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Abstract Despite its recent popularity, program verification has to face practical
limitations hindering its everyday use. One of these issues is scalability, both in
terms of time and memory consumption. In this paper, we present Partial Vari-
able Assignment InterpolatoR (PVAIR) – an interpolation tool exploiting partial
variable assignments to significantly improve performance when computing sev-
eral specialized Craig interpolants from a single proof. Subsequent interpolant
processing during the verification process can thus be more efficient, improving
scalability of the verification as such. We show with a wide range of experiments
how our methods improve the interpolant computation in terms of their size. In
particular, (i) we used benchmarks from the SAT competition and (ii) performed
experiments in the domain of software upgrade checking.

1 Introduction

Symbolic model-checking algorithms rely on expressing a verification problem as a
logical formula and determining whether the formula satisfies a given property. Many
sub-tasks of model-checking, such as computing safe inductive invariants for programs
and summarizing functionality with respect to properties critical to program correct-
ness, rely on over-approximating parts of the formula. To keep the formal verification
manageable and the run time low it is critical that the over-approximations are suitable
for the model-checking task at hand. Craig interpolation [7] is a process for comput-
ing over-approximations of first-order formulas that has proven useful in both program
verification and automatic approximation refinement [15]. The idea in applying Craig
interpolation in model checking is to reduce the over-approximation process into find-
ing a compact interpolant I such that I is satisfied by all models of the part being
over-approximated but still entails the properties of interest with respect to the rest of
the formula. The Labeled Interpolation System (LIS) [8] is a widely used framework
for computing Craig interpolants in propositional logic from a resolution refutation.
The flexibility of LIS allows it to be used in a variety of verification tasks that place
additional requirements for the interpolants [18].

In some tasks, (e.g., when proving safety of certain types of program updates or
speeding up model-checking with parallel computing) it is useful to compute over-
approximations of the formula under assumptions which are specific to the particular
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application problem. However, the LIS framework in its original form does not allow for
computing interpolants under assumptions. There are several reasons why such focused
interpolants would be beneficial in particular in the LIS framework. Firstly, the fo-
cused interpolants are in general smaller and therefore more manageable for the model
checker. Secondly, the properties of interpolants provided by the LIS framework, such
as the path interpolation property [13], can be preserved in the focused interpolants.
Thirdly, several focused interpolants can be computed from a single resolution refuta-
tion, while constructing a resolution refutation is computationally expensive. In [12], we
introduced an interpolation system exploiting partial variable assignments to improve
efficiency of interpolant computation. We proved that following a set of requirements
put on labeling during interpolation results in interpolants with the path interpolation
property, which is required by some verification tools, e.g. [1], to work.

This paper presents the Partial Variable Assignment InterpolatoR (PVAIR), the first
implementation that is able to construct such focused interpolants. The implementation
is based on the Labeled Partial Assignment Interpolation System (LPAIS) [12], an ex-
tension of LIS which supports focusing the interpolant in the manner required by the
verification applications. The PVAIR solution is generic and can be used in various
model checking-based scenarios. In this paper, in addition to providing the description
of the tool architecture, we also report an initial experimental study on how the inter-
polants constructed with PVAIR behave in different example tasks. The results show a
significant improvement in both interpolant size and the overall model checking time,
suggesting that the approach is viable for constructing focused interpolants.

The general intuition behind the applications of PVAIR is that sometimes a sym-
bolic model checker can provide a partial truth assignment for the formula being veri-
fied, coming from the knowledge of the program structure and meaning of the variables.
As a result, some constraints of the formula can get satisfied; the LPAIS framework al-
lows for removing such clauses during the interpolant computation. This improves the
interpolation in two ways: the interpolation becomes faster, and the resulting interpolant
can be significantly smaller. Because of the latter the interpolants can be handled in a
more efficient way during the subsequent computation. PVAIR is built on top of the
open-source tool PERIPLO [18], which provides resolution proofs and is able to op-
timize the proofs for interpolation through transformations. PERIPLO has been used
in various verification projects, including function summarization in EVOLCHECK [10]
and FUNFROG [22], both as an interpolation engine and as a SAT solver.

