
MASTER THESIS

Martin Blicha

Methods for reduction of Craig’s
interpolant size using partial variable

assignment

Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Jan Kofroň, Ph.D.

Study programme: Computer Science

Study branch: Theoretical Computer Science

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date

i

Title: Methods for reduction of Craig’s interpolant size using partial variable
assignment

Author: Martin Blicha

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Jan Kofroň, Ph.D., Department of Distributed and Depend-
able Systems

Abstract: Since the introduction of interpolants to the field of symbolic model
checking, interpolation-based methods have been successfully used in both hard-
ware and software model checking. Recently, variable assignments have been
introduced to the computation of interpolants. In the context of abstract reach-
ability graphs, variable assignment can be used not only to prevent out-of-scope
variables from appearing in interpolants, but also to reduce the size of the inter-
polant significantly. We further extend the framework for computing interpolants
under variable assignment, prove the correctness of the system and show that it
has potential to further decrease the size of the computed interpolants. At the
end we analyze under which conditions the computed interpolants will still have
the path interpolation property, a desired property in many interpolation-based
techniques.

Keywords: Craig interpolation, partial variable assignment, Tseitin’s encoding,
symbolic model checking

ii

I would like to thank my supervisor, RNDr. Jan Kofroň, Ph.D., for his patience,
understanding and encouragement. Most of all I would like to thank him for
showing me the application of logic I was looking for.

iii

Contents

Introduction 2

1 Preliminaries 4

2 Structure-aware labeled interpolation system 8
2.1 Introducing new label . 8
2.2 Locality-preserving labeling functions 10
2.3 Relation between derivation and refutation tree 16

3 Path interpolation property 24
3.1 Modified version of SALIS . 24
3.2 Strength . 26
3.3 Proof of path interpolation property 35

3.3.1 Step 1 – extending assignment 35
3.3.2 Step 2 – moving formulas 38
3.3.3 Step 3 – restricting assignment 41
3.3.4 Combining partial results 44

4 Evaluation 49

5 Conclusion 52

List of Definitions 53

1

Introduction

In recent years, a massive technological development has been achieved and com-
puter systems have penetrated everyday lives. Automation has reached a lot of
new, sometimes critical, areas. The reliability of such systems is in many cases
of particular importance and a lot of attention has been devoted to the research
of methods for establishing their correctness. Model checking is an approach to
formal verification that automatically checks whether a model of a system sat-
isfies certain formally specified property. A system is usually represented as a
set of possible states in which the system can be and a property is checked with
respect to this state representation. At the beginning, an explicit-state model
checking was used, which traverses the set of states explicitly, by constructing
and examining one state at a time. However, this approach works only for a
really small systems and does not scale to real-life designs. To tackle the state
explosion problem, methods that can represent and operate with many states
simultaneously were being considered. Such methods are called symbolic.

Binary decision diagrams (BDDs) were used in the first symbolic model check-
ing method and they manage to solve much larger problems than explicit-state
model checking methods. However, even they quickly reached their limit, so other
possibilities were examined. The great development and success of SAT solvers
led to their widespread use in symbolic model checking. Bounded model checking
(BMC, [?]) pushed the capabilities of model checking even further. In BMC, the
initial condition, the transition relation and the safety property are encoded as
propositional formulas and then the SAT solver is used to determine whether or
not a state where the safety property does not hold is reachable from the initial
state in k steps. This process can be repeated iteratively, gradually increasing
k. BMC proved to be very successful in finding counterexamples, however an
upper bound on the depth of the state space is needed for BMC to be a com-
plete method. Such bound are often hard to obtain. Several methods have been
developed to address this issue with various success.

One of the approaches to extend BMC to a full verification method was intro-
duced by McMillan in [?]. It combines bounded model checking with computing
Craig interpolants [?], resulting in a fully SAT-based unbounded model check-
ing method. Since then, more approaches using interpolants in verification have
appeared, e.g. [?] takes a similar approach as McMillan but uses interpolation
sequences instead of single interpolants,[?] uses interpolation to refine the labels
of nodes of an abstract reachability graph (ARG).

In the state space, Boolean formulas represent set of states and an unsatisfiable
pair of formulas (A,B) represent two disjoint sets of states. An interpolant I for
(A,B) is then an over-approximation, i.e. a superset, of the set represented by A
which is still disjoint with set represented by B. This is depicted in Fig. 1.

Since only variables common to both A and B can appear in the interpolant,
the representation of the over-approximation can be significantly smaller than
the representation of A.

An interpolant for an unsatisfiable pair of formulas is not unique. In [?], au-
thors present Labeled Interpolation System (LIS), a framework that is able to
compute different interpolants from the same refutation proof. In [?], the frame-

2

A BI

Figure 1: Interpolant in state space

work is further analyzed and a way to compute interpolants comparable in terms
of logical strength is presented.

Another way to compare interpolants is in terms of their size. Computing
smaller interpolants in one stage can lead to a potential speed-up in further stages
of verification tools. Labeled Partial Assignment Interpolation System (LPAIS,
[?]) incorporates partial variable assignment sometimes provided in verification
tools from previous stages into the framework of LIS. If the interpolation prob-
lem represents the abstract reachability graph of a program, then using partial
assignments can not only reduce the size of the interpolant, but also solve the
problem of out-of-scope variables. Moreover, interpolants produced by LPAIS are
quantifier-free.

In this thesis, we point out a possible drawback that can prevent LPAIS
from fully exploiting the partial assignment and propose a new system extending
LPAIS. Moreover, we show that the proposed system fully exploits the partial
assignment, prove its correctness, and show that we can guarantee the path in-
terpolation property [?] under additional constraints, which, however does not
prevent its intended use in the context of ARG.

3

1. Preliminaries

Much of this thesis is based on the work done in [?], so we try to use the same
terminology as presented there.

In propositional logic a literal is a propositional variable or its negation. A
clause is a disjunction of zero or more literals. Empty clause has zero literals and
is equivalent to ⊥. We say a propositional formula is in negation normal form
(NNF) if it contains only ¬, ∧ and ∨ as connectives and negation can occur only
in front of variables. Conjunctive normal form (CNF) is a special case of NNF.
Formula is in CNF if it is a conjunction of clauses. Instead of conjunction of
clauses, it is common to use the term “set of clauses”, as the semantics of a set
of formulas can be define to be their conjunction. We use Θ to denote a set of
literals and 〈Θ〉 to denote the clause built from the literals in Θ. For a literal l, its
variable is denoted by var(l) and the dual literal is denoted by l̄. The resolution
of two clauses 〈Θ, p〉 and 〈Θ′, p̄〉, called the antecedents, is a clause 〈Θ,Θ′〉, called
resolvent. The literals p and p̄ are called pivots and their variable is the pivot
variable.

Definition 1.1 (Derivation tree). A derivation tree in propositional logic is a
tree whose nodes are labeled with propositions according to the following rules:

• Leaves (and only leaves) are labeled with propositional variables.

• If a node has label ¬ϕ, then it has a single child with label ϕ.

• If a node has label ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, then it has two children, the left
child has label ϕ and the right child has label ψ.

A derivation tree for a proposition ϕ is a derivation tree with root labeled ϕ.

Derivation tree represents the structure of a given formula. Notice that in
each node, the label is a subformula of the represented formula. Moreover, the
subformula in each inner node is split according to its main connective and the
main connective is uniquely determined. Therefore the labels can be simplified
such that the inner nodes are labeled with this main connective instead of the
whole subformula.

SAT solver is an algorithm that decides the satisfiability of a propositional
formula. However, modern SAT solvers are optimized to decide the satisfiability
of a formula in CNF, thus a general formula is usually preprocessed before it is
fed to the solver. There is an algorithm that transforms a general formula to an
equivalent formula in CNF. However, such formula can have length exponential
in the length of the original formula. Tseitin’s encoding [?] is an algorithm that
constructs equisatisfiable formula whose length is only linear in the length of the
original formula. A form of Tseitin’s encoding is employed by most modern SAT
solvers.

Given a formula ϕ, the original encoding works as follows:

1. Build a derivation tree of ϕ and label inner nodes by the main connective
of the corresponding subformula.

4

2. Introduce new encoding variable for each inner node of the tree. We will use
suggestive notation, e.g. e∨ to stand for an encoding variable representing
a node with disjunction.

3. Introduce equations to capture the meaning of encoding variables: Let e∗

(∗ representing logical connective) be an encoding variable representing an
inner node with children c1 and c2 (or only c1 in case of negation). Then
the following equations captures the meaning of the encoding variables:
e∨ ↔ c1 ∨ c2, e∧ ↔ c1 ∧ c2, e→ ↔ c1 → c2, e¬ ↔ ¬c1.

4. Convert these equations into sets of clauses. For example in case of disjunc-
tion the conversion looks like this: e∨ ↔ c1 ∨ c2 =⇒ (e∨ → c1 ∨ c2)∧ (c1 ∨
c2 → e∨) =⇒ (¬e∨ ∨ c1 ∨ c2) ∧ (¬c1 ∨ e∨) ∧ (¬c2 ∨ e∨).

5. Add r, the encoding variable of the root of the derivation tree, to the set
of clauses obtained in the previous step.

The result of Tseitin’s encoding on a formula ϕ is a set of clauses that is equisat-
isfiable with ϕ and the result is denoted by τ(ϕ).

Tseitin’s encoding can be used to transform any formula to equisatisfiable
formula in conjunctive normal form. However, if the input formula is already
in negation normal form then the encoding can be more concise. If the input
formula is in NNF, we can use one-sided Tseitin’s encoding. It differs from the
original encoding in step 3 where instead of using equivalences to capture the
meaning of encoding variables only implications from left to right are used. Since
in NNF the formula contains only conjunctions, disjunctions and negations, only
the following implications are used: e∨ → c1 ∨ c2, e∧ → c1 ∧ c2, e¬ → ¬c1.

One more simplification is available. Since the negation is only in front of
propositional variables, we can relax the condition on the derivation tree that we
stop only at variables and, instead, stop already at literals. As a result we save
one encoding variable for each negative literal and there will be encoding variables
only for conjunctions and disjunctions. Since this encoding has favorable proper-
ties, which we will use later, from now on when referring to Tseitin’s encoding we
assume this compact version. Note that further savings are possible, for example
by allowing n-ary conjunctions and disjunctions, but we do not consider them
now, since the fact that the tree is binary is often useful.

Definition 1.2 (Resolution tree). Resolution tree ρ is a directed tree (V,E)
with functions piv, cl, and a special vertex s where Leaves(ρ) denotes the set
of leaves, i.e. vertices with in-degree 0 and the sink vertex s is the only vertex
with out-degree 0. All vertices except the sink has out-degree 1 and all vertices
except leaves have in-degree 2. These are called inner vertices. The pivot function
piv maps the inner vertices to variables. The clause function cl maps the inner
vertices to clauses. For each internal vertex v and (v1, v), (v2, v) ∈ E, cl(v) =
Res(cl(v1), cl(v2), piv(v)), where Res(C,D, p) denotes the resolution of clauses C
and D over a pivot variable p.

Definition 1.3 (Refutation tree). Refutation tree for and unsatisfiable set of
clauses S is a resolution tree such that cl(s) is the empty clause and for each leaf
v cl(v) is from S.

5

It is more common to treat the refutation proof as DAG, see e.g. [?]. However,
for us it is more convenient to work with refutation tree. This is not a restriction
since every refutation proof in form of a DAG can be unpacked to the full tree.

Refutation tree can be used to produce an interpolant I for A and B, a divi-
sion of the input set of clauses into two parts. Interpolant for a pair of formulas A
and B is a formula I such that A→ I, B → ¬I and V ar(I) ⊆ V ar(A)∩V ar(B).
Interpolation system is an algorithm for constructing interpolants from a refuta-
tion proof for (A,B). Interpolation system usually works by computing partial
interpolant for each vertex in the refutation proof. This is done inductively.
First, a set of rules determines the partial interpolants for leaves, then another
set of rules defines how a partial interpolant for a vertex is computed from par-
tial interpolants of its parents. Finally, the partial interpolant for the sink is
the computed interpolant. For an unsatisfiable sequence of formulas A1, . . . , An
an interpolant sequence I1, . . . , In+1 is defined as follows: I1 = >, In+1 = ⊥, ∀i :
Ii∧Ai → Ii+1, variables of Ii are among those shared by the sequence A1, . . . , Ai−1

and the sequence Ai, . . . , An. If an interpolation system is able to compute in-
terpolation sequence for any unsatisfiable sequence of formulas, we say it has the
path interpolation property.

In our work with derivation trees and refutation trees we use the following
notions. When working with a derivation tree we consistently use the term “node”
of a tree, while in a refutation tree we use the term “vertex” of a tree. We
use e∧ and e∨ to denote encoding variables obtained from inner nodes labeled
with conjunction and disjunction, respectively. Since for every inner node a new
encoding variable is introduced, we can use an encoding variable not only to refer
to the “real” variable in τ(ϕ), but also to the node of the derivation tree that it
originated from.

Sometimes it is useful to consider the edges in the derivation tree as having
an orientation from root to leaves, i.e. going from parent node to child node. It
is then possible to refer to an edge as an order pair of nodes: e = (n1, n2) where
n1 as a parent node of n2.

Definition 1.4 (Parent edge, child edge, incident edge). For every encoding
variable e with parent p and children c1, c2, we use terms parent edge of e for
(p, e) and child edges for (e, c1) and (e, c2). Together we speak of incident edges
of e. For a node n in the derivation tree let e↑(n) stand for the parent edge of n.

Note that there is a relation between the clauses of τ(ϕ) and the edges in the
derivation tree of ϕ. This can be seen in steps 3 and 4 of the Tseitin’s encoding,
where the introduced implications capture the relation of the encoding variable
(the parent node) to its child nodes. Consider the situation where e has two
children c1 and c2. If e = e∧ then the implication e∧ → (c1 ∧ c2) is converted to
two clauses ¬e∧ ∨ c1 and ¬e∧ ∨ c2, each containing a single child, while if e = e∨

then the implication e∨ → (c1 ∨ c2) is converted to a single clause ¬e∧ ∨ c1 ∨ c2

containing both children. We can define a map from edges to clauses in the
following way:

Definition 1.5 (Mapping edges to clauses). Let Θ : E −→ τ(ϕ) be a function,
where E is the set of edges in the derivation tree of ϕ, such that:

Θ(e) =

{
¬e∧ ∨ c if e = (e∧; c)

¬e∨ ∨ c1 ∨ c2 if e = (e∨; c1) and c2 is the second child of e∨

6

Note that each clause in τ(ϕ) is obtained from some edge in the derivation
tree with the exception of the one-literal clause added in step 5 of the encoding.
This clause corresponds to the root r of the tree. We add an artificial edge er,
which will take the role of a parent edge of the root, to the tree. This enables
us to treat all encoding variables equally, as every encoding variable will have a
parent edge and two child edges in the derivation tree. Moreover, this enables
extending Θ such that Θ(er) = 〈r〉. In this way it holds that every clause in τ(ϕ)
is an image of some edge in the mapping Θ, i.e. Θ is surjective.

