we define the aC : T→ T required for QL
act (according to

the Definition 4) as follows:

aC(t)
def
= ai1

(
ai2
(
. . . aiq (t) . . .

))
where ai1 , . . . , aiq are taken from to Pi1

Li1
act , . . . , Piq

Liq

act .

Because
∑iq
j=i1

Lj ≤ L and 0 < x − ai1(x) ≤ Li1 , . . . , 0 < x − aiq (x) ≤ Liq ,
it holds that 0 < x− aC ≤ L.

The assumption of the above lemma (i.e., P1
L1
act ∧ · · · ∧ Pp

Lp

act) and the prop-

erties of the dependency chain C =
(
Pi1

Li1
act , . . . , Piq

Liq

act

)
as a part of the pipeline

decomposition D give us the following corollary:

Pi1(IC [ai1(ai2(. . . aiq (t) . . .))], Oi1 [ai2(. . . aiq (t) . . .)]) ∧Oi1 = Ii2∧
Pi2(Ii2 [ai2(ai3(. . . aiq (t) . . .))], Oi2 [ai3(. . . aiq (t) . . .)]) ∧Oi2 = Ii3∧

...
Piq (Iiq [aiq (t)], OC [t])

By combining these corollaries for each dependency chain in the pipeline
decomposition D of Q (i.e., each input and output variable of Q), we get:

Q (I1 [a1 (t)] , . . . , In [an (t)] , O1 [t] , . . . On [t])

where Ii, Oi, and ai correspond to the dependency chain Ci in D.

By combining all the above facts, we get: P1
L1
act ∧ · · · ∧ Pp

Lp

act ⇒ QL
act

�

time

x

v

0

0

2

1

1

valuation

u
0

1

y

0

1

a vx (t 1) a vy (t 1) t 1
a y (a vy (t 1))

t 2
a y (a vy (t 2))

a vy (t 2)

a x (a vx (t 2))

1

a vx (t 2)
a x (a vx (t 1))

≤ 2s

Fig. 3. A counterexample illustrating the importance of the pipeline refinement as-
sumption in Theorem 5.

4.3 More complex types of refinement

The assumption of pipeline decomposition in Theorem 5 is essential for its cor-
rectness. This means that in the case of a decomposition that does not respect
all four points of Definition 8, applying Theorem 5 can lead to the wrong re-
sults. To support this claim and highlight the importance of strictly following
the above-mentioned definition, we present the following counterexample to the
relaxed Theorem 5 (where the assumption of pipeline decomposition is lifted).

Counterexample to relaxed Theorem 5. Consider the parent invariant Pp
def
=

(v = 2u)
2s
act[u][v], that is decomposed into three sub-invariants:

Pα
def
= (x = u)1sact[u][x], Pβ

def
= (y = u)1sact[u][y], Pγ

def
= (v = x + y)1sact[x, y][v].

This decomposition is not a pipeline decomposition, because the input variable
of the parent (variable u) is input of more than one children in the decomposition
(both Pα and Pβ), thus invalidating the first point of Definition 8. The relaxed
Theorem 5 would ensure that this decomposition is a refinement. However, if we
consider the trace illustrated in Figure 3, it is obvious that although the trace
is valid for all the sub-invariants Pα, Pβ , and Pγ , it is not valid for the parent
invariant Pp, as there cannot be an ap(t) such that v[t1] = 1 = 2 ∗ u[ap(t1)]. �

The reason why the relaxed Theorem 5 does not work for the counterexample
is that while the parent works with the valuation of a at a single time instant,
the decomposition employs the valuation of a at two different time instants (by

aliasing to x and y). This observation applies in general. Moreover, for some
decompositions it appears that it is not possible to formulate similar theorems.

5 Discussion and Conclusions

The choice of the proposed formalization of invariants and invariant patterns
in higher-order predicate logic was driven by the practical reason of being able
to formulate and prove the relevant theorems that hold in different invariant
refinements. Other forms of formalization would have been more appropriate
when different goals are pursued by the formalization task. For example, the use
of a real-time temporal logic [12] would have been a sensible choice if we would
like to use IRM model fragments as input for model-checking purposes.

Indeed, formalization of goals in goal models in real-time LTL has already
been pursued in the context of both KAOS [13] and Tropos [6] (e.g., Formal
Tropos [5]), two of the most prominent requirements engineering frameworks.
Our invariant refinement patterns can be compared to the goal refinement pat-
terns à la KAOS [4], which encode known refinement tactics. The difference is
that KAOS patterns can be formally checked with a theorem prover, while our
patterns have to be manually proven, as state-of-the-art theorem provers cannot
cope with the complexity of our expressive logic.