We experimentally studied the performance of PVAIR on a set of its potential ap-
plications. We compared it to PERIPLO during computation of a summary for a partic-
ular function using EVOLCHECK. In this experiment, PVAIR was used to rule out the
program paths that do not call the function. We also applied PVAIR in more generic
settings, when constructing interpolation problems from a subset of the SAT Competi-
tion benchmarks. This experiment resembles closely the scenario of computing focused
interpolants for a divide-and-conquer approach for parallel model checking. In both
types of benchmarks, we report a substantial reduction in interpolant sizes. As shown
in the EVOLCHECK use case, smaller interpolants also result in considerably faster
upgrade-checking steps.
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Figure 2: McMillan’s interpolant.

2 Preliminaries and Background Theory

A literal is a Boolean variable l or its negation l̄. A clause is a disjunction over a set
of literals. We use angle brackets 〈Θ〉 to denote the clause built from the literals in set
Θ. A propositional formula in Conjunctive Normal Form (CNF) is a conjunction (or
equivalently set) of clauses. A resolution proof for a set of clauses Φ is a rooted DAG
with each node having either no antecedents (leaf node) or exactly two antecedents
(inner node). Each node in the resolution proof is associated with node clause; from
now on we use proof node and corresponding node clause equivalently. A leaf node
corresponds to an input clause from Φ. Each inner node with two antecedents 〈Θ1, p〉
and 〈Θ2, p̄〉 has node clause 〈Θ1, Θ2〉, thus representing a resolution where p is the
pivot variable.

Given an unsatisfiable CNF formula Φ and its (A,B)-partitioning into A∧B parts, a
Craig interpolant [7] is a formula I such that I is implied byA (|= A⇒ I), unsatisfiable
with B (|= B ∧ I ⇒ ⊥), and defined over common symbols (variables) of A and B.
An interpolant can be seen as an over-approximation of A still being strong enough to
be unsatisfiable with B.

Example 1: Fig. 1 shows a resolution refutation proof for CNF formula Φ = 〈l1 ∨
l2〉 ∧ 〈l̄3 ∨ l6〉 ∧ 〈l̄1 ∨ l5〉 ∧ 〈l1 ∨ l3〉 ∧ 〈l̄2 ∨ l̄6〉 ∧ 〈l̄4 ∨ l̄5〉 ∧ 〈l̄2 ∨ l4〉 ∧ 〈l̄1 ∨ l2〉.
Assume a (A,B)-partitioning with A consisting of the conjunction of the first three
clauses andB of the remaining five clauses. There might not be just a single interpolant
for an unsatisfiable formula; many different ones of various strengths can exist. Formula
I1 ≡ (l1∨[(l6∨l3)∧(l6∨l2)])∧(l1∨l5) is one of the possible interpolants which can be
computed from the proof in Fig. 1 using LIS. Fig. 2 shows how McMillan’s interpolant
I2 ≡ (l1 ∨ l2) ∧ (l̄3 ∨ l6) ∧ (l̄1 ∨ l5) can be derived (after constant propagation) from
the proof in Fig. 1, e.g., by LIS or LPAIS with an empty assignment. Note that for
convenience we write the partial interpolant associated to a particular node of the proof
into brackets.

As an over-approximation, Craig interpolants express properties for all models of the
formula. However, this might be unnecessarily strong for some applications. For ex-
ample, while constructing a function summary through interpolation, it is possible to



consider only the models corresponding to the paths going via the summarized func-
tion. Based on the encoding of the function body, a variable assignment blocking all
the other paths can be derived. This applies also for the case of Abstract Reachability
Graphs (ARGs). The label of a particular ARG node is an over-approximation of reach-
able states at that node. Since the paths in ARG which do not go via the node cannot
influence the reachable states at that node, for each node it is possible to compute vari-
able assignment blocking these paths; in other words, the assignment permits only the
models corresponding to paths via the node. The node labels are computed by interpo-
lation, however it is actually enough to compute a formula that is an interpolant for the
models consistent with the assignment.