Observation 1.6. For every encoding variable e it holds that if e ∈ V ar(Θ(e))
(e is amongst the variables of clause Θ(e)) then e is an edge incident with e in
the derivation tree. Moreover e has positive occurrence in Θ(e) if e is a child edge
of e and negative occurrence if it is the parent edge.

Suppose a partial assignment σ of the variables from V ar(ϕ) is given. Under σ,
some subformulas of ϕ are satisfied. These satisfied subformulas correspond to
satisfied subtrees in the derivation tree of ϕ.

Definition 1.7 (Satisfied node). We say that a node in the derivation tree is
satisfied if it is the root of a satisfied subtree.

Definition 1.8 (Branch in a refutation tree). A branch in a refutation tree is a
sequence of vertices starting with a leaf and ending with the sink such that each
vertex except the first is the only child of the previous vertex.

Every leaf determines a branch and every branch is determined by its leaf. We
write β(Θ) to denote a branch that starts in a leaf with clause Θ. For each pair of
branches β and β′ there is a single vertex these two branches meet (the first vertex
common to both branches) and we write β ∧ β′ to denote this vertex. Moreover
we can use the tree ordering to capture the intuitive meaning of a phrase “branch
β1 meets branch β2 before it meets branch β3”: β1 ∧ β2 ≤ β1 ∧ β3 means that β1

meets β2 before or at the same vertex as it meets β3.

7

2. Structure-aware labeled
interpolation system

In this chapter we show that if Tseitin’s encoding is used to transform the input
to an equisatisfiable formula in CNF, then it may happen that LPAIS [?] does
not fully exploit a given partial assignment. We then propose a modification of
the framework that deals with this problem and show the correctness of the new
framework.

Consider a simple formula ¬a ∨ (b ∧ c) and a partial assignment σ such that
σ |= ¬a. Under σ the whole formula is satisfied and as such should be removed
from the problem.

However, after applying Tseitin’s encoding, the following set of clauses is
obtained from the formula: {h1,¬h1 ∨ ¬a ∨ h2,¬h2 ∨ b,¬h2 ∨ c}. In this set
the only clause satisfied by σ is ¬h1 ∨ ¬a ∨ h2. In this case literals b and c
are not excluded from the subproblem as they have should been. This example
demonstrates that there is a difference in the notion of a subproblem for a partial
assignment in these two approaches.

Suppose the input is given as a set of formulas divided into two parts (A and
B) together with a partial variable assignment. The first approach transforms
the input set into a set of clauses and then uses partial assignment to narrow the
problem to a subproblem by filtering out satisfied clauses (and falsified literals).
The second approach is to apply the assignment first and only then transform
the simplified input to a set of clauses. The result could be a smaller subproblem,
as can be seen in the example above.

However, in the context of abstract reachability graph [?], where a sequence
of interpolants, one for each node, is computed from a single refutation proof
for the whole graph, the first approach has the advantage of working with a sin-
gle refutation proof, while the second approach has to refute each subproblem
separately. As a result, the second approach is able to guarantee the path in-
terpolation property for the computed sequence (see [?] for the proof), while the
first is not.

We want to keep the advantage of the single call to SAT solver while at the
same time we would like to fully exploit the assignment to focus on the smallest
subproblem.

2.1 Introducing new label

LPAIS introduced a new label into the framework of LIS to keep track of satisfied
literals in the refutation tree. When a satisfied literal is a pivot of a resolution,
the partial interpolant is copied from the other vertex. This can be seen as
if the branch with the satisfied literal is cut off at this vertex. And it makes
sense, because it simulates the situation in which the input is filtered out by the
assignment before the refutation tree is constructed. The leaf with the satisfied
clause should no longer be present in the tree and the falsified pivot in the other
branch would also have been filtered out, so no resolution would happen at this
point.

8

ab

d+

a b

g

⊥

Figure 2.1: Lattice of labels (according v)

However, this reasoning can go one step further. Suppose that at this vertex,
where a resolution with a satisfied pivot takes place, there is a literal that was
present only in the predecessor with the satisfied pivot. In LPAIS, such a literal
is treated as any other at this point. However, in the reasoning above, that
branch would no longer be in the tree, so such literal would never appear on
the remaining branch. Therefore, we propose to tag such literals and treat them
as “ghost” literals, i.e. literals that would not be present in the tree should the
assignment be applied beforehand. For this purpose we add a new label g to the
system.

Unfortunately, to incorporate this new label to framework, we have to tweak
the definitions of its components a little bit. For example, no literal is labeled g
in the leaves of the tree. Instead, some literals may acquire it later, under special
circumstances. As a consequence, a label of a literal in inner vertex cannot be
simply taken to be the supremum of its labels in the predecessor vertices anymore.

To overcome this obstacle, we adopt the approach that labeling function
should define only labels of literals in the leaves of the refutation tree. Labels in
inner vertices are then computed based on the type of the resolution in the given
vertex.

We work with the lattice of labels L depicted in Fig. 2.1.

Definition 2.1 (Labeling function). Let L be a lattice of labels as depicted in
Fig. 2.1. Given a refutation tree ρ and a set of literals Lit occurring in ρ, we say
that Lab : Lit× Leaves(ρ) −→ L is a labeling function if

• Lab(l, v) = ⊥ iff l /∈ cl(v)

• Lab(l, v) 6= g

The labeling functions as defined above label only literals in leaves. To derive
the labels of inner vertices, we define rules for propagating labels from leaves to
the sink.

Definition 2.2 (Resolution types and propagating labels). Suppose v is an inner
vertex with parents v1 and v2 and all literals in the parents are already labeled.
Let p denote the pivot in v1 and p̄ denote the pivot in v2. Firstly, a type of
resolution for v is determined by checking the following rules.

• if Lab(p, v1) = g or Lab(p̄, v2) = g it is a resolution of type Res-g

• if Lab(p, v1) t Lab(p̄, v2,) = d+ it is a resolution of type Res-d+

9

• if Lab(p, v1,) t Lab(p̄, v2) = a it is a resolution of type Res-a

• if Lab(p, v1) t Lab(p̄, v2) = b it is a resolution of type Res-b

• if Lab(p, v1) t Lab(p̄, v2) = ab it is a resolution of type Res-ab

We sometimes use terms “a-resolution” or simple “Res-a” instead of the whole
phrase “resolution of type Res-a”

Note that it may happen that two rules are applicable at the same time (if
pivot has label g in one parent and any other label in the other parent). In such
case the first rule has priority over others.

Next, the labels of literals in v are determined based on the type of the
resolution. We use the term supremum rule if label of a literal is computed as
the supremum of its labels in parent vertices.

• Res-a, Res-b, Res-ab: The supremum rule is used to label literals.

• Res-d+: Assume the pivot in the first predecessor has label d+ (the second
case is symmetric). Then first, all literals from v1 are considered as having
label g, and then the supremum rule is used to determine the labels in v.

• Res-g: Assume the pivot in the first predecessor has label g (the second
case is symmetric). Then first, all literals from v2 are considered as having
label g, and then the supremum rule is used to determine the labels in v.
Actually, it may happen that both pivots have label g. It is important to
apply this rule only once in such case. Therefore, we arbitrarily decided to
use the rule as if only the first pivot is labeled g.

Example 2.3. Consider a resolution v1:〈p,q〉 v2:〈p̄,q,r〉
v:〈q,r〉 with labeling function Lab

such that Lab(p, v1) = g, Lab(q, v1) = a, Lab(p̄, v2) = Lab(q, v2) = Lab(r, v2) = b.
Then it is a g-resolution and the labels of q and r in v are determined as follows:
First, the labels of q and r in v2 are considered to be g. Then the supremum rule
is used resulting in Lab(q, v) = a t g = a and Lab(r, v) = ⊥ t g = g.

2.2 Locality-preserving labeling functions

We have defined a labeling function for a resolution proof and showed how labeling
is propagated from leaves to the sink. However, if a labeling function is to be used
to compute interpolant from the resolution proof, additional conditions must be
satisfied. For this purpose, a notion of locality-preserving labeling function is
introduced.

Note that in LIS [?], the locality was simple to define. If a variable occurs
only in the A-part (B-part) of the problem, it is A-local (B-local). The locality
constraints put on a labeling function then simply demand the literals with A-
local (B-local) variable to be labeled a (b).

With the introduction of the partial variable assignment in [?], the notion of
locality was restricted to the subproblem defined by the assignment. That is, a
variable is A-local if it occurs only in the Aπ̄ part of the problem, where Aπ̄ is the
set of clauses from A that are not satisfied by π. Similarly for B. Note that here
A and B are assumed to be sets of clauses. This restriction (next to some others)

10

was necessary to ensure that the computed interpolant contained only variables
that were common to both parts of the subproblem.

We have already shown that if a partial variable assignment is applied before
Tseitin’s encoding, the resulting subproblem may be smaller. Especially, there
may be some variables local with respect to the narrower notion of the subproblem
that are not local in the subproblem in the previous case. We formalize the
subproblem in the following way: Let τ(ϕ) stand for the set of clauses that is
the result of (one-sided) Tseitin’s encoding of ϕ and let ϕ[π] denote the formula
obtained from ϕ by substituting the assigned variables by their corresponding
values given by the assignment and simplifying the result. Let A be a set of
formulas. Then Aπ = {C ∈ τ(A) | C[π] = >} and Aπ̄ = τ(A) \ Aπ. This is
the partitioning to satisfied and unsatisfied clauses. We introduce an additional
partitioning. Let A+

π ⊆ τ(A) denote the set of clauses from satisfied subtrees
(under π) of the derivation trees of A and let A−π = τ(A) \ A+

π . Notice that
A−π ⊆ Aπ̄ and that A−π is isomorphic (same up to renaming of the auxiliary
variables) to τ(A[π]). Given (A,B, π), the pair (A−π , B

−
π) defines the subproblem,

which is smaller or equal to the subproblem defined by (Aπ̄, Bπ̄).
Recall the categorizing of unassigned variables from [?]: We say that an unas-

signed variable x is

• Aπ̄-local if x ∈ V ar(Aπ̄) and x /∈ V ar(Bπ̄),

• Bπ̄-local if x /∈ V ar(Aπ̄) and x ∈ V ar(Bπ̄),

• Aπ̄Bπ̄-shared if x ∈ V ar(Aπ̄) and x ∈ V ar(Bπ̄),

• Aπ̄Bπ̄-clean if x /∈ V ar(Aπ̄) and x /∈ V ar(Bπ̄).

The same categorization of variables can be done with respect to (A−π , B
−
π), but

we will need that only later.
We begin with the same constraints on labeling functions as in [?] and show

that even with the new label g, valid interpolants are still computed. We then
propose more restrictions on the labeling functions to reflect the notion of the
narrower subproblem and prove a stronger claim for the restricted class of labeling
functions.

Definition 2.4 (Locality-preserving labeling [?]). Let A,B be an unsatisfiable
pair of sets of clauses and let ρ be a refutation tree for (A,B). A labeling function
Lab for a (A,B, π, ρ), is locality-preserving iff ∀v ∈ Leaves(ρ),∀l ∈ cl(v):

1. Lab(l, v) = d+ ⇐⇒ π |= l

2. var(l) is unassigned and Aπ̄-local =⇒ Lab(l, v) = a

3. var(l) is unassigned and Bπ̄-local =⇒ Lab(l, v) = b

4. var(l) is unassigned and Aπ̄Bπ̄-clean =⇒ l is consistently labeled a or b.

Here “l is consistently labeled a or b” means that either l is labeled a in all leaves
(if present) or in all leaves it is labeled b. Formally (∀v ∈ Leaves(R) : (l ∈
V ar(cl(v))→ Lab(l, v) = a)) ∨ (∀v ∈ Leaves(R) : (l ∈ V ar(cl(v))→ Lab(l, v) =
b))

11

Definition 2.5 (Clause filters [?]). For a clause 〈Θ〉, labeling function Lab, vertex
v, label c and partial assignment σ we define

• match filter | as 〈Θ〉|c,v,Lab = {l ∈ Θ | Lab(l, v) = c}

• upward filter� as 〈Θ〉�c,v,Lab= {l ∈ Θ | c v Lab(l, v)}

• assignment filter [σ] as 〈Θ〉[σ] = {l ∈ Θ | var(l) is not assigned by σ}

Definition 2.6 (Structure-aware Labeled Interpolation System). Let A,B be
an unsatisfiable pair of sets of clauses, let π be a partial variable assignment
of variables in A ∪ B, and let ρ be a refutation tree for (A,B) Let Lab be a
locality-preserving labeling function for (A, B, π, ρ).

The Structure-aware Labeled Interpolation System SALIS(A,B, π, ρ, Lab) is
defined in Table 2.1

Leaf v: 〈Θ〉, [I]

I =

〈Θ〉[π]|b,v,Lab if 〈Θ〉 ∈ Aπ̄ Hyp-Aπ̄

¬ 〈Θ〉[π]|a,v,Lab if 〈Θ〉 ∈ Bπ̄ Hyp-Bπ̄

> if 〈Θ〉 ∈ Aπ ∪Bπ Hyp-Aπ, Hyp-Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄,Θ2〉, [I2]

〈Θ1,Θ2〉, [I]

I =

I1 if Lab(p, v1) = g Res-g
I2 if Lab(p̄, v2) = g Res-g
I2 if Lab(p, v1) = d+ Res-d+

I1 if Lab(p̄, v2) = d+ Res-d+

I1 ∨ I2 if Lab(p, v1) t Lab(p̄, v2) = a Res-a
I1 ∧ I2 if Lab(p, v1) t Lab(p̄, v2) = b Res-b
(I1 ∨ p) ∧ (I2 ∨ p̄) if Lab(p, v1) t Lab(p̄, v2) = ab Res-ab

Table 2.1: Partial interpolants in SALIS

Note that we have resolved any possible ambiguity about which rule to apply
in a given vertex when discussing propagating labels in Definition 2.2. We have
determined the type of resolution for each vertex; for resolution of type Res-g
with both pivots labeled g, we have determined which one has priority over the
other.

Theorem 2.7 (Weak correctness). Let (A,B) be an unsatisfiable pair of sets
of clauses, let ρ be a refutation tree for A ∪ B and let π be a partial variable
assignment. Let Lab be a locality-preserving labeling function for (A,B, π, ρ).
Then for the formula I, produced by SALIS for (A,B, π, ρ, Lab), the following
holds:

1. π |= A→ I

2. π |= B → ¬I

3. V ar(I) ⊆ V ar(Aπ̄) ∩ V ar(Bπ̄)

4. V ar(I) ∩ V ar(π) = ∅

12

The proof is based on the correctness of LPAIS (see [?]) and we will modify
their proof to deal with the new label g. Note that the weak correctness is
formulated for input in CNF. We later prove the strong correctness for input as
a set of NNF formulas where the interpolant will contain only variables common
to the narrower subproblem.