The invariant decomposition in IRM is inspired by the decomposition of
system-level goals into sub-goals, assumptions and domain properties in KAOS.
A similar approach is also pursued within Tropos, where goals, soft-goals, tasks,
and dependencies and identified and iteratively decomposed from the perspective
of the individual agents. The differences lie in that (i) neither KAOS nor Tropos
provide a direct translation to the implementation-level concepts of autonomic
components and ensembles; (ii) the objective of IRM is not to produce require-
ments documents (like KAOS), but software architectures; (iii) IRM invariants
do not focus on future states (like goals in Tropos), but on knowledge valuation
at every time instant, fitting better the design of feedback-based systems.

The diagrams used to illustrate the knowledge valuation in time in IRM (e.g.,
Fig. 2 and 3) are reminiscent of timed UML 2 interaction diagrams [11], as they
capture the system behavior over time in a declarative way. However, UML 2
activity diagrams focus on the message exchange between predefined instances,
whereas IRM invariants capture the evolution in the knowledge of distributed
components (which could be implemented by exchange of messages among them)
that is necessary in order for certain system-level requirements to be met.

To conclude, in this paper we have provided a formal framework for in-
variant refinement in the context of the Invariant Refinement Method (IRM).
Our approach is modeling the invariants in higher-order predicate logic and
identifying common invariant types (patterns) at different levels of abstraction.
Some of the refinement relations between different patterns have also been for-
mally proven (via mathematical theorems): present-past to activity invariants,
activity to process/exchange invariants, and pipeline decomposition of activ-
ity/process/exchange invariants. More complex types of refinement have to be

investigated separately in order to be able to formulate similar theorems. This
is the focus of our future work.

Another element of future work is to test the proposed design method in a
real-scale case study with real system designers.

Acknowledgements. This work was partially supported by the EU project AS-
CENS 257414 and by Charles University institutional funding SVV-2014-260100.
The research leading to these results has received funding from the European
Union Seventh Framework Programme FP7-PEOPLE-2010-ITN under grant
agreement no264840.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General
Model for Self-Adaptive Systems. In: Proc. of WETICE. pp. 48–53. IEEE (2012)

2. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECo – an Ensemble-Based Component System. In: Proc. of CBSE’13, Vancou-
ver, Canada. pp. 81–90. ACM (Jun 2013)

3. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications. Springer, 3rd edn. (2011)

4. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In: Proceedings of FSE’96. pp. 179–190. ACM (1996)

5. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model Checking Early Re-
quirements Specifications in Tropos. In: Proc. of RE’01, Toronto, ON, Canada. pp.
174–181. IEEE (Aug 2001)

6. Giorgini, P., Kolp, M., Mylopoulos, J., Pistore, M.: The Tropos Methodology: An
Overview. In: Methodologies And Software Engineering For Agent Systems, pp.
89–106. Kluwer Academic Publishers (2004)

7. Hölz, M., Wirsing, M.: Towards a System Model for Ensembles. In: Formal mod-
eling, pp. 241–261. Springer-Verlag (2012)

8. Hölzl, M., et al.: Engineering Ensembles: A White Paper of the ASCENS Project.
ASCENS Deliverable JD1.1 (2011), Online: http://www.ascens-ist.eu/whitepapers

9. Hölzl, M., Rauschmayer, A., Wirsing, M.: Software engineering for ensembles. In:
Software-Intensive Systems and New Computing Paradigms, pp. 45–63. Springer-
Verlag (2008)

10. Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.:
Design of Ensemble-Based Component Systems by Invariant Refinement. In: Proc.
of CBSE’13, Vancouver, Canada. pp. 91–100. ACM (Jun 2013)

11. Knapp, A., Störrle, H.: Efficient Representation of Timed UML 2 Interactions.
In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) System Analysis and
Modeling: Models and Reusability, LNCS, vol. 8769, pp. 110–125. Springer (2014)

12. Koymans, R.: Specifying Message Passing and Time-Critical Systems with Tem-
poral Logic. v. 651 of LNCS, Springer-Verlag (1992)

13. Lamsweerde, A.V.: Requirements engineering in the year 00: a research perspective.
In: Proceedings of ICSE’00, Limerick, Ireland. pp. 5–19. ACM (Jun 2000)

14. Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N.,
Werther, B.: Requirement Specification and Scenario Description of the AS-
CENS Case Studies. Deliverable D7.1 (2011), available online: http://www.ascens-
ist.eu/deliverables