Focused interpolants. A Partial Variable Assignment (PVA) π assigns value True resp.
False to some variables from formula Φ; alternatively, PVA can be seen as a con-
junction of literals. Given a partial variable assignment π, a set of clauses A can be
partitioned into Aπ – a subset of clauses from A satisfied by the assignment, and the
remaining clauses Aπ which are not satisfied by π. For a given unsatisfiable formula Φ,
its partitioning intoA∧B and a partial variable assignment π, a Partial Variable Assign-
ment Interpolant [12], shortly focused interpolant, is a formula I such that π |= A⇒ I
and π |= B∧I ⇒ ⊥ and I is defined over unassigned shared variables betweenAπ and
Bπ , i.e., the symbols common to the π-unsatisfied parts of A and B. In other words, it
is an interpolant, but only for models which agree on the values of variables assigned
by π. Due to the weakened requirements, the focused interpolants can be of a smaller
size compared to the Craig interpolants. The focused interpolants can be alternatively
seen as Craig interpolants for the unsatisfied parts of the input – sub-problem, i.e., for
Aπ ∧Bπ where literals falsified by the assignment are removed.

Example 1 (cont.): Let us assume assignment π ≡ l̄2 (i.e., assigning False to vari-
able l2) and the set of clauses from our previous example. Given the assignment, B can
be split into Bπ ≡ 〈l̄2 ∨ l̄6〉 ∧ 〈l̄2 ∨ l4〉 and Bπ ≡ 〈l̄4 ∨ l̄5〉 ∧ 〈l̄1 ∨ l2〉. Aπ is empty
thus Aπ ≡ > and Aπ ≡ A.

Craig and focused interpolants differ in the variables which could occur in the in-
terpolant. The shared variables between A and B (i.e., those that can appear in a Craig
interpolant) are l1, l2, l5 and l6. Since focused interpolants consider for the shared vari-
ables only unsatisfied parts of A resp. B (i.e., Aπ and Bπ), fewer variables are shared;
in our example only l1 and l5 could appear in a focused interpolant, which are those
which can appear in a Craig interpolant for the sub-problem.

Given an assignment and a Craig interpolant, an alternative way to reduce the
interpolant size is to assign the values inside the interpolant formula and propagate
the Boolean constants. In this case the interpolants from the above example result in
I1[π] ≡ (l1 ∨ [(l6 ∨ l3) ∧ l6]) ∧ (l1 ∨ l5) and I2[π] ≡ l1 ∧ (l3 ∨ l6) ∧ (l1 ∨ l5). None
of them is a valid focused interpolant since both contain variable l6. Note that I2[π]
can be equivalently rewritten as l1 ∧ l5 ∧ (l3 ∨ l6)x; in general, such a transformation
requires a complex analysis and not all interpolants can be transformed into focused
interpolants as I1 shows. This means that the aforementioned techniques can be used
to reduce the size of the formula, however not to compute focused interpolants. Below
we introduce a method to compute focused interpolants for propositional logic which
produces interpolants smaller than the approach above.



Leaf v: 〈Θ〉, [I]

I =

{
–〈Θ〉|b,π if 〈Θ〉 ∈ Aπ Hyp-Aπ
¬〈Θ〉|a,π if 〈Θ〉 ∈ Bπ Hyp-Bπ
> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ , Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄, Θ2〉, [I2]

〈Θ1, Θ2〉, [I]

I =


I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a Res-a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b Res-b
(I1 ∨ p) ∧ (I2 ∨ p) if Lab(v1, p) t Lab(v2, p) = ab Res-ab
I2 if Lab(v1, p) = d+ Res-d+

I1 if Lab(v2, p) = d+ Res-d+

Table 1: Labeled Partial Assignment Interpolation System
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Figure 3: Lattice of
labels (t).

⊥
Res-b〈l b

1 〉
Res-a

〈l̄ b
1 〉

Res-d+

〈l b
1 ∨ l̄

a
6 〉
Res-d+

〈l̄ b
1 ∨ l

b
2 〉

Hyp-Bπ
〈l̄ b

1 ∨ l̄
d+

2 〉
Res-b

〈l b
1 ∨ l

a
6 〉

Res-b
〈l b

1 ∨ l
b

2 〉
Hyp-Aπ

〈l̄ d+
2 ∨ l̄ a

6 〉
Hyp-Bπ

〈l̄ d+
2 ∨ l b

4 〉
Hyp-Bπ

〈l̄ b
1 ∨ l̄

b
4 〉

Res-b

〈l b
1 ∨ l

b
3 〉

Hyp-Bπ
〈l̄ b

3 ∨ l
a

6 〉
Hyp-Aπ

〈l̄ b
1 ∨ l

b
5 〉

Hyp-Aπ
〈l̄ b

4 ∨ l̄
b

5 〉
Hyp-Bπ

Figure 4: Labeled proof and rules to be applied at proof nodes.