Proof. The system described here is very similar to the original LPAIS, the dif-
ference is only the new label g which introduces slight changes to the labeling
function and also a new case of resolution in inner nodes of the refutation proof.
By going through the proof in [?] we see that we can reuse much of the proof,
therefore here we only stress the differences.

We will be proving the same invariants as in [?], i.e. for every vertex v, its
clause Θ and partial interpolant Iv it holds that

• π |= A ∧ ¬〈Θ〉�a,v,Lab→ Iv

• π |= B ∧ ¬〈Θ〉�b,v,Lab→ ¬Iv

• V ar(Iv) ⊆ V ar(Aπ̄) ∩ V ar(Bπ̄) and V ar(Iv) ∩ V ar(π) = ∅

We proceed by induction in the refutation tree.

Leaves. Since label g cannot occur in the leaves and the rules for partial inter-
polants in leaves are the same as in LPAIS, the invariants in leaves are proven in
exactly the same way as in [?]. We do not repeat them here.

Inner vertices. The situation in inner vertices is slightly different than in [?].
Most notably, it may happen that Lab(p, v) @ Lab(p, v′) for some v a child of v′.
However, this happens only when a literal obtains label g and thus it is possible
only in the case of g- or d+-resolution. In the case of a-, b- and ab-resolution, it
still holds that Lab(p, v′) v Lab(p, v) for v a child of v′. As a result, these three
cases are completely analogous to their counterparts in [?]. We show the case of
a-resolution to illustrate the technique and for the other two cases we refer the
reader to [?]. The case of Res-d+ resolution is slightly different and the case of
Res-g is new, so we cover them here although the reasoning is again very similar.

In the rest of the proof, we assume that v is an inner vertex of the resolution
tree with a clause 〈Θ1,Θ2〉 and a partial interpolant I such that its parents are
vertex v1 with clause 〈p,Θ1〉 and interpolant I1, and vertex v2 with clause 〈p̄,Θ2〉
and interpolant I2. By the induction hypothesis we know that the following is
true:

π |= A ∧ ¬〈p,Θ1〉�a,v1→ I1

π |= B ∧ ¬〈p,Θ1〉�b,v1→ ¬I1

π |= A ∧ ¬〈p̄,Θ2〉�a,v2→ I2

π |= B ∧ ¬〈p̄,Θ2〉�b,v2→ ¬I2

13

Res-a: Assume the resolution is of type Res-a, thus both pivots p and p̄ are
labeled a and I = I1 ∨ I2.

For the first invariant, reason as follows: Our assumptions are π,A and
¬〈Θ1,Θ2〉�a,v and we want to derive I1 ∨ I2. From our assumption we can derive
¬〈Θ1〉�a,v1 , as no literal in Θ1 that was not filtered out in v1 can be filtered out
in v. This holds because labels cannot decrease (in ordering v) during resolu-
tion of type Res-a. In the presence of additional assumption p̄ we could derive
¬〈p,Θ1〉�a,v1 and thus I1 by the induction hypothesis. In the same way, we can
derive ¬〈Θ2〉�a,v2 from our assumptions and with the help of an additional as-
sumption p we could derive ¬〈p̄,Θ2〉�a,v2 and consequently I2 by the induction
hypothesis. However, we can always assume p ∨ p̄ and therefore derive I1 ∨ I2

from our assumptions, as desired. This reasoning is formalized below:

π |= p̄ ∧ A ∧ ¬〈Θ1,Θ2〉�a,v =⇒ ¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v =⇒
A ∧ ¬〈p,Θ1〉�a,v1 =⇒ I1

π |= p ∧ A ∧ ¬〈Θ1,Θ2〉�a,v =⇒ ¬〈p̄〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v =⇒
A ∧ ¬〈p̄,Θ2〉�a,v2 =⇒ I2

Combining these facts we obtain the required result:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v =⇒ (p ∨ p̄) ∧ A ∧ ¬〈Θ1,Θ2〉�a,v =⇒
(p ∧ A ∧ ¬〈Θ1,Θ2〉�a,v) ∨ (p̄ ∧ A ∧ ¬〈Θ1,Θ2〉�a,v) =⇒ I1 ∨ I2

For the second invariant, we reason as follows: As both pivots are labeled
a in parent vertices they are filtered out by the filter �b. Moreover the labels of
literals cannot weaken in resolution of type Res-a. Thus it holds that ¬〈Θ1,Θ2〉�b,v
=⇒ ¬〈p,Θ1〉�b,v1 and also ¬〈Θ1,Θ2〉�b,v =⇒ ¬〈p̄,Θ2〉�b,v2 . Both I1 and I2 can
be thus obtained from the assumptions π,B and ¬〈Θ1,Θ2〉�b,v by the induction
hypothesis. Formally:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v =⇒ B ∧ ¬〈Θ1〉�b,v1 =⇒ B ∧ ¬〈p,Θ1〉�b,v1 =⇒ ¬I1

π |= B ∧ ¬〈Θ1,Θ2〉�b,v =⇒ B ∧ ¬〈Θ2〉�b,v2 =⇒ B ∧ ¬〈p̄,Θ2〉�b,v2 =⇒ ¬I2

Combining these facts we obtain the required result

π |= B ∧ ¬〈Θ1,Θ2〉�b,v =⇒ ¬I1 ∧ ¬I2 =⇒ ¬(I1 ∨ I2).

The third invariant holds trivially because no new variables were added to the
interpolant.

Res-b, Res-ab: As said before, the cases of Res-b and Res-ab resolutions are
proved using similar reasoning and the proof can be found in [?].

14

Res-d+: We cannot use exactly the proof as in [?] as here the labels of some
literals can decrease on the way from parent to child vertex. However, after
examining the rules for labeling, we see this can happen only if these literals
came solely from parent whose interpolant is cut off. Suppose that literal p in v1

is labeled d+, so π |= p and I = I2. The other case is symmetric.
For the first invariant, we reason as follows: Our assumptions are π, A and

¬〈Θ1,Θ2〉�a,v. We want to derive I2, so by the induction hypothesis we only need
to show we can derive ¬〈p̄,Θ2〉�a,v2 . We show that ¬〈Θ2〉�a,v =⇒ ¬〈Θ2〉�a,v2 .
Suppose l ∈ 〈Θ2〉�a,v2 . Then according to the labeling rules for d+-resolution, the
supremum rule is used to determine the label of l in v after possibly reconsidering
the label of l in v1 as having label g. Since for any labels c, c′ it holds that
c ∈ {a, ab, d+} =⇒ c t c′ ∈ {a, ab, d+}, we get that l ∈ 〈Θ2〉�a,v.

Moreover π |= ¬〈p̄〉�a,v2 because p̄ is either filtered out, in which case the
expression evaluates to >, or not, in which case it evaluates to p which we know
is satisfied under π. So from our assumptions we can derive the required result.
Formally:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v =⇒ A ∧ ¬〈Θ2〉�a,v =⇒ A ∧ ¬〈Θ2〉�a,v2
=⇒ A ∧ ¬〈p̄,Θ2〉�a,v2 =⇒ I2

The second invariant is proven using the exact same reasoning:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v =⇒ B ∧ ¬〈Θ2〉�b,v =⇒ B ∧ ¬〈Θ2〉�b,v2
=⇒ B ∧ ¬〈p̄,Θ2〉�b,v2 =⇒ ¬I2

The third invariant holds trivially because no new variables were added to the
interpolant.

Res-g: This case is almost identical to Res-d+. Assume that p̄ is labeled g in
v2 and the first branch is cut off, so I = I2. For the first invariant, we reason
as follows: Our assumptions are π, A and ¬〈Θ1,Θ2〉�a,v. To derive I2 we only
need to derive ¬〈p̄,Θ2〉�a,v2 and apply the induction hypothesis. We show that
¬〈Θ2〉�a,v =⇒ ¬〈Θ2〉�a,v2 . Suppose l ∈ 〈Θ2〉�a,v2 . Then according to the labeling
rules for g-resolution, the supremum rule is used to determine the label of l in v
after possibly reconsidering the label of l in v1 as having label g. Since for any
labels c, c′ it holds that c ∈ {a, ab, d+} =⇒ c t c′ ∈ {a, ab, d+}, we get that
l ∈ 〈Θ2〉�a,v.

Moreover, ¬〈p̄,Θ2〉�a,v2 is equivalent to ¬〈Θ2〉�a,v2 because p̄ is labeled g in v2,
so it is filtered out by the filter. Formally:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v =⇒ A ∧ ¬〈Θ2〉�a,v =⇒ A ∧ ¬〈Θ2〉�a,v2
=⇒ A ∧ ¬〈p̄,Θ2〉�a,v2 =⇒ I2

The second invariant is proven using the exact same reasoning and the third
invariant holds because no new variables were added to the interpolant.

Conclusion. The final interpolant is the partial interpolant of the sink of the
resolution tree, which has an empty clause. The proven invariants for the sink are
exactly the conditions ensuring the produced formula is indeed a partial variable
interpolant for (A,B, π): π |= A → I, π |= B → ¬I, V ar(I) ⊆ V ar(Aπ̄) ∩
V ar(Bπ̄) and V ar(I) ∩ V ar(π) = ∅

15

We have successfully incorporated new label g to LPAIS without losing the
correctness of the system. If the input is given as a set of clauses then focusing
to the subproblem defined by unsatisfied clauses is the best we can do. However,
if the input is given as a formula only in NNF and needs to be encoded to CNF,
then the subproblem defined by applying partial assignment directly to the input
formula, rather than to the equisatisfiable formula in CNF, can result in a smaller
subproblem.

We claim that the label g and its rules were designed such that the resulting
interpolant contains only variables common to both parts of the narrower sub-
problem. To show this, we need to examine the relation between derivation tree
of the input formula and the resolution tree more closely.

2.3 Relation between derivation and refutation

tree

The goal of this section is to show that we can formulate stronger constraints
on the variables occurring in the interpolants computed by SALIS. We show
that branches starting with clauses from satisfied subtrees of the derivation tree
encounter at some vertex a resolution that will cut off their current partial inter-
polant. We use it to expand the set of variables that cannot occur in the final
interpolant.

In this section we assume that an unsatisfiable formula ϕ in NNF is given
and (one-sided) Tseitin’s encoding was used to produce an equisatisfiable set of
clauses which was then refuted by a refutation tree ρ. Recall also the mapping
Θ from edges of derivation tree to the set of clauses.

Observation 2.8. For an encoding variable e, if a branch starting at leaf with
clause Θ1, which is an image of a parent (child) edge of e, is present in ρ-tree,
then in ρ there is also a branch starting at leaf with a clause that is an image of
a child (parent) edge of e such that these branches meet on a vertex v with pivot
variable e. Moreover this is the first vertex for both branches where the literal
with variable e that is present in the clause of the leaf is resolved away.

Proof. Follows from Observation 1.6.

Recall that e↑(n) stands for the parent edge of node n in the derivation tree.
The clause corresponding to this edge is denoted as Θ(e↑(n)). For the sake of
brevity we will write Θn instead of Θ(e↑(n)).

Definition 2.9 (Cutting resolution). Let β be a branch in the refutation tree,
and let v be a vertex on β where β meets some other branch β′. We say that
the current partial interpolant of the branch β is cut off at vertex v if one of the
following is true:

(i) the resolution is of type Res-d+ and the pivot from branch β is labeled d+

(ii) the resolution is of type Res-g, the pivot from β′ is labeled g and the pivot
from β is not labeled g

16

(iii) the resolution is of type Res-g, both pivots have label g, but the partial
interpolant in v is chosen to be the interpolant from the branch β′

Lemma 2.10. Assume l is a satisfied literal and Θl is the clause corresponding
to its parent edge. Then every branch starting at leaf with clause Θl encounters
a resolution where its current partial interpolant is cut off.

Proof. Satisfied literal l appears positively in Θl (meaning that l, not l̄, is present
in Θl), so it is labeled d+ in any leaf with Θl. This literal has to appear as a pivot
at some vertex v along β(Θl), thus the resolution at v satisfies condition (i) of
Definition 2.9 and the partial interpolant of Θl is cut off at v.

Lemma 2.11. Let n be a satisfied node of the derivation tree and let Θn be the
clause corresponding to its parent edge. Then every branch starting at leaf with
clause Θn encounters a resolution where its current partial interpolant is cut off.

Proof. Let d(n) denote the maximal distance from n to a leaf in the subtree of
n. We prove the claim by induction over d(n).

If d(n) = 0 then n is a satisfied leaf and the claim for this case has been
proved in Lemma 2.10.

If d(n) > 0, then n is an inner node. Denote its children as c1 and c2. The proof
is slightly different depending on whether n stands for conjunction or disjunction;
however, for now we can cover both cases. Without loss of generality, assume c1 is
also a satisfied node (at least one of the children has to be). By Observation 2.8,
there is a branch starting at leaf with clause Θc1 such that β(Θn) meets β(Θc1)
at vertex which is the first vertex on β(Θn) with n as the pivot variable. Denote
this vertex as w. The situation is depicted in Fig. 2.2.

β(Θn) β(Θc1)

w

Figure 2.2: Two branches in the refutation tree

Since d(n) > d(c1), by induction hypothesis there is a vertex v on β(Θc1) such
that the current partial interpolant of β(Θc1) is cut off at v. We discuss the three
possibilities how v and w can be ordered on branch β(Θc1).

• If v > w then the current partial interpolant of β(Θn) is also cut off at v.

• If v = w then the cutting is not due to a resolution of type Res-d+ because n
is an inner node, therefore an encoding variable, and the assignment assigns
only the original variables. As a result, the resolution is of type Res-g such
that the pivot from branch β(Θn) has label g. However, the pivot is n, which
is present in the clause of all vertices on the branch up to this vertex. Since
it did not have label g at the leaf, it had to obtain the label somewhere

17

along the branch β(Θn). But the only possible way a literal can obtain
label g along a branch is if at some vertex at that branch, the current
partial interpolant of the branch is cut off according to Definition 2.9. This
is a direct consequence of rules for propagating labels in inner vertices (see
Definition 2.2). As a consequence, we have proved that the current partial
interpolant of branch β(Θn) is cut off at some vertex.