Labeled Partial Assignment Interpolation System (LPAIS) — an extension of the La-
beled Interpolation System [8] — yields focused interpolants from the resolution refu-
tation of A ∧B.

In LPAIS, each literal in the clauses of the resolution proof is assigned a label a,
b, ab, or d+. Labels a, b, and ab have the same meaning as in LIS, while the label
d+ is used for the literals from the assignment π. The lattice of labels is defined by
the Hasse diagram in Fig. 3. The labels are specified via a labeling function Lab; e.g.,
Lab(v2, p) is the label of literal p at node v2 of the proof. The label of a literal in an
inner node v is computed using join operator t (defined by Fig. 3) from the labels of
the literal in the antecedent nodes (Lab(v, l) = Lab(v1, l) t Lab(v2, l), where v1 and
v2 are the antecedent nodes of v). Formal definition of labeling function as well as the
requirements that labels must satisfy are described in [12].

Example 1 (cont.): Fig. 4 shows how LPAIS assigns labels to literals; the label of a
literal is shown as superscript. When choosing the strongest possible labeling, LPAIS
yields, for empty assignments, McMillan’s interpolants; in particular, only variables
occurring in Aπ but not in Bπ are labeled a (i.e., l6), all the others (except for the
literals from the assignment) re-labeled b.

The labeled partial assignment interpolation system assigns a partial interpolant [I]



to each proof node according to the rules described in Tab. 1. The partial interpolants
of the leaf nodes are directly constructed from the node clauses (it means those forming
A∧B) using the rules in the upper part of Tab.1. The applied Hyp-∗ rule is determined
by the set inclusion check in the middle column; in particular by occurrence of the node
clause in Aπ , Aπ , Bπ and Bπ . A partial interpolant for the Hyp-Aπ rule, defined as
〈Θ〉|b,π , represents a clause which is created from the node clause 〈Θ〉 by omitting the
literals over the π-assigned variables and those whose label differs from b. In particular
node clause 〈l̄ b

3 ∨ l
a

6 〉 yields partial interpolant 〈l̄ b
3 ∨ l

a
6 〉|b,π ≡ [l3]. The leaf nodes with

clauses satisfied by π have the partial interpolant >.
For inner nodes, the rule from Tab. 1 is chosen based on the labels of the pivot in

the antecedents (denoted by v1 and v2). Note the Res-d+ rules, which correspond to the
case where the pivot is satisfied by the assignment in one of the antecedents. In these
cases, the partial interpolant is the same as the partial interpolant in the antecedent not
being satisfied by the assignment; due to such nodes the size of the LPAIS interpolant
is smaller compared to the LIS interpolant.

Example 1 (cont.): Fig. 5 shows how focused interpolant Iπ ≡ l1 ∨ l̄3 for our
example can be derived. Note the dotted arrows at nodes corresponding to Res-d+ res-
olutions; they highlight the antecedents whose partial interpolants are ignored and their
sub-trees do not contribute to final focused interpolant. Also note that the focused in-
terpolant Iπ is smaller compared to both I1[π] and I2[π] from the examples above.

An assignment applied onto (interpolant) formula (i.e., if I[π] is computed) can
reduce the size of the formula only if the assigned variable appears in the (interpolant)
formula (i.e., the variable has to be shared). However, LPAIS reduce the size of the
interpolants even if the assigned variable does not appear in the interpolant, since the
reduction is done as a part of interpolant computation and not as a post-processing step.

PVAIR implements the LPAIS framework. The tool can generate the McMillan’s [16],
Pudlák’s [17], and McMillan’s′ [8] interpolants and their equivalents in presence of
assignments. Additionally, PVAIR supports constructing different interpolants by pro-
viding different labelings for the literals in the leaves. The relative logical strength of
interpolants constructed with LPAIS from the same resolution refutation is determined

∧
∨ [I3]

[I4] [>] ∧

∧ [l1] [>] [>] ∧

[>] [l3] [l1 ∨ l5] [>]

I3 ≡ >
I4 ≡ l1

Figure 5: Focused interpolant Iπ , using labeling of Fig. 4.
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by the labeling function used. For instance, the McMillan’s focused interpolants are
sufficiently strong to have the path-interpolation property.

3 The Tool Architecture

The PVAIR architecture is shown in Fig. 6. It takes a propositional formula, its (A,B)-
partitioning, and a partial variable assignment as input and produces focused inter-
polants if the input formula is unsatisfiable. The input can be provided either in a file in
the SMT-LIB 2.0 format or via a C++ API.

When a verification tool decides to compute interpolants (e.g., to obtain either func-
tion summaries in the case of upgrade-checking and over-approximations of reachable
states for covering checks) it constructs an input formula Φ which encodes the program
being verified. Further, based on the way the input formula is constructed, the verifica-
tion tool decides how to partition it (e.g., to obtain a summary of a given function) and
which partial variable assignment to use (e.g., depending on the changes detected in the
new version of the program). These inputs are then passed to the PVAIR tool.

The workflow of the PVAIR tool is as follows. First, the input formula is passed
to the PERIPLO-based preprocessing module. Since the formula can be in an arbitrary
form, it is transformed into CNF (the top box in Fig. 6) using an efficient, structure-
sharing version of the Tseitin encoding [25]. Its satisfiability is then determined using
the MINISAT 2.2.0 solver [9].

In the case of an unsatisfiable input, an initial refutation is extracted from the solver
in the compact MINISAT internal proof format. The format is then transformed into
a resolution DAG to allow more efficient handling of the proof (Proof Construction).
In particular, using the resolution DAG form, the proof can be compressed using well-
known proof reduction techniques such as structural hashing or pivot recycling [19,20]
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Figure 7: Comparison of interpolant sizes computed without variable assignment [x] and with one
variable assigned [y] (left) and five variables assigned (right).

available in PERIPLO (Proof Reduction). The proof reduction techniques can be en-
abled/disabled via a configuration file or API.

Once the resolution proofR is computed, it is passed together with the partitionings
and variable assignments to the interpolation engine (the bottom box in Fig. 6). From
this point on, any number of partial variable assignments πi and partitionings Pi (into
Ai ∧Bi) can be given as input to the tool and used to construct the corresponding inter-
polants Ii. Note that in any case only one SAT-solver call will be made during the entire
execution. The first step inside the PVA interpolation engine is labeling all the literals
in A ∧ B. The d+Labeler will distribute d+ labels among the literals according to the
assigned variables, whereas the LIS will label the remaining literals according to the
partitioning and the selected LIS-based interpolation algorithm (which can be chosen
in the configuration file or via API). When the labeling is complete, it is used together
with the partitioning and resolution proof R to compute interpolants (Interpolant Con-
struction).

The construction starts by computing partial interpolants (according to the upper
part of Tab. 1) for the leaf nodes of the refutation. The computation then proceeds from
the leaves to the root node. In each inner node, depending on the label of the pivot, a
partial interpolant of the node is computed by combining the partial interpolants from
the antecedent nodes (the bottom part of Tab. 1). During the interpolant construction
partial interpolants are optimized using Boolean constant propagation and structural
sharing (hashing). The final interpolant is computed in the root node.

For the details on PVAIR usage, we refer the reader to the Tutorial section of the
tool web page available at http://verify.inf.usi.ch/pvair.

4 Experiments

We ran PVAIR on two types of experiments: (1) SAT Competition benchmarks and (2)
computational problems generated by the EVOLCHECK tool during verification proce-
dure. To demonstrate the tool performance, we measured the size of produced inter-
polants and its effect on the total verification time.

http://verify.inf.usi.ch/pvair


Focused Itp. APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 92.8 % 83.0 % 78.1 % 83.7 %
5 vars 76.2 % 45.2 % 31.5 % 47.6 %
20 vars 48.3 % 10.1 % 4.8 % 15.0 %

Itp. from sub-prob. APP RND CRF All
No Assignment 344 298.7 1 308 750.1 489 469.1 776 573.9
1 var 69.5 % 55.0 % 65.5 % 58.8 %
5 vars 24.4 % 5.7 % 9.7 % 9.1 %
20 vars 0.12 % 0.01% 0.39% 0.09%

Table 2: Average interpolant sizes by category and number of assigned variables.

4.1 SAT Competition

From the way focused interpolants are computed by PVAIR it is obvious that they are
smaller compared to the Craig interpolants. In this part we illustrate the actual differ-
ence. Compared to experiments on functions summaries in the latter part, SAT Compe-
tition provides us with a larger set of more heterogeneous kinds of benchmarks. This
helps one to see how the reduction of the size varies among inputs from different do-
mains.