• If v < w then the situation is a little more complicated. As Θc1 is a clause
corresponding to the child edge of n, it contains n negatively, i.e. n̄ is
present in Θc1 . We also know that n̄ is present in the clause along β(Θc1)
until vertex w where it is the pivot of resolution. Therefore, it is present
in the clause of β(Θc1) at vertex v, when the current partial interpolant
of β(Θc1) is cut off. At this point, n̄ may obtain label g according to the
rules of propagating labels in case Res-d+ or Res-g. Suppose that n̄ indeed
successfully obtained label g and kept the label until vertex w. Then at
w either the pivot from β(Θn) does not have label g, which means that
the current partial interpolant of β(Θn) is cut off at w, or the pivot from
β(Θn), too, has label g. But as we have shown in the previous case, in
such situation the current partial interpolant of β(Θn) had to be cut off
somewhere before w.

However, it may happen that n̄ does not obtain g during resolution at v
or that it loses it somewhere between v and w after successfully obtaining
it at v. According to the labeling rules, this is possible only if n̄ is also
present in the clause from the other branch and it does not have label g
there. Suppose that this indeed happened, so there is some branch β′ such
that v ≤ u = β′ ∧ β(Θc1) < w and at vertex u n̄ is also present in the
clause from β′ and it does not have label g. Moreover, we can assume that
β′ is such a branch that n̄ is already present at its leaf and is not resolved
away until w. As a consequence, the clause at the leaf of β′ corresponds to
one of the child edges of n. We show that the induction hypothesis can be
again applied to β′. Either β′ = β(Θc1), in which case we know induction
hypothesis can be applied, or β′ = β(Θc2). If n represents disjunction then
Θc1 = Θc2 , so again the induction hypothesis can be applied. If n represents
conjunction then also c2 has to be a satisfied node and as d(n) > d(c2), the
induction hypothesis can be applied to β(Θc2). In either case, the induction
hypothesis can be applied to get a vertex v′ on branch β′ where the current
partial interpolant of β′ is cut off. However, this is the same situation as
at the beginning with the first β(Θc1). We again can discuss the relative
order of vertices v′ and w on branch β′ to conclude that either we can
found a vertex where the current partial interpolant of β(Θn) is cut off, or
yet another branch, β′′, must exist that is in the same relation to β′ as is
β′ to β(Θc1). The same reasoning is applied again to β′′ if necessary. As
the number of branches is finite, there is some last branch in this sequence
which gives us the vertex where the current partial interpolant of β(Θn) is
cut off.

We now move from satisfied nodes to nodes in the satisfied subtrees that are
not themselves satisfied.

18

Lemma 2.12. Assume n is a child of a satisfied node p that is not itself satisfied,
and Θn is the clause corresponding to its parent edge. Then every branch starting
at leaf with clause Θn encounters a resolution where its current partial interpolant
is cut off.

Proof. If p is a satisfied node, but one of its children is not satisfied, then p has to
represent disjunction. As a result, Θn = Θn′

where n′ is the other, satisfied, child
of p. Since Lemma 2.11 applies to n′, we get that every branch starting at a leaf
with clause Θn, which is a branch starting at a leaf with clause Θn′

, encounters
a resolution where its current partial interpolant is cut off.

Lemma 2.13. Assume n is a node in the satisfied subtree that is not itself sat-
isfied, and Θn is the clause corresponding to its parent edge. Then every branch
starting at leaf with clause Θn encounters a resolution where its current partial
interpolant is cut off.

Proof. The reasoning is almost the same as in the proof of Lemma 2.11. Let
ds(n) denote the distance from n to its closest satisfied ancestor. We prove the
claim by induction over ds(n). If ds(n) = 1 then the claim has been proved in
Lemma 2.12. If ds(n) > 1 then denote the parent of n as p. Note that p is not
satisfied, but it is a node in a satisfied subtree and ds(p) < ds(n), so induction
hypothesis can be applied to p. Consider a branch in the refutation tree starting
at leaf with clause Θn. Then by Observation 2.8, there is a branch starting at leaf
with clause Θp such that β(Θp) meets β(Θn) at the first vertex on β(Θn) with p
as the pivot variable. Denote this vertex as w. By induction hypothesis, there is
a vertex v on β(Θp) such that the current partial interpolant of β(Θp) is cut off
at v. Consider the three possible orderings of vertices v and w on β(Θp).

• If v > w then the current partial interpolant of β(Θn) is also cut off at v.

• If v = w then the cutting is not due to a resolution of type Res-d+ because p
is an inner node, therefore an encoding variable, and the assignment assigns
only the original variables. As a result, the resolution is of type Res-g such
that the pivot from branch β(Θn) has label g. However, the pivot is n, which
is present in the clause of all vertices on the branch up to this vertex. Since
it did not have label g at the leaf, it had to obtain the label somewhere
along the branch β(Θn). But the only possible way a literal can obtain
label g along a branch is if at some vertex at that branch, the current
partial interpolant of the branch is cut off according to Definition 2.9. This
is a direct consequence of rules for propagating labels in inner vertices (see
Definition 2.2). As a consequence, we have proved that the current partial
interpolant of branch β(Θn) is cut off at some vertex.

• If v < w then take a look at literal p at branch β(Θp). This literal is
present in the clause of all vertices on this branch up to w. Therefore, it
is present in the clause of vertex immediately before v. We know that the
current partial interpolant of β(Θp) is cut off at v, thus p may obtain g
at his point, according to the rules of propagating labels. Suppose that p
indeed obtained label g at v and kept it until w. Then either the current
partial interpolant of β(Θn) is cut off at w because of the resolution of type

19

Res-g or at w the pivot from branch β(Θn) also has label g. But then the
current partial interpolant of β(Θn) had to be cut off already somewhere
before w, as we have shown in the previous case.

Now, if p did not obtained label g at v or lost it somewhere between v and
w, then it had to happen because some other branch β′ with p in its clause
met with β(Θp) at vertex u (v ≤ u < w) and p did not have label g when
they met. Moreover, we may assume that β′ is the branch which has literal
p in the clause of all its vertices from the leaf to u. However, the only
clause where p appears positively is Θp, thus branch β′ starts at leaf with
clause Θp. As a result, induction hypothesis can be applied to β′. The rest
of the proof is the same as for Lemma 2.11: we either find a vertex where
the current partial interpolant of β(Θn) is cut off, or yet another branch on
which the induction hypothesis can be applied must exist in the refutation
tree. This is repeated until no new branch that would prevent the existence
of the cut-off vertex can be found (which must happen at some point).
Therefore, even in this case the vertex where the current partial interpolant
of β(Θn) is cut off has been found.

We now aim to use Lemma 2.13 to restrict the set of variables that can occur
in the computed interpolant. Suppose that (A,B) is an unsatisfiable pair of NNF
formulas.

Let Â = τ(A) and B̂ = τ(B), let σ be a partial variable assignment and let ρ
be the refutation tree for (Â, B̂). Recall the two divisions of Â (and B̂):

• Aσ and Aσ̄ denotes the satisfied and unsatisfied clauses, respectively.

• Â+
σ denotes the clauses corresponding to edges from satisfied subtrees of the

derivation tree of A and Â−σ = Â \ Â+
σ

Recall as well the categorizing of unassigned variables as Âσ̄-local, B̂σ̄-local,
Âσ̄B̂σ̄-shared and Âσ̄B̂σ̄-clean. In the same way the unassigned variables can
also be categorized as Â−σ -local, B̂−σ -local, Â−σ B̂

−
σ -shared and Â−σ B̂

−
σ -clean. We

want to show that SALIS can produce such interpolants that are focused on the
smaller subproblem, i.e. only Â−σ B̂

−
σ -shared variables appear in these interpolants.

Lemma 2.13 is an important tool in achieving this goal, however it is not sufficient
on its own. The constraints on the labeling function needs to strengthen a little.
First notice the following relations between the two divisions of clauses and their
corresponding categorizing of variables:

Observation 2.14.

(i) Âσ ⊆ Â+
σ , B̂σ ⊆ B̂+

σ

(ii) Â−σ ⊆ Âσ̄, B̂−σ ⊆ B̂σ̄

(iii) If a variable is Âσ̄B̂σ̄-clean then it is also Â−σ B̂
−
σ -clean.

(iv) If a variable is Âσ̄-local then it is either Â−σ -local or Â−σ B̂
−
σ -clean.

(v) If a variable is B̂σ̄-local then it is either B̂−σ -local or Â−σ B̂
−
σ -clean.

20

(vi) If a variable is Â−σ -local then it is either Âσ̄-local or Âσ̄B̂σ̄-shared.

(vii) If a variable is B̂−σ -local then it is either B̂σ̄-local or Âσ̄B̂σ̄-shared.

Based on these observations, we can correctly strengthen the conditions on
labeling functions:

Definition 2.15 (Structure-aware locality-preserving labeling). Assume (A,B)
is an unsatisfiable pair of NNF formulas, Â = τ(A), B̂ = τ(B), σ is a partial
assignment of variables in V ar(A)∪V ar(B), ρ is a refutation tree for (Â, B̂), and
Lab is a labeling function for ρ. We say that a labeling function Lab is structure-
aware locality-preserving for ρ and σ if it is locality-preserving and moreover
∀v ∈ Leaves(ρ), ∀l ∈ cl(v)

1. var(l) is unassigned and Â−σ -local =⇒ Lab(l, v) = a

2. var(l) is unassigned and B̂−σ -local =⇒ Lab(l, v) = b

3. var(l) is unassigned and Â−σ B̂
−
σ -clean =⇒ l is consistently labeled a or b

Note that by Observation 2.14 the additional constraints from Definition 2.15
are not in conflict with the original constraints from Definition 2.4.

Theorem 2.16 (Strong correctness). Let (A,B) be an unsatisfiable pair of NNF
formulas, Â = τ(A), B̂ = τ(B), ρ be a refutation tree for (Â, B̂), σ be a
partial assignment of variables from V ar(A) ∪ V ar(B). If Lab is a structure-
aware locality-preserving labeling function for ρ and σ then formula I produced
by SALIS(A,B, σ, ρ, Lab) satisfies the following conditions:

1. σ |= A→ I

2. σ |= B → ¬I

3. V ar(I) ⊆ V ar(Â−σ) ∩ V ar(B̂−σ)

4. V ar(I) ∩ V ar(σ) = ∅

Proof. Since every structure-aware locality-preserving labeling function is also
locality-preserving, Theorem 2.7 applies to I. As a result, condition 4 holds
for I.

Consider condition 1. From Theorem 2.7 we only get that σ |= Â → I. We
want to prove that σ |= A → I. It is sufficient to show that for every complete
assignment σ′ such that σ′ extends σ and σ′ |= A it also holds that σ′ |= I. Let
σ′ be such an assignment. From the properties of Tseitin’s encoding, we know
there exists an assignment σ′′ such that σ′′ |= Â and σ′ and σ′′ agree on variables
of A. Clearly σ′′ extends σ, therefore σ′′ |= I. However I does not contain any
variables from V ar(Â) \ V ar(A), because these are encoding variables and are
thus unique to Â. As a result σ′ |= A.

Condition 2 is proved in the same way as condition 1 only using B instead of
A.

Now consider condition 3. First recall how a variable can appear in the final
interpolant. It can either be introduced to the partial interpolant after resolu-
tion of type Res-ab (and survive till sink) or it can be introduced to the partial

21

interpolant in the leaf (and survive till sink). A variable is introduced to the
interpolant in the leaf if the clause of the leaf is from Â and the literal with the
corresponding variable has label b, or the clause is from B̂ and the literal has
label a.

Now, from Theorem 2.7 we already know that V ar(I) ⊆ V ar(Âσ̄)∩V ar(B̂σ̄).
Consider x to be a variable such that x ∈ V ar(Âσ̄)∩V ar(B̂σ̄) but x /∈ V ar(Â−σ)∩
V ar(B̂−σ). We need to prove that x will not be present in the produced inter-
polant. Note that from the assumption it follows that x is not an encoding
variable (x ∈ V ar(A) ∪ V ar(B)) and x is not Â−σ B̂

−
σ -shared. We analyze the

possible category of x.

• If x is Â−σ B̂
−
σ -clean then by the constraint from Definition 2.15, x is consis-

tently labeled a or b, therefore there is no resolution with pivot x of type
Res-ab in the refutation tree. Consequently, x cannot be introduced to a
partial interpolant in an inner vertex.

Since x is Â−σ B̂
−
σ -clean, it appears only in clauses from satisfied subtrees of

the derivation tree. Moreover, x appears only in clauses corresponding to
parent edges of leaves of the derivation tree, because x is not an encoding
variable. Suppose that x is introduced to the partial interpolant of some
leaf in the refutation tree. Then the branch starting in this leaf satisfies
the assumption of Lemma 2.13. As a result, the current partial interpolant
of this branch is cut off at some point, hence the variable x on this branch
does not survive to the final interpolant. However, this holds for all branches
where x was introduced to the partial interpolant of the leaf. Since x cannot
be introduced in inner vertices, as we have shown earlier, x cannot appear
in the final interpolant.

• If x is Â−σ -local then by Definition 2.15 all literals with variable x are labeled
a in the leaves. As a consequence, there is no resolution with pivot x of
type Res-ab in the refutation tree, so x cannot be introduced to a partial
interpolant in an inner vertex. Let v be a leaf in the resolution tree such that
its clause Θv contains a literal with variable x. If Θv is a satisfied clause,
then the partial interpolant of v does not contain x. If Θv ∈ Â then again,
the partial interpolant of v does not contain x because x is labeled a in v.
If Θv ∈ B̂ then Θv corresponds to an edge in a satisfied subtree, because x
is Â−σ -local. As x is not an encoding variable, Θv corresponds to a parent
edge of some leaf in the derivation tree corresponding to literal x or ¬x. As
x is not assigned, this is not a satisfied leaf. As a consequence, Lemma 2.13
applies to the branch β(Θv) starting at the leaf v and its current partial
interpolant is cut off at some vertex on β(Θv), hence the variable x on this
branch does not survive to the final interpolant.

We have shown that if x is present in the partial interpolant of some leaf
in the refutation tree then the interpolant of this branch is cut off at some
vertex. Moreover x cannot be introduced to the interpolant in an inner
vertex. As a result, x cannot appear in the final interpolant.

• If x is B̂−σ -local then the reasoning is symmetric to the previous case (only
switching all Âs and as for B̂s and bs and vice versa). Thus neither in this
case can x appear in the final interpolant.

22

To conclude, we have already known that no variable that is not Âσ̄B̂σ̄-shared
can appear in the final interpolant. We have then extended this result to all vari-
ables that are not Â−σ B̂

−
σ -shared. As a result, condition 3 holds for the produced

interpolant I.

23

3. Path interpolation property

Several verification techniques are based not only on computing interpolants for a
given input, but actually on computing interpolation sequences. For example, this
is an essential part of the UFO algorithm presented in [?]. In [?], the authors have
shown that the framework of LIS [?] can be employed to compute interpolation
sequences given a gradually weakening sequence of labeling functions. In [?], the
authors successfully retained this property even in the presence of different partial
variable assignments, given some additional conditions on the assignments.