For experiments, we chose 47 unsatisfiable benchmarks from the SAT Competition3

from all categories – 12 from the Application (APP), 11 from the Crafted (CRF), and 24
from the Random (RND) sets. Since the benchmarks are not partitioned, we generated
six partitionings for each benchmark; we simulated the typical way the path interpolants
are computed, i.e., we randomly chose n, first n clauses of the benchmark belonged to
the A-part, the remaining clauses to the B-part. No assignment is given by authors of the
benchmarks, thus for each partitioning we generated five random variable assignments
consisting of a single, five, resp. twenty assigned variables. Assignments of various
sizes indicate how the reduction scales w.r.t. the number of assigned variables.

Since focused interpolants can be seen as Craig interpolants for a sub-problem,
for each pair of partitioning and assignment, we created the sub-problem instance and
used PVAIR to computed the Craig interpolant. Sub-problems are simpler compared
to the benchmark from which they were generated, so interpolants for sub-problems
are typically smaller compared to Craig interpolants of the benchmark. However, the
interpolant for each sub-problem is computed from a different refutation proof; in con-
trast to focused interpolants which, for a particular benchmark, are all computed from
the same proof. The path interpolation property [13], which is often exploited during
program model checking, might be missing in this case.

As to the interpretation of the results: No assignment reflects the state-of-the-art ap-
proaches, where Craig interpolants are used directly. Focused interpolants show how the
size of the interpolants can be reduced if the model checker (i.e., a tool generation the
input) provides a reasonable assignment together with a partitioning. The interpolants
for a sub-problem can be seen as an alternative to focused interpolants because of their
similar meaning, however these interpolants lack the properties of the focused ones.

For comparison, we use McMillan’s interpolants – a widely used approach. The
proof reduction techniques were disabled; we used the default PERIPLO settings. All
benchmarks were run on a Linux blade server with Xeon X5687 CPU using the timeout
of 60 minutes and the memory limit of 20GB using the Parallel environment [24].

Fig. 7 compares the sizes of the computed interpolants. Each point in the graph cor-
responds to a single partitioning of a benchmark; the x-axis represents the interpolant

3 http://www.satcompetition.org/

http://www.satcompetition.org/


size if no assignment is provided (Craig interpolant) while the y-axis represents the size
of the focused interpolants with a single (resp. five) assigned variable(s). For presenta-
tion clarity, the y-axis is the average size of all five random assignments generated for
a given partitioning. The values on axes represent millions of nodes if an interpolant is
represented as DAG (counting literals and Boolean operators). The orange dashed line
shows the average size of Craig interpolants for sub-problems. This illustrates what
price is paid by focused interpolants for the path interpolation property and a single
SAT solver call. Both graphs show interesting reduction in size for focused interpolants
as well as substantially larger reduction in case of five assigned variables. In both graphs
the same partition of the same benchmark share the same x-value, thus it is possible,
especially for the larger ones, to compare their reductions.

Tab. 2 summarizes the results shown in the graphs above, reporting precise num-
bers. The table on the left-hand side compares the sizes of focused interpolants to Craig
interpolants (in the No assignment row). The No assignment row shows the average size
of Craig interpolants for a given benchmark type. The remaining rows show the relative
sizes of focused interpolants w.r.t. the No assignment row. The application benchmarks
exhibit a smaller reduction compared to the other types, and even for twenty assigned
variables, the interpolants are half in the size of the Craig interpolants. The table on
the right-hand side compares the sizes of Craig interpolants for the benchmark with
the Craig interpolants for sub-problems (corresponding to the assignments used in the
left table). The table shows that these interpolants are on average smaller compared to
the focused ones. The more variables are assigned, the bigger the difference is. While
the sizes are comparable for a few assigned variables, the price paid for the path in-
terpolation property of focused interpolants is high for larger assignments (e.g., twenty
variables) .

Time and memory demands are crucial properties of each interpolation tool. The
reduction in overall running time and required memory roughly correspond to the re-
duction of interpolant sizes; e.g., PVAIR is 11% faster and requires 9% less memory
on average if a single variable is assigned. The time and memory savings occur as well
during the interpolant computation phase due to smaller interpolants being handled.

4.2 Applying PVAIR for Checking Software Upgrades

The usefulness of PVAIR is motivated by the tremendous role of interpolation in model
checking. One of the possible applications of PVAIR is checking software upgrades by
means of function summarization [23] implemented in the tool EVOLCHECK. Given a
program S and an assertion a, EVOLCHECK verifies S with respect to a (i.e., proves
that S∧¬a is unsatisfiable) and, for each function call in S, it constructs the interpolant
and treats it as a function summary. In [21] we show that even if the constructed function
summary is an over-approximation of the function behavior of S, it preserves the safety
of the assertion a in S.

EVOLCHECK validates the computed function summaries to over-approximate the
behavior of the corresponding functions of a program upgrade, U . In that context, pro-
grams S and U must have a non-empty set of common function calls. EVOLCHECK
traverses this set starting from the deepest level of the (unwound during preprocess-
ing) function call-tree and checks whether each original function summary still over-



approximates the new behavior of the corresponding function. If there is a function call,
the original summary of which does not over-approximate the new behavior, EVOL-
CHECK propagates the check to the caller function. If there is no function to propagate
then U is unsafe. If at some depth of the unwound call-tree all the function summaries
are proven to be valid, then U is safe, and EVOLCHECK reconstructs the summaries for
the modified function calls.

Applying PVAIR to EVOLCHECK. Consider the case when U is obtained from S
by removing some functionality. Then by construction, the original summaries of S are
still valid over-approximation of the new function behavior in U . But at the same time,
they might be unnecessarily general and consume excessive memory. While the use of
the original summaries does not break soundness of the further upgrade checking, it is
practical to refresh (and possibly shrink) the summaries to become more accurate with
respect to U .

The refreshed summaries may be used to verify a further updated program W that
additionally may introduce new functionality with respect to U . On the other hand, the
summaries may be also used to speed up verification of a new assertion b, implanted
in the code of U [21]. To enable both scenarios, the constructed summaries need to be
externally stored and further migrated across the verification runs. Thus, the size of the
summary also becomes important.

While EVOLCHECK does not provide a way to refresh summaries except of com-
plete re-verification of U from scratch, PVAIR becomes particularly useful. Let ∆S,U

denote the behavioral difference of S and U , i.e., the set of behaviors of S not present
in U . If the set ∆S,U is non-empty, it could be exploited by PVAIR to generate the par-
tial interpolants that represent new summaries for each function in U . These updated
summaries are still guaranteed to preserve safety of the assertion a in U .

Experiments. We experimented with PVAIR on a set of 10 pairs of different bench-
marks written in C. Notably, all benchmarks used non-linear arithmetic operations. Af-
ter the required propositional encoding (i.e., bit-blasting), the resulting large-size for-
mulae have been a bottleneck for solving and interpolation using the original EVOL-
CHECK approach.

In our experiments, for each pair of programs, S and U , we obtained U from the
corresponding S by assigning guards in some conditional expressions. In particular, we
replaced if P do A else do B by assume(P); A. This is equivalent to assigning
P = true, and ∆S,U consists of the behaviors specified by assume(¬ P); B. For
simplicity, in our experiments, we assumed that ∆S,U affected only a single function f .

The results of our experiments are shown in Tab. 3. For each S and U , we identi-
fied ∆S,U and obtained the set of conditional expressions to be assigned in S (column
#var. assigned). Then we performed two steps: (1) constructed the summary of f with-
out/with ∆S,U ; and (2) validated the corresponding summaries of f with respect to the
new code in U . This experiment illustrates to what extent:

– the use of PVAIR yields smaller summaries compared to the ones by PERIPLO,
– the use of smaller summaries improves the overall performance of EVOLCHECK.

We collected the size of the resulting interpolants and total verification time needed to
perform steps (1) and (2). We used the Pudlák interpolation algorithm [17] to construct
the “orig” interpolants (the ones constructed without ∆S,U ).