Here, we examine SALIS with respect to the path interpolation property. We
identify a potential problems in our system and present additional constraints
that deal with such problems.

Most of this chapter is based on the proof of the path interpolation property
presented in [?]. However, there are a few places where the new label g and
cutting branches due to these labels causes new obstacles to arise.

3.1 Modified version of SALIS

We first show we need to modify the interpolation system presented in Chapter 2.
Recall that in LIS [?], a total order � of the set of labels {a, b, ab} is defined

as b � ab � a. This ordering reflects the logical strength of corresponding
possibilities of computing a partial interpolant for an inner vertex of the resolution
tree:

I1 ∧ I2 =⇒ (p ∨ I1) ∧ (p̄ ∨ I2) =⇒ I1 ∨ I2

Moreover, it can be used to compare labeling functions by strength, and it has
been also shown in [?] that stronger labeling functions produce stronger inter-
polants, in terms of logical strength. In [?] authors successfully incorporated their
new label d+ into this ordering as d+ ≈ ab, meaning it is of the same strength
as ab, ab � d+ and d+ � ab. This is supported by the fact that if the pivot p is
satisfied under a partial assignment of σ then σ |= I2 ⇐⇒ (p ∨ I1) ∧ (p̄ ∨ I2).

Our new label g presents a problem for the totality of such pre-order. Label
g cuts off partial interpolants similarly to label d+, but the variables with label
g are out of the scope of the partial variable assignment. If a pivot is labeled g
then I = I1 is the partial interpolant in the child vertex. However, there is no
guarantee that σ |= I1 ⇐⇒ (p∨I1)∧(p̄∨I2) in this case, so label g is incomparable
with ab and also with d+. Fortunately, it can still be compared with labels a and
b as b � g � a.

Another problem with the strength of g is that it breaks the nice property that
if one labeling is stronger than another at leaves then it is stronger everywhere.
To restore this property, additional constraints on assignments and label g are
needed.

We deal with these problems one by one. First, we propose a restriction
on labeling functions to gain some control over label g. The necessity of this
restriction should be clear later from the proofs. With the path interpolation
property as our goal, we assume that the input is now a set of NNF formulas.
Moreover, we assume that the encoding step is applied separately to each formula
from the input, resulting in a set of derivation trees.

24

Definition 3.1 (Labeling with restricted propagation). We say that a labeling
function has restricted propagation, if it uses the following conditions for propa-
gating labels in case of resolution of types Res-d+ and Res-g instead of the original
ones (see Definition 2.2):

• Res-d+: Assume the pivot in the first predecessor has label d+ (the second
case is symmetric). First, all literals from v1, such that their variable is
an encoding variable from the same derivation tree as the satisfied pivot,
are considered as having label g, and then the supremum rule is used to
determine the labels in v.

• Res-g: Assume the pivot in the first predecessor has label g (the second
case is symmetric). First, all literals from v2, such that their variable is an
encoding variable from the same derivation tree as the pivot, are considered
as having label g, and then the supremum rule is used to determine the
labels in v.

If in case Res-g both pivots have label g, we resolve the situation as before. Notice
that in case Res-g the pivot has to be an encoding variable, so both pivots come
from the same derivation tree.

The effect of this modification is that the branches and their current partial
interpolants are not cut off as often as before, but even when using labeling
functions with restricted propagation, the system is still strongly correct.

Theorem 3.2 (Strong correctness for labeling functions with restricted propaga-
tion). Assume (A,B) is an unsatisfiable pair of sets of NNF formulas, Â = τ(A),
B̂ = τ(B), ρ is a refutation tree for (Â, B̂), σ is a partial assignment of variables
from V ar(A) ∪ V ar(B). If Lab is a structure-aware locality-preserving labeling
function with restricted propagation for (A,B, σ, ρ) then the formula I produced
by SALIS for (A,B, σ, ρ, Lab) satisfies the following conditions:

1. σ |= A→ I

2. σ |= B → ¬I

3. V ar(I) ⊆ V ar(Â−σ) ∩ V ar(B̂−σ)

4. V ar(I) ∩ V ar(σ) = ∅

Proof. It suffices to go through the proofs of weak and strong correctness for
unrestricted labeling function and check that the restriction does not break the
proofs. Note that in the proof of strong correctness it is important that in the
satisfied subtree label g can be propagated from a satisfied leaf to all nodes in this
satisfied subtree. Since the propagation is done using encoding variables only, a
restricted labeling function still achieves this goal.

For the rest of this chapter, we work only with the restricted labeling functions.

25

3.2 Strength

As we have mentioned before, in the previous systems, to compare two labeling
functions strength-wise, it was enough to compare the labels of literals in the
leaves of the refutation tree. In our case, additional constraints on assignments
are needed if we want to have this property. First, we show what these constraints
are, and then we turn to the strength of the computed interpolant. Similarly to
LIS and LPAIS, we show that if a stronger labeling is used, then it produces
stronger interpolant.

Lemma 3.3. Let (A,B) and (A′, B′) be two divisions of the same unsatisfiable
set of NNF formulas. Let ρ be the refutation tree for Â ∪ B̂ and let σ and σ′

be partial variable assignments. Let Lab be a locality-preserving labeling function
with restricted propagation for (A,B, σ, ρ) and let Lab′ be a locality-preserving
labeling function with restricted propagation for (A′, B′, σ′, ρ). If Lab �L Lab′

and

1. if Lab(l, v) = g and Lab′(l, v) 6= g then Lab′(l, v) = a,

2. if Lab′(l, v) = g and Lab(l, v) 6= g then Lab(l, v) = b,

then Lab � Lab′.

Proof. We proceed by structural induction. We are assuming the claim holds for
the leaves, so the base case is done. For the induction step, let v be an inner
vertex such that v1 is its positive predecessor with clause 〈p,Θ1〉 and v2 is its
negative predecessor with clause 〈p̄,Θ2〉. From the induction hypothesis we have
that ∀l ∈ Θ1 Lab(l, v1) � Lab′(l, v1) and ∀l ∈ Θ2 Lab(l, v2) � Lab′(l, v2). We
want to show that ∀l ∈ Θ1 ∪Θ2 Lab(l, v) � Lab′(l, v). We use the proof by case
analysis, depending on the value of Lab(l, v):

Lab(l, v) = b: Since b is the strongest label, the claim holds trivially.

Lab(l, v) = ab: Suppose the claim does not hold. Then, it must be the case
that Lab′(l, v) = b or Lab′(l, v) = g. However, Lab′(l, v) = g entails that l is an
encoding variable, because only encoding variables can be labeled g if restricted
propagation is used. However, an encoding variable is always local to one part of
the problem, so it can never have label ab, contradicting the original assumption
that Lab(l, v) = ab. Thus, suppose that Lab′(l, v) = b. Then for one of the
predecessors, say v1, it must hold that the label of l is also b, Lab′(l, v1) = b. From
the induction hypothesis, we get that Lab(l, v1) = b. But then Lab(l, v2) = a
which entails Lab′(l, v2) = a, leading to contradiction as that would result in
Lab′(l, v) = ab.

Lab(l, v) = a: If l has label a in v then it has to have label a also in one of the
predecessors. Without loss of generality let it be v1. So Lab(l, v1) = a and from
the induction hypothesis we get that also Lab′(l, v1) = a. Let us consider the
possible labels of l in v2.

If Lab(l, v2) = a or Lab(l, v2) = g or Lab(l, v2) = ⊥, then also Lab′(l, v2) = ⊥
or Lab′(l, v2) = a or Lab′(l, v2) = g. If the label in v1 for Lab′ is not reconsidered

26

as g before the supremum rule is applied, then Lab′(l, v) = a follows. However,
if it is reconsidered then it may happen that Lab′(l, v) = g, but this violates our
second explicit assumption.

The other labels, b, ab and d+, cannot be assigned to l in v2, because to satisfy
that Lab(l, v) = a the label would have to be changed to g before applying the
supremum rule and this can happen only to the encoding variables. However,
from the fact that Lab(l, v1) = a, this encoding variable has to be local to the
A-part of the problem, so it can never have label b, ab nor d+.

Lab(l, v) = d+: We can argue as in the case Lab(l, v) = ab. If the claim does not
hold then Lab′(l, v) = b or Lab′(l, v) = g. However, Lab′(l, v) 6= g because that
would entail it is an encoding variable while Lab(l, v) = d+ entails it is not an
encoding variable, because encoding variables are not assigned. If Lab′(l, v) = b
then Lab′(l, v′) = b for v′ = v1 or v′ = v2. However, this would require that
Lab(l, v′) = b which cannot happen, because l is satisfied under σ.

Lab(l, v) = g: By the first explicit assumption, it holds that either Lab′(l, v) = g
or Lab′(l, v) = a, so the claim is satisfied.

We have shown that under certain conditions, if two labeling functions are
comparable at leaves, they are comparable everywhere. However, the conditions
as stated are not easily verifiable for given labeling functions. Below we show we
can guarantee these conditions given another set of conditions which are much
easier to verify.

Lemma 3.4. Let (A,B) and (A′, B′) be two divisions of the same unsatisfiable
set of NNF formulas. Let ρ be the refutation tree for Â ∪ B̂ and let σ and σ′

be partial variable assignments. Let Lab be a locality-preserving labeling function
with restricted propagation for (A,B, σ, ρ) and let Lab′ be a locality-preserving
labeling function with restricted propagation for (A′, B′, σ′, ρ). If Lab �L Lab′

and the following are true:

1. all occurrences of literals satisfied by σ and not satisfied by σ′ lie in the
derivation trees of A′,

2. all occurrences of literals satisfied by σ′ and not satisfied by σ lie in the
derivation trees of B,

3. if Lab and Lab′ both cut off a branch at some vertex, they agree on which
branch is cut off,

then Lab � Lab′.

Proof. We show by contradiction that the conditions from Lemma 3.3 are satis-
fied.

Suppose that the first condition is not satisfied, i.e. there exists a vertex v and
a literal l such that Lab(l, v) = g and Lab′(l, v) = b. It follows that the variable of
l is an encoding variable from a derivation tree from B′. Consider vertex v′ where
l obtained label g in case of Lab but did not obtain it in case of Lab′. As a result,
a branch has been cut off at v′ and the pivot responsible for the cutting (the one

27

with label d+ or g) is from the same derivation tree as l. On the other hand, in
case of Lab′ literal l did not obtain label g which means that the same branch
was not cut off. Since Lab′ and Lab cannot disagree on which branch is cut off at
given vertex by our assumption, it follows that the pivot labeled d+ or g by Lab
does not have the same label assigned by Lab′. This means that either there is an
occurrence of a σ-satisfied but not σ′-satisfied literal in a derivation tree from B′,
or there is another literal satisfying the same conditions as l, because its variable
is also an encoding variable from a derivation tree from B′. The first variant
contradicts the first assumption of this lemma. In the second variant, the same
reasoning can be applied. In this way we would eventually have to encounter
a literal for which this first variant must hold, but this contradicts our original
assumptions.

In case the second assumption is not satisfied we can use symmetric reasoning
to obtain a contradiction with the second assumption of this lemma.

Note that these assumptions are more comprehensible and easier to guard,
since the first two are just slightly stronger conditions then the ones needed
to ensure that Lab �L Lab′ in the first place. The third assumption can still
be checked only by computing the labels in inner vertices, but can again be
achieved simply if we surrender some generality. Moreover, we shall encounter
this assumption again in the proof of path interpolation, so it is not unreasonable
to require it.

Corollary 3.5. Let (A,B) and (A′, B′) be two divisions of the same unsatisfi-
able set of NNF formulas. Let ρ be the refutation tree for Â ∪ B̂ and let σ be a
partial variable assignment. Let Lab and Lab′ be locality-preserving labeling func-
tions with restricted propagation for (A,B, σ, ρ) and (A′, B′, σ, ρ), respectively. If
Lab �L Lab′ then Lab � Lab′.

Proof. Since the same assignment is used, the first two conditions of Lemma 3.4
are trivially satisfied. Moreover, if the same assignment is used, then Lab and
Lab′ agree on all d+ and on all g labels, so they cannot disagree on which branch
is cut off.

We continue with the proofs that stronger labeling functions yield stronger
interpolants in SALIS. First, we consider labeling functions under the same as-
signment, later we allow different assignments to be used.

Definition 3.6 (Weakened-labeling filter). Let Lab and Lab′ be labeling func-
tions for the same refutation tree, let v be a vertex of the tree and Θ be a clause.
We define a weakened-labeling filter ↓Lab,Lab′v as follows:

〈Θ〉↓Lab,Lab′v = {l ∈ 〈Θ〉 | Lab(l) 6= a ∧ Lab′(l) 6= b ∧ Lab(l) 6= g ∧ Lab′(l) 6= g}

or equivalently:

〈Θ〉\〈Θ〉↓Lab,Lab′v = {l ∈ 〈Θ〉 |Lab(l) = a∨Lab′(l) = b∨Lab(l) = g∨Lab′(l) = g}.

Lemma 3.7. Let v be a vertex in the refutation tree with parents v1 with clause
〈Θ1, p〉 and v2 with clause 〈Θ2, p̄〉 and p be the pivot variable so the clause in v
is 〈Θ1,Θ2〉. Let Lab and Lab′ be labeling functions for the refutation tree. If the

28

resolution at v is such that the supremum rule is used to propagate labels in both
labeling functions, then it holds that

¬〈Θ1〉↓Lab,Lab
′

v → ¬〈Θ1〉↓Lab,Lab
′

v1
and ¬〈Θ2〉↓Lab,Lab

′

v → ¬〈Θ2〉↓Lab,Lab
′

v2

Proof. Assume l is a literal not filtered out by the filter in v1, l ∈ 〈Θ1〉↓Lab,Lab
′

v1
.

Then Lab(v1, l) is neither a nor g. According to the assumption the supremum
rule is used to label l in v, so l cannot have label a or g assigned in v by Lab
(consult Fig. 2.1). The same argument shows that if Lab′(v1, l) is not b nor g
then also Lab′(v, l) is not b nor g. As a result l ∈ 〈Θ1〉↓Lab,Lab

′

v . The case of the
second vertex is symmetric.

From now on, for the clarity of notation, we omit the labeling functions from
the filter if they are clear from the context.

Theorem 3.8 (Interpolant strength – single assignment). Let (A,B) be an un-
satisfiable pair of sets of NNF formulas. Let ρ be a refutation tree for (Â, B̂) and
let σ be a partial variable assignment. Let Lab and Lab′ be locality-preserving la-
beling functions with restricted propagation for (A,B, σ, ρ) such that Lab � Lab′.
Let I and I ′ be the interpolants computed by SALIS for Lab and Lab′, respectively.
Then

σ |= I → I ′

Proof. We proceed by structural induction in the refutation tree and prove that
the following invariant holds for each vertex v:

σ |= Iv ∧ ¬〈Θ〉↓v → I ′v

where 〈Θ〉 is the clause in vertex v and Iv and I ′v are the partial interpolants in
vertex v using labeling functions Lab and Lab′, respectively.