C program Interpolant (function summary) size Verification time (sec)
name # var. assigned # var. orig. # var. PVAI # cl. orig # cl. PVAI boot. orig. boot. PVAI upgr. orig. upgr. PVAI
Test 0 3 vars 15227 62.61 % 45192 62.21 % 18.93 99.17 % 4.025 65.96 %
Test 1 1 var 23273 78.46 % 69330 78.31 % 10.36 99.24 % 4.034 77.79 %
Test 2 2 vars 31278 59.19 % 93345 58.98 % 8.71 100.32 % 3.878 57.61 %
Test 3 1 var 12236 63.80 % 36219 63.31 % 7.34 100.12 % 1.256 71.50 %
Test 4 2 vars 20447 74.57 % 60852 74.37 % 12.40 101.94 % 2.982 81.35 %
Test 5 3 vars 24716 32.50 % 73659 32.05 % 12.20 102.94 % 3.855 39.46 %
Test 6 3 vars 33076 37.89 % 98739 37.58 % 12.63 102.16 % 7.951 40.05 %
Test 7 1 var 12478 57.47 % 36945 56.91 % 8.88 100.29 % 2.350 57.96 %
Test 8 1 var 21201 50.42 % 63114 50.04 % 14.46 97.55 % 3.706 50.94 %
Test 9 2 vars 20314 39.71 % 60453 39.22 % 21.42 101.26 % 4.581 40.30 %

Table 3: EVOLCHECK verification statistics.

As can be seen from the table, the use of PVAIR helped EVOLCHECK to make the
function summaries up to 60% smaller compared to the ones produced by PERIPLO
(columns #var. orig vs. #var. PVAI, and #cl. orig vs. #cl. PVAI), while taking almost
no additional time (columns boot. orig. vs. boot. PVAI). Furthermore, EVOLCHECK
spent up to 60% less effort in the validating step (columns upgr. orig. vs. upgr. PVAI),
in which the model checker finally confirmed that the new code is safe. In other words,
in the considered verification scenario and driven by PVAIR, EVOLCHECK improved
both, the size of the summaries and the overall verification time, without sacrificing
soundness of the entire model checking procedure.

5 Related work

This section compares the PVAIR approach with various techniques for reducing the
size of an interpolant based on variable assignments, proof compression, and interpolant
post-processing.

Variable assignments. Given a variable assignment, the most straightforward way
to reduce the interpolant size is to apply the assignment directly onto the interpolant
formula and propagate Boolean constants. This idea is used in the UFO [1] tool. Due
to the tight integration into the interpolation process, LPAIS yields smaller interpolants
compared to this simple approach. Since the assignment is considered by LPAIS already
during the interpolant construction, this results in larger parts of the interpolant being
cut away.

Proof compression. Interpolants are often derived from a resolution proof and there-
fore their size is roughly proportional to the size of the proof. Several methods for com-
pressing a resolution proof exist [2,11,4,2,19,6]. Different variants of these techniques
are applied in PdTRAV [5] verification framework, the PERIPLO tool, and the Skep-
tik [3] proof transformer, just to name a few examples. In this work, the reduction of
the interpolant size is based on the fact that only a proof of the unsatisfied part of the
input formula is needed. Since the omitted (i.e., satisfied) parts can be important w.r.t.
other assignments, the proof compression techniques cannot remove these parts from
the proof. As a result, these techniques are orthogonal and PVAIR can benefit from
proof compression if applied.

Interpolant post-processing. Once an interpolant is computed, various techniques
can be used to reduce its size. Such techniques include constant propagation, structural



sharing, and various equivalence and subsumption checks. PdTRAV, for example, in-
ternally uses BDD-based sweeping to detect the equivalences and balancing/rewriting
over And-Inverter Graphs [14] representation to further reduce the size of an inter-
polant. Any such post-processing technique producing smaller equivalent formulae can
be applied to the interpolants produced by the PVAIR tool.

6 Conclusions

In this paper we presented the PVAIR interpolation tool, which exploits partial vari-
able assignments obtained from an application-specific source to compute focused in-
terpolants. The tool uses the extension of the labeled interpolation system, LPAIS, to
construct the interpolants from a resolution refutation. We presented a potential appli-
cation for the focused interpolants, in particular in software upgrade checking where we
require the path interpolation property. We performed an initial study using a wide range
of experiments varying the size of the partial variable assignment. The results show a
good improvement compared to the baseline and suggest that the approach taken for
computing focused interpolants has significant potential in reducing the interpolant size
and model checking time. In the future we plan to integrate the PVAIR tool into a con-
crete implementation of a parallel model checker as well as to study other applications
of model checking where partial assignments arise naturally.
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