Leaves. Note that the same assignment σ is used, so either the clause in a leaf
is satisfied in both computations or unsatisfied in both computations. Also note
that in leaf there is no label g, so for the literal l to be preserved by weakened-
labeling filter in leaves only Lab(l) 6= a ∧ Lab′(l) 6= b must hold.

• If the clause 〈Θ〉 in a leaf is a satisfied clause, than its interpolant is >, so
the invariant is trivially satisfied.

• If the clause is unsatisfied from A part, then I = 〈Θ〉[σ]|b,v,Lab. It holds that

〈Θ〉|b,v,Lab ∧ ¬〈Θ〉↓v → 〈Θ〉|b,v,Lab′ ,

because if l ∈ 〈Θ〉|b,v,Lab then Lab(l) = b and either Lab′(l) = b, in which
case l ∈ 〈Θ〉|b,v,Lab′ , or Lab′(l) 6= b in which case it is preserved by the filter,
so l ∈ 〈Θ〉↓v. Since σ |= 〈Θ〉 ↔ 〈Θ〉[σ], the invariant follows.

• If the clause is unsatisfied from B part, then I = ¬〈Θ〉[σ]|a,v,Lab. It holds
that

¬〈Θ〉|a,v,Lab ∧ ¬〈Θ〉↓v → ¬〈Θ〉|a,v,Lab′ ,
because if l ∈ 〈Θ〉|a,v,Lab′ then Lab′(l) = a and either Lab(l) = a, in which
case l ∈ 〈Θ〉|a,v,Lab, or Lab(l) 6= a in which case it is preserved by the filter,
so l ∈ 〈Θ〉↓v. Since σ |= 〈Θ〉 ↔ 〈Θ〉[σ], the invariant follows.

29

Inner vertices. Let v be an inner vertex such that v1 is its positive predecessor
with clause 〈p,Θ1〉 and v2 is its negative predecessor with clause 〈p̄,Θ2〉. From
the induction hypothesis we have that the invariant holds in the predecessors:

σ |= I1 ∧ ¬〈p,Θ1〉↓v1 → I ′1
σ |= I2 ∧ ¬〈p̄,Θ2〉↓v2 → I ′2

We distinguish several cases based on the type of the resolution at v for both
labeling functions. Primed notation is used if we are referring to the case of Lab′

and normal notation if referring to Lab. For example we use notation Res-a-b′ if
the resolution was of type Res-a for Lab and of type Res-b for Lab′. Note that
the following cases are forbidden by the assumption that Lab � Lab′: Res-a-b′,
Res-a-ab′, Res-a-d′+, Res-a-g′, Res-ab-b′, Res-d+-b′, Res-d+-g′, Res-ab-g′, Res-g-b′,
Res-g-ab′, Res-g-d′+. For example in Res-ab-b, there is at least one pivot with
label a or ab in Lab but in Lab′ both pivots have label b, so at least got stronger
label in Lab′ contradicting the assumption that Lab � Lab′. The argument in
other cases is similar.

In addition, note that the cases Res-d+-ab, Res-d+-a, Res-b-d′+, Res-ab-d′+

are forbidden due to the fact that the same assignment σ is used in both cases.
If the same assignment is used then Lab and Lab′ agrees completely on assigning
label d+ and consequently on whether or not a resolution is Res-d+ or not. As
a consequence, they also agree on all labels g and all resolutions of type Res-g.
Therefore all the cases containing exactly one g-resolution are also forbidden.

We go through the remaining cases:

Res-a-a′. Both pivots in both labeling functions have label a, so they are both
filtered out by the filter in their corresponding vertices: 〈p〉↓v1 ↔ 〈p̄〉↓v2 ↔ >.
Moreover, the assumption of Lemma 3.7 is satisfied, thus ¬〈Θ1〉↓v → ¬〈Θ1〉↓v1
and ¬〈Θ2〉↓v → ¬〈Θ2〉↓v2 .

Combining all this together, we obtain that:

σ |= I1 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I1 ∧ ¬〈Θ1〉↓v =⇒ I1 ∧ ¬〈Θ1〉↓v1 =⇒
=⇒ I1 ∧ ¬〈p,Θ1〉↓v1 =⇒ I ′1

σ |= I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I2 ∧ ¬〈Θ2〉↓v =⇒ I2 ∧ ¬〈Θ2〉↓v2 =⇒
=⇒ I2 ∧ ¬〈p̄,Θ2〉↓v2 =⇒ I ′2

Using these, we can prove the invariant:

σ |= (I1 ∨ I2) ∧ ¬〈Θ1,Θ2〉↓v =⇒ (I1 ∧ ¬〈Θ1,Θ2〉↓v) ∨ (I2 ∧ ¬〈Θ1,Θ2〉↓v) =⇒
=⇒ I ′1 ∨ I ′2

Res-b-b′. This case is almost identical to the previous one. Again, as both pivots
have label b in both labeling functions, they are filtered out, so 〈p〉↓v1 ↔ 〈p̄〉↓v2 ↔
>. As supremum rule is used in Res-b, Lemma 3.7 yields that ¬〈Θ1〉↓v →
¬〈Θ1〉↓v1 and ¬〈Θ2〉↓v → ¬〈Θ2〉↓v2 hold in this case, too. As a result, the same
auxiliary implications as in the previous case hold. Together, we get the invariant

σ |= (I1 ∧ I2) ∧ ¬〈Θ1,Θ2〉↓v =⇒ (I1 ∧ ¬〈Θ1,Θ2〉↓v) ∧ (I2 ∧ ¬〈Θ1,Θ2〉↓v) =⇒
=⇒ I ′1 ∧ I ′2

30

Res-ab-ab′. Note the regardless of vertex or labeling, it always holds that p→
¬〈p̄〉↓, because the single literal is either filtered out, in which is the consequent
evaluates to >, or is not filtered out, in which case the consequent evaluates to
p. By the same reasoning p̄→ ¬〈p〉↓ also holds.

The following auxiliary implications are needed in the proof of the invariant:

σ |= I1 ∧ ¬〈Θ1,Θ2〉↓v =⇒ p ∨ (p̄ ∧ I1 ∧ ¬〈Θ1,Θ2〉↓v)
=⇒ p ∨ (¬〈p〉↓v1 ∧ I1 ∧ ¬〈Θ1〉↓v1)
=⇒ p ∨ I1

′

σ |= I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ p̄ ∨ (p ∧ I2 ∧ ¬〈Θ1,Θ2〉↓v)
=⇒ p̄ ∨ (¬〈p̄〉↓v2 ∧ I2 ∧ ¬〈Θ2〉↓v2)
=⇒ p̄ ∨ I2

′

The first implication is a simple logical consequence, the second implication com-
bines the observation from the beginning of this case and Lemma 3.7, the third
implication is an application of the induction hypothesis. Note that the only
assumptions needed to prove these auxiliary implications are the assumptions of
Lemma 3.7. We will make use of it when analyzing the other cases.

Note that the assumption of the invariant we are trying to prove can be
rewritten as three possibilities using the logical equivalence

(p ∨ I1) ∧ (p̄ ∨ I2)⇐⇒ (p ∧ I2) ∨ (p̄ ∧ I1) ∨ (I1 ∧ I2).

All three possibilities lead to the required result:

σ |= p ∧ I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ p ∧ (p̄ ∨ I ′2) =⇒ (p ∨ I ′1) ∧ (p̄ ∨ I ′2)

σ |= p̄ ∧ I1 ∧ ¬〈Θ1,Θ2〉↓v =⇒ p̄ ∧ (p ∨ I ′1) =⇒ (p ∨ I ′1) ∧ (p̄ ∨ I ′2)

σ |= I1 ∧ I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ (p ∨ I ′1) ∧ (p̄ ∨ I ′2)

The required invariant σ |= (p∨I1)∧ (p̄∨I2)∧¬〈Θ1,Θ2〉↓v =⇒ (p∨I1)∧ (p̄∨I ′2)
have thus been proved. Remember that the only assumptions actually needed to
prove this were the assumptions of Lemma 3.7. Everything else was just logical
derivations or the induction hypothesis.

Res-b-ab′, Res-b-a′, Res-ab-a′. All of these cases can be covered together using
the implication we have derived at the end of the previous case, because the
following is true:

σ |= I1 ∧ I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ (p ∨ I1) ∧ (p̄ ∨ I2) ∧ ¬〈Θ1,Θ2〉↓v
=⇒ (p ∨ I ′1) ∧ (p̄ ∨ I ′2)

=⇒ I ′1 ∨ I ′2.

The first and third implications are just logical tautologies. The second impli-
cation holds, because in each of these three cases, the supremum rule is used to
propagate labels, so Lemma 3.7 is applicable.

31

Res-d+-d′+. Assume that Lab(p, v1) = d+, the case when the second pivot is
satisfied is symmetric. As Lab is locality-preserving, σ |= p. Therefore, it holds
that σ |= ¬〈p̄〉↓v2 ↔ >, because ¬〈p̄〉↓v2 is either > or p, depending on whether
it is filtered out or not, but in both cases it is equivalent to > under σ.

Moreover, ¬〈Θ2〉↓v → ¬〈Θ2〉↓v2 . To see this, consider l ∈ 〈Θ2〉↓v2 . Then
Lab(l, v2) 6= a∧Lab(l, v2) 6= g∧Lab′(l, v2) 6= b∧Lab′(l, v2) 6= g. For both labeling
functions the label of l in v is the supremum of l in v2 and some other label.
Since for both sets {a, g} and {b, g} it holds that if c ∈ M and c = c1 t c2

then c1 ∈ M ∧ c2 ∈ M for M = {a, g} or M = {b, g}. As a result, Lab(l, v) 6=
a ∧ Lab(l, v) 6= g ∧ Lab′(l, v) 6= b ∧ Lab′(l, v) 6= g, so l ∈ 〈Θ2〉↓v. Combined
together with the induction hypothesis, the required invariant is obtained:

σ |= I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I2 ∧ ¬〈p̄,Θ2〉↓v2 =⇒ I ′2

Res-g-g′. The argument is similar to the previous case. Assume that Lab(p̄) = g
and the branch of the positive pivot has been cut off, the other case is symmetric.
From the definition of the filter we see that ¬〈p̄〉↓v2 ↔ >, because literals with
label g are filtered out. Moreover, ¬〈Θ2〉↓v → ¬〈Θ2〉↓v2 . This can be proved
using the same reasoning as in the previous case. Combined together we the
induction hypothesis, the required invariant is obtained:

σ |= I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I2 ∧ ¬〈p̄,Θ2〉↓v2 =⇒ I ′2

We covered all the possible cases, therefore, the invariant holds for every
vertex in the refutation tree. The invariant in the sink gives us the required
result σ |= I → I ′.

Theorem 3.9 (Interpolant strength – different assignments). Let (A,B) be an
unsatisfiable pair of sets of NNF formulas. Let ρ be a refutation tree for (Â, B̂)
and let σ and σ′ be partial variable assignments. Let Lab be locality-preserving la-
beling functions with restricted propagation for (A,B, σ, ρ) and let Lab′ be locality-
preserving labeling functions with restricted propagation for (A,B, σ′, ρ). Let I
and I ′ be the interpolants computed by SALIS for Lab and Lab′, respectively.
Moreover, assume that if Lab and Lab′ both cut off a branch at some vertex, they
agree on which branch is cut off. If Lab � Lab′ then σ, σ′ |= I → I ′.

Proof. First notice that if σ and σ′ disagree on some variable, i.e. there is a literal
l such that σ |= l and σ′ |= l̄ then σ, σ′ |= ⊥ and the claim of the theorem is
trivially satisfied. Thus, for the rest of the proof we assume the assignments do
not disagree. We proceed as in the proof of Theorem 3.8. We show by structural
induction that for each vertex v in the refutation tree, the following invariant
holds:

σ, σ′ |= Iv ∧ ¬〈Θ〉↓v → I ′v,

where Iv, I
′
v are the partial interpolants computed for v by Lab and Lab′, respec-

tively, and 〈Θ〉 is the clause of vertex v.

Leaves. Note that the division of the clauses to A and B part is the same for
both labeling functions. Suppose that 〈Θ〉 as a clause for some leaf in ρ. The
cases when Lab and Lab′ agree on whether 〈Θ〉 is satisfied or not were already

32

covered in the proof of Theorem 3.8. The only difference is that here different
assignment filters are applied, but that is not a problem because both assignments
are assumptions of the invariant. We discuss the cases when they do not agree:

• Hyp-Aσ̄-Aσ′ , Hyp-Bσ̄-Bσ′ : In this case I ′v = > so the invariant is trivially
satisfied.

• Hyp-Aσ-Aσ̄′ , Hyp-Bσ-Bσ̄′ : We show that in this case σ, σ′ |= ¬〈Θ〉↓v → ⊥,
which is enough to ensure that the invariant holds. Since 〈Θ〉 is satisfied
by σ, it follows that there is a literal l in Θ which is satisfied under σ,
therefore Lab(l, v) = d+. From the assumption that Lab � Lab′ we have
that Lab′(l, v) 6= b. As there are no g labels in leaves, it follows that l is
preserved by the filter ↓v. Consequently, ¬〈Θ〉↓v → ¬l. As l is true under
σ, we have that σ |= ¬〈Θ〉↓v → l ∧ ¬l.

Inner vertices. Let v be an inner vertex such that v1 is its positive predecessor
with clause 〈p,Θ1〉 and v2 is its negative predecessor with clause 〈p̄,Θ2〉. From
the induction hypothesis we have that the invariant holds in the predecessors:

σ, σ′ |= I1 ∧ ¬〈p,Θ1〉↓v1 → I ′1
σ, σ′ |= I2 ∧ ¬〈p̄,Θ2〉↓v2 → I ′2

As in the proof of Theorem 3.8 we discuss the possible resolutions in v for both
Lab and Lab′. The same combinations as before are forbidden by the strength
restriction. Moreover, the proves of other cases where there is no d+ or g, such as
Res-ab-ab′, are still valid in current situation, since those proofs did not depend
on the partial assignment. We go through the cases where at least one resolution
is of type Res-d+ or Res-g:

Res-d+-d′+. We assumed at the beginning that the assignments do not disagree
on any variable. Therefore, the labeling functions agree which pivot is satisfied
and consequently, which branch is cut off. As a result, the same reasoning as in
the proof of Theorem 3.8 applies here.

Res-d+-ab′, Res-d+-a′. Suppose that the positive pivot is satisfied, σ |= p, the
other case is symmetric. First, we prove that

σ, σ′ |= I2 ∧ ¬〈Θ1,Θ2〉↓v → I ′2.

Note that by the argument we have made before it holds that σ |= ¬〈p̄〉↓v2
and also that |= ¬〈θ2〉↓v → ¬〈θ2〉↓v2 . The first claim is due to the fact that
|= p→ ¬〈p̄〉↓v2 . The second claim holds because if l ∈ 〈θ2〉↓v2 then Lab(l, v2) 6= a,
Lab(l, v2) 6= g, Lab′(l, v2) 6= b and Lab′(l, v2) 6= g. According to the rules of
propagating labels, in each case from Res-ab, Res-a and Res-d+ the label of l in
v is determined as a supremum of label l in v2 and some other label. As we have
proved before, if l does not have either a or g assigned by Lab in v2, it cannot
have a nor g in v. Similarly for the pair b, g and Lab′. As a result, Lab(l, v) 6= a,
Lab(l, v) 6= g, Lab′(l, v) 6= b and Lab′(l, v) 6= g, so l ∈ 〈θ2〉↓v.

33

Combining these claims with the induction hypothesis, we get that

σ, σ′ |= I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I2 ∧ ¬〈p̄,Θ2〉↓v =⇒ I ′2.

The invariant for Res-d+-a′ follows from the logical tautology |= I ′2 → I ′1 ∨ I ′2.
which is enough to prove the invariant for v. The invariant for Res-d+-ab′ follows
from the fact that σ |= I ′2 ⇐⇒ (p ∨ I ′1) ∧ (p̄ ∨ I ′2) because σ |= p.

Res-ab-d′+, Res-b-d′+. This case is almost identical to the previous one. Sup-
pose that the positive pivot is satisfied, σ′ |= p, the other case is symmetric. First,
the same reasoning as in the previous case can be used to prove that

σ, σ′ |= I2 ∧ ¬〈Θ1,Θ2〉↓v → I ′2.

The invariant for Res-b-d′+ follows from the logical tautology |= I1∧I2 → I2. The
invariant for Res-ab-d′+ follows from the fact that σ′ |= I2 ⇐⇒ (p ∨ I1) ∧ (p̄ ∨ I2)
because σ′ |= p.

Res-g-g′. If Lab and Lab′ agree on which branch is cut off, then the same
reasoning as in the proof of Theorem 3.8 can be used. The case when the la-
beling functions disagree on which branch is cut off is explicitly forbidden in the
assumptions of this theorem.

Res-g-ab′, Res-g-d′+, Res-ab-g′, Res-d+-g′ These cases cannot occur when a
restricted propagation is used for both labeling functions, because only encoding
variables can then obtain label g. Since these are not assigned by the assignments
and they are always local to either A part or to B part, no literal with variable
that is an encoding variable can have label d+ or ab.

Res-b-g′ Suppose that the positive pivot has label g and the negative branch is
cut off. The other case is symmetric. We want to show that

σ, σ′ |= I1 ∧ I2 ∧ ¬〈Θ1,Θ2〉↓v → I ′1.

First, notice that � ¬〈p〉↓v1 ⇔ > because Lab(v1, p) = g, so the literal is
filtered out. Then, we can prove that � ¬〈θ1〉↓v → ¬〈θ1〉↓v1 by now already
familiar argument. If l ∈ 〈θ1〉↓v1 then Lab(l, v1) 6= a, Lab(l, v1) 6= g, Lab′(l, v1) 6=
b and Lab′(l, v1) 6= g. According to the rules of propagating labels, the label for
l in v is determined as supremum of label l in v1 and some other label, for both
labeling functions. However, if the label in v1 is not a or g then the label in v
also cannot be a nor g. Similarly for the pair b and g. As a result, l ∈ 〈θ1〉↓v.

Combining these claims with the induction hypothesis, we obtain the invari-
ant:

σ, σ′ |= I1 ∧ I2 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I1 ∧ ¬〈p,Θ1〉↓v1 =⇒ I ′1

Res-g-a′ This case is almost identical to the previous one. Suppose that the
positive pivot has label g and the negative branch is cut off. The other case is
symmetric. We want to show that

σ, σ′ |= I1 ∧ ¬〈Θ1,Θ2〉↓v → I ′1 ∨ I ′2.

34

Using the same reasoning as in the previous case, we obtain that � ¬〈p〉↓v1 ⇔ >
and that � ¬〈θ1〉↓v → ¬〈θ1〉↓v1 . Combining these claims with the induction
hypothesis, the required invariant is obtained:

σ, σ′ |= I1 ∧ ¬〈Θ1,Θ2〉↓v =⇒ I1 ∧ ¬〈p,Θ1〉↓v1 =⇒ I ′1 =⇒ I ′1 ∨ I ′2.

We covered all possible cases, hence we have shown that the invariant holds
for every vertex in the refutation tree. The invariant in the sink gives us the
required result σ, σ′ |= I → I ′.

3.3 Proof of path interpolation property

The goal is to show that given an unsatisfiable set of NNF formulas, its refutation
tree ρ and a division of the set into three parts A, S and B, the interpolants for
the division A, S∪B and for the division A∪S,B can be comparable under certain
conditions even for different partial assignments σ and σ′. Formally, for Lab a
structure-aware locality-preserving labeling function with restricted propagation
for (A, S∪B, σ, ρ) and Lab′ a structure-aware locality-preserving labeling function
with restricted propagation for (A ∪ S,B, σ′, ρ) we want to prove that σ, σ′ |=
I ∧ S → I ′ where I is the interpolant computed by SALIS for (Lab,A, S ∪ B, σ)
and I ′ is the interpolant computed by SALIS for (Lab′, A ∪ S,B, σ). The proof
is based entirely on the proof of the path interpolation property for LPAIS that
can be found in [?].

The proof is divided into three steps:

1. Extend assignment σ to σ ∪ σ′

2. Move S from B-part to A-part

3. Restrict assignment σ ∪ σ′ to σ′

3.3.1 Step 1 – extending assignment

Definition 3.10 (Extended-assignment labeling function). Let (A,B) be an un-
satisfiable pair of sets of NNF formulas. Let ρ be a refutation tree for (Â ∪ B̂)
and let π and σ be partial variable assignments such that σ is an extension of
π. Let Lab be a labeling function for (A,B, π, ρ). The extended-assignment la-
beling function Lab+

π→σ for Lab is defined as follows: ∀v ∈ Leaves(ρ) ∀l ∈ cl(v):
Lab+

π→σ(l, v) =

1. d+; if σ |= l

2. a; if var(l) is unassigned by σ and either Â−σ -local or Âσ̄-local

3. b; if var(l) is unassigned by σ and either B̂−σ -local or B̂σ̄-local

4. a; if var(l) is unassigned, Â−σ B̂
−
σ -clean, not Âσ̄-local, not B̂σ̄-local and there

exists v′ ∈ Leaves and a literal l′ such that var(l′) = var(l) and Lab(l′, v′) ∈
{a, ab}

5. Lab(l, v) otherwise

35

Lemma 3.11. Let (A,B) be an unsatisfiable pair of sets of NNF formulas. Let ρ
be a refutation tree for (Â∪B̂) and let π and σ be partial variable assignments such
that σ is an extension of π. Let Lab be a structure-aware locality-preserving label-
ing function for (A,B, π, ρ). The extended-assignment labeling function Lab+

π→σ
for Lab is a structure-aware locality-preserving labeling function for (A,B, σ, ρ).

Proof. It is easy to see that the extended-assignment labeling function is defined
to be structure-aware locality-preserving. The only condition not immediately
satisfied is condition 3 of Definition 2.15, which is strictly stronger than condition
4 of Definition 2.4. If a literal is satisfied under σ, then it is labeled d+ due to
the alternative 1 of Definition 3.10. Suppose that variable x is not satisfied by σ
and Â−σ B̂

−
σ -clean. The following situations are possible:

• Variable x is also Âσ̄-local. Then it is consistently labeled a due to the
alternative 2 of Definition 3.10.

• Variable x is also B̂σ̄-local. Then it is consistently labeled b due to the
alternative 3 of Definition 3.10.

• Variable x is not Âσ̄-local, nor B̂σ̄-local. If it is consistently labeled b in
all leaves by Lab, then the alternative 5 of Definition 3.10 applies to x and
x is consistently labeled b by Lab+

π→σ. Otherwise there is some vertex v
and literal l with var(l) = x such that Lab+

π→σ(l, v) ∈ {a, ab}. In this case
alternative 4 of Definition 3.10 applies to x and x is consistently labeled a.

Thus, even condition 3 of Definition 2.15 is satisfied.

Note that whether or not a labeling function is structure-aware locality-
preserving depends only on labeling the leaves, not on the propagation of labels
in inner vertices. Thus, extended-assignment labeling function is structure-aware
locality-preserving even if full propagation is used. However, to prove further
properties, the restricted propagation is necessary.

Lemma 3.12. Let (A,B) be an unsatisfiable pair of sets of NNF formulas. Let
ρ be a refutation tree for (Â∪ B̂) and let π and σ be partial variable assignments
such that σ is an extension of π. Let Lab and Lab′ be structure-aware locality-
preserving labeling functions with restricted propagation for (A,B, π, ρ) and for
(A,B, σ, ρ), respectively. Let Lab+

π→σ be the extended-assignment labeling function
for Lab with restricted propagation.

If Lab �L Lab′ then Lab+
π→σ � Lab′.

Proof. By Corollary 3.5 it is enough to show that Lab+
π→σ �L Lab′. For a contra-

diction assume that there exist a vertex v and a literal l such that Lab+
π→σ(l, v) 6�

Lab′(l, v). We analyze which alternative of Definition 3.10 could have been used
to set the value of Lab+

π→σ(l, v):

1. If the first alternative is used then σ |= l, so Lab′(l, v) = d+ = Lab+
π→σ(l, v)

because Lab′ is structure-aware locality-preserving.

2. If the second alternative is used then var(l) is unassigned and Â−σ -local or
Âσ̄-local, so Lab′(l, v) = a = Lab+

π→σ(l, v) because Lab′ is structure-aware
locality-preserving.

36

3. If the third alternative is used then var(l) is unassigned and B̂−σ -local or
B̂σ̄-local, so Lab′(l, v) = b = Lab+

π→σ(l, v) because Lab′ is structure-aware
locality-preserving.

4. If the fourth alternative is used then var(l) is unassigned and Â−σ B̂
−
σ -clean

and not Âσ̄-local or B̂σ̄-local, so Lab′ labels it consistently a or b. Moreover
there exists v′, l′ such that var(l) = var(l′) and Lab(l′, v′) ∈ {a, ab}. Since
Lab �L Lab′, Lab′(l′, v′) = a and also Lab′(l, v) = a = Lab+

π→σ(l, v).

5. If the fifth alternative is used then Lab+
π→σ(l, v) = Lab(l, v) � Lab′(l, v).

As a result, no alternative could be used to get that Lab+
π→σ(l, v) 6� Lab′(l, v).

Therefore, Lab+
π→σ �L Lab′.

Lemma 3.13. Let (A,B) be an unsatisfiable pair of sets of NNF formulas. Let
ρ be a refutation tree for (Â∪ B̂) and let π and σ be partial variable assignments
such that σ is an extension of π. Let Lab be a structure-aware locality-preserving
labeling function with restricted propagation for (A,B, π, ρ) Let Lab+

π→σ be the
extended-labeling function for Lab with restricted propagation. If the following
holds:

• all newly σ-assigned variables (not assigned by π) have the strongest label
b assigned consistently in Lab and all occurrences of literals satisfied by σ
and not satisfied by π lie in the derivation trees of B,

• if Lab and Lab+
π→σ both cut off a branch at some vertex, they agree on which

branch is cut off,

then Lab � Lab+
π→σ.

Proof. First, we show that Lab �L Lab+
π→σ. For a contradiction assume that

there exist a vertex v and a literal l such that Lab(l, v) 6� Lab+
π→σ(l, v). We

analyze which alternative of Definition 3.10 could have been used to set the value
of Lab+

π→σ(l, v):

• If the first alternative is used then σ |= l, so Lab+
π→σ(l, v) = d+. Either

π |= l, in which case Lab(l, v) = d+ = Lab+
π→σ(l, v), or var(l) is newly

σ-assigned variable. According to the assumptions, var(l) is consistently
assigned the strongest label b by Lab.

• If the second alternative is used then the weakest label a is assigned to l
consistently by Lab+

π→σ.

• If the third alternative is used then Lab+
π→σ(l, v) = b and var(l) is either

B̂−σ -local or B̂σ̄-local. According to the assumptions, all literals satisfied by
σ and not satisfied by π lie in the derivation trees of B, so Â−σ = Â−π and
Âσ̄ = Âπ̄. As a result, all B̂−σ -local variables are already B̂−π -local and B̂σ̄-
local variables are already B̂π̄-local. Since Lab is structure-aware locality-
preserving labeling function and var(l) is unassigned by π and either B̂−π -
local or B̂π̄-local, we obtain that Lab(l, v) = b.

• If the fourth alternative is used then the weakest label a is assigned to l
consistently by Lab+

π→σ.

37

• If the fifth alternative is used then Lab(l, v) = Lab+
π→σ(l, v) by definition.

As a result, no alternative can violate the claim that Lab(l, v) � Lab+
π→σ(l, v), so

we have proved that Lab �L Lab+
π→σ. To conclude that Lab � Lab+

π→σ, notice
that Lemma 3.4 is applicable in this situation, because the first condition is
trivially satisfied (there are no variables assigned by π not assigned by σ), while
the other two conditions are among the assumptions of this lemma.

3.3.2 Step 2 – moving formulas

Definition 3.14 (Strongest successor labeling). Let (A, S,B) be an unsatisfiable
triple of sets of NNF formulas. Let ρ be a refutation tree for (Â∪ Ŝ∪B̂) and let σ
be a partial variable assignment. Let Lab be a labeling function for (A, S∪B, σ, ρ).
The strongest successor labeling LabS for Lab induced by S is defined as follows:
∀v ∈ Leaves(ρ) ∀l ∈ cl(v)

LabS(l, v) =

a if var(l) is unassigned and either (Â ∪ Ŝ)−σ -local

or (Â ∪ Ŝ)σ̄-local

Lab(l, v) otherwise

Lemma 3.15. Let (A, S,B) be an unsatisfiable triple of sets of NNF formu-
las. Let ρ be a refutation tree for (Â ∪ Ŝ ∪ B̂) and let σ be a partial variable
assignment. If Lab is a structure-aware locality-preserving labeling function for
(A, S ∪ B, σ, ρ), then LabS is a structure-aware locality-preserving labeling func-
tion for (A ∪ S,B, σ, ρ).

Proof. We go through the conditions on structure-aware locality-preserving:

• LabS(l, v) iff σ |= l. If LabS(l, v) = d+ then also LabS(l, v) = d+ (the second
alternative had to be used) and σ |= l follows because Lab is structure-aware
locality-preserving. On the other hand, if σ |= l then Lab(l, v) = d+ and
also LabS(l, v) = d+ because the second alternative is used for assigned
variables.

• If var(l) is unassigned and either (Â∪ Ŝ)−σ -local or (Â∪ Ŝ)σ̄-local then the
first alternative kicks in an LabS(l, v) = a.

• If var(l) is unassigned and either B̂−σ -local or B̂σ̄-local then the first alter-
native cannot be used, so LabS(l, v) = Lab(l, v). Since B̂−σ -locality implies
(Ŝ ∪ B̂)−σ -locality and B̂σ̄-locality implies (Ŝ ∪ B̂)σ̄-locality, Lab(l, v) = b
because Lab is structure-aware locality-preserving.

• If var(l) is unassigned and (Â ∪ Ŝ)−σ B̂
−
σ -clean then it is also Â−σ (Ŝ ∪ B̂)−σ -

clean. If var(l) is also (Â ∪ Ŝ)−σ local then it is consistently labeled a by
the first alternative. Otherwise the second alternative is used for all its
occurrences and the claim follows from the fact that Lab is structure-aware
locality-preserving.

Note that the definition of LabS and the proof that it is structure-aware
locality-preserving does not depend on whether a full or restricted propagation
is used for inner vertices. However, to prove further properties, the restricted
propagation is necessary.

38

Lemma 3.16. Let (A, S,B) be an unsatisfiable triple of sets of NNF formulas.
Let ρ be a refutation tree for (Â∪Ŝ∪B̂) and let σ be a partial variable assignment.
If Lab is a structure-aware locality-preserving labeling function with restricted
propagation for (A, S∪B, σ) and LabS is the strongest successor labeling function
for Lab induced by S with restricted propagation, then Lab � LabS.

Proof. From the definition, it is obvious that Lab �L LabS because LabS assigns
either the same label as Lab or the weakest label a. From Lemma 3.15 we have
that LabS is also structure-aware locality-preserving. Since the same assignment
is used by Lab and LabS Lemma 3.4 yields the required result Lab � LabS.

Lemma 3.17. Let (A, S,B) be an unsatisfiable triple of sets of NNF formulas.
Let ρ be a refutation tree for (Â∪Ŝ∪B̂) and let σ be a partial variable assignment.
Let Lab be a locality-preserving labeling function with restricted propagation for
(A, S ∪ B, σ), let LabS be the strongest successor labeling for Lab induced by S
with restricted propagation. Let I and I ′ be the interpolants computed by SALIS
for (A, S ∪B, σ, ρ, Lab) and (A ∪ S,B, σ, ρ, LabS), respectively. Then

σ |= I ∧ S → I ′.

Proof. We show by structural induction over the resolution proof that the follow-
ing invariant holds for every vertex v:

σ |= Iv ∧ Ŝ ∧ ¬〈Θ〉↓v → I ′v,

where 〈Θ〉 is the clause in the vertex v, ↓v is the weakened-labeling filter applied
in v, Iv and I ′v are partial interpolants computed by SALIS for vertex v using
labeling functions Lab and LabS, respectively.

Leaves. We distinguish cases depending on categorizing the clause 〈Θ〉. Note
that the set of satisfied clauses is the same for both labeling functions as the same
assignment is used.

• 〈Θ〉 is a satisfied clause. In this case I ′v = > and the invariant holds trivially.

• 〈Θ〉 ∈ Âσ̄. In this case Iv = 〈Θ〉[σ]|b,v,Lab and I ′v = 〈Θ〉[σ]|b,v,LabS Using the
same reasoning as in the proof of Theorem 3.8, we derive that

〈Θ〉|b,v,Lab ∧ ¬〈Θ〉↓v → 〈Θ〉|b,v,LabS ,

because if l ∈ 〈Θ〉|b,v,Lab then Lab(l) = b and either LabS(l) = Lab(l) = b,
in which case l ∈ 〈Θ〉|b,v,LabS , or LabS(l) = a in which case it is preserved
by the filter, so l ∈ 〈Θ〉↓v. As a result we get

〈Θ〉[σ]|b,v,Lab ∧ ¬〈Θ〉↓v → 〈Θ〉[σ]|b,v,LabS ,

because the same literals are filtered out by [σ] in the antecedent and in the
consequent. This claim is even stronger then the required invariant.

39

• 〈Θ〉 ∈ B̂σ̄. In this case Iv = ¬〈Θ〉[σ]|a,v,Lab and I ′v = ¬〈Θ〉[σ]|a,v,LabS Again
as in proof of Theorem 3.8,

¬〈Θ〉|a,v,Lab ∧ ¬〈Θ〉↓v → ¬〈Θ〉|a,v,LabS

can be derived. If l ∈ 〈Θ〉|a,v,LabS then LabS(l) = a and either Lab(l) = a,
in which case l ∈ 〈Θ〉|a,v,Lab, or Lab(l) 6= a in which case it is preserved by
the filter, so l ∈ 〈Θ〉↓v. It follows that every literal from the conjunction in
the consequent is already present in the conjunction in the antecedent. As
a result we get

¬〈Θ〉[σ]|a,v,Lab ∧ ¬〈Θ〉↓v → ¬〈Θ〉[σ]|a,v,LabS ,

because the same literals are filtered out by [σ] in the antecedent and in the
consequent. This claim is even stronger then the required invariant.

• 〈Θ〉 ∈ Ŝσ̄. This is the new case not seen in the proof of Theorem 3.8 where
the additional assumption Ŝ is used. In this case Iv = ¬〈Θ〉[σ]|a,v,Lab and
I ′v = 〈Θ〉[σ]|b,v,LabS . First, notice that the following implication is a logical
truth: 〈Θ〉 → 〈Θ〉|a,v,Lab ∨ 〈Θ〉|b,v,LabS ∨ 〈Θ〉↓v. For each literal l from Θ one
of the three possibilities must hold

– If Lab(l, v) = a then l ∈ 〈Θ〉|a,v,Lab.
– If LabS(l, v) = b then l ∈ 〈Θ〉|b,v,LabS .

– If Lab(l, v) 6= a and LabS(l, v) 6= b then l ∈ 〈Θ〉↓v follows from the
definition of ↓v (Definition 3.6) as there are no g labels in the leaves.

From this implication we can further derive that π |= 〈Θ〉 → 〈Θ〉[σ]|a,v,Lab∨
〈Θ〉[σ]|b,v,LabS∨〈Θ〉↓v, because 〈Θ〉 ∈ Ŝσ̄ implies there are no satisfied literals
in 〈Θ〉, so under σ the literals there are filtered out by [σ] evaluates to ⊥.
Since θ ∈ S we have everything we need to derive the invariant:

σ |= Iv ∧ Ŝ ∧ ¬〈Θ〉↓v =⇒ Iv ∧ 〈Θ〉 ∧ ¬〈Θ〉↓v =⇒
¬〈Θ〉[σ]|a,v,Lab ∧ (〈Θ〉[σ]|a,v,Lab ∨ 〈Θ〉[σ]|b,v,LabS ∨ 〈Θ〉↓v) ∧ ¬〈Θ〉↓v =⇒
〈Θ〉[σ]|b,v,LabS ≡ I ′v

This concludes the base case of the induction.

Inner vertices. Here, we should check all the possible combinations of reso-
lution types that could occur in an inner vertex. However, one can notice the
situation is very similar to the situation in the proof of Theorem 3.8. Indeed,
when checking that proof we see that in the inner vertices the distribution of the
clauses between the two parts does not play any role, only current labels of lit-
erals are important. There is only one thing where the situations differ and that
is the induction hypothesis (now there is an additional assumption Ŝ). In the
proofs, an additional assumption Ŝ is needed to apply the induction hypothesis
to predecessors. Fortunately, Ŝ is provided as an assumption of the invariant
in the child successor, so all the proofs are directly transferable to our current
situation.

40

As a consequence, the invariant holds in all vertices of the resolution proof.
The invariant of the sink gives us that σ |= I ∧ Ŝ → I ′. To conclude that
σ |= I ∧ S → I ′ reason as follows: Fix any assignment σ′ which extends σ and
satisfies I∧S. From the properties of the Tseitin’s encoding we know that there is
an assignment σ′′ such that it also extends σ, it agrees with σ′ on V ar(I)∪V ar(S)
and it satisfies I ∧ Ŝ (σ′′ just sets the right values to encoding variables of Ŝ). It
follows that σ′′ |= I ′. However, I ′ does not contain any encoding variables from
Ŝ, so σ′ |= I ′.

Lemma 3.18. Let (A, S,B) be an unsatisfiable triple of sets of NNF formulas.
Let ρ be a refutation tree for (Â∪Ŝ∪B̂) and let σ be a partial variable assignment.
Let Lab be a structure-aware locality-preserving labeling function with restricted
propagation for (A, S ∪B, σ), let LabS be the strongest successor labeling for Lab
induced by S with restricted propagation and let Lab′ be a structure-aware locality-
preserving labeling function for (A ∪ S,B, σ). If Lab �L Lab′ then LabS � Lab′.

Proof. First, we show that LabS �L Lab′. Consider a leaf v and a literal l ∈ cl(v).
We show that LabS(l, v) � Lab′(l, v). If the first alternative of Definition 3.14 was
used to label l in v, then var(l) is unassigned and either (Â∪Ŝ)−σ -local or (Â∪Ŝ)σ̄-
local. Since Lab′ is also structure-aware locality-preserving, it also assigns a to l
in v. If the second alternative is used then LabS(l, v) = Lab(l, v) � Lab′(l, v) by
the assumption of this lemma. Thus LabS �L Lab′.

Now, assumptions of Corollary 3.5 are satisfied, so we get that LabS � Lab′.

Theorem 3.19. Let (A, S,B) be an unsatisfiable triple of sets of NNF formulas.
Let ρ be a refutation tree for (Â∪Ŝ∪B̂) and let σ be a partial variable assignment.
Let Lab be a structure-aware locality-preserving labeling function with restricted
propagation for (A, S∪B, σ, ρ), let LabS be the strongest successor labeling for Lab
induced by S with restricted propagation and Lab′ be a structure-aware locality-
preserving labeling function with restricted propagation for (A ∪ S,B, σ, ρ). Let
I and I ′ be the interpolants computed by SALIS for (A, S ∪ B, σ, ρ, Lab) and
(A ∪ S,B, σ, ρ, Lab′), respectively. If Lab �L Lab′ then σ |= I ∧ S → I ′.

Proof. By Lemma 3.16 we have that Lab � LabS and by Lemma 3.18 we have
that LabS � Lab′. By Theorem 3.17 we get that σ |= I ∧S → IS where IS is the
interpolant produced by SALIS for LabS. Finally, by Theorem 3.8 we get that
σ |= IS → I ′. By chaining these implication we get that σ |= I ∧ S → I ′

3.3.3 Step 3 – restricting assignment

Definition 3.20 (Restricted-assignment labeling function). Let (A,B) be an
unsatisfiable pair of sets of NNF formulas. Let ρ be a refutation tree for (Â∪ B̂)
and let π and σ be partial variable assignments such that π is an extension
of σ. Let Lab be a labeling function for (A,B, π, ρ). The restricted-assignment
labeling function Lab−π→σ for Lab is defined as follows: ∀v ∈ Leaves(ρ) ∀l ∈ cl(v):
Lab−π→σ(l, v) =

1. ab; if π |= l, var(l) is unassigned by σ and Â−σ B̂
−
σ -shared

2. a; if var(l) is unassigned by σ and either Â−σ -local or Âσ̄-local

41

3. b; if var(l) is unassigned by σ and either B̂−σ -local or B̂σ̄-local

4. a; if var(l) is assigned by π unassigned by σ, Â−σ B̂
−
σ -clean, not Âσ̄-local, not

B̂σ̄-local and there exists v′ ∈ Leaves and a literal l′ such that var(l′) =
var(l) and Lab(l′, v′) ∈ {a, ab, d+}

5. Lab(l, v); otherwise

Lemma 3.21. Let (A,B) be an unsatisfiable pair of sets of NNF formulas. Let ρ
be a refutation tree for (Â∪B̂) and let π and σ be partial variable assignments such
that π is an extension of σ. Let Lab be a structure-aware locality-preserving label-
ing function for (A,B, π, ρ). The restricted-assignment labeling function Lab−π→σ
for Lab is a structure-aware locality-preserving labeling function for (A,B, σ, ρ).

Proof. If a literal is satisfied under σ, then it is labeled d+ because it has the
same label in Lab−π→σ as in Lab and that is d+ because the literal is also satisfied
by π and Lab is locality-preserving. If a literal is falsified under σ, then it is not
labeled d+ because it has the same label in Lab−π→σ as in Lab and that is not d+

because the literal is also falsified by π and Lab is locality-preserving. For the
rest of the proof suppose that var(l) is not assigned by σ. We want to show that
Lab−π→σ(l, v) 6= d+. Suppose it is not true, so Lab−π→σ(l, v) = d+. Then the last
alternative was applied, so Lab(l, v) = d+ and this means that π |= l. Since the
first alternative was not applied, var(l) is not Â−σ B̂

−
σ -shared. Since the second

and third alternative was not applied, var(l) is not Â−σ -local nor B̂−σ -local. Since
the fourth alternative was not applied, var(l) is not Â−σ B̂

−
σ -clean, because there is

a vertex, namely v, where l is assigned d+ by Lab. We have run out of categories
for var(l) which means the original assumption that Lab−π→σ(l, v) = d+ was false.
Thus we have covered the first condition of locality-preserving labeling function.

If var(l) is either Â−σ -local or Âσ̄-local then alternative 2 is applied and label
a is assigned as required by definition of structure-aware locality-preserving.

If var(l) is either B̂−σ -local or B̂σ̄-local then alternative 3 is applied and label
b is assigned as required by definition of structure-aware locality-preserving.

If var(l) is Â−σ B̂
−
σ -clean, we need to show that it is consistently labeled a

or b. Note that the first alternative does not apply in this case. If the second,
third, or fourth alternative is used, then the requirement is met. Suppose the last
alternative was used. If var(l) is not assigned by π then it is also Â−π B̂

−
π -clean

because π is an extension of σ. As Lab is structure-aware locality-preserving, it
follows that it is consistently labeled a or b by Lab, and thus also by Lab−π→σ. If
it is assigned by π then Lab labels it consistently b because the fourth alternative
was not used. So it is also labeled consistently b by Lab−π→σ.

Note again that whether or not a labeling function is structure-aware locality-
preserving depends only on labeling the leaves, not on the propagation of labels in
inner vertices. Thus, restricted-assignment labeling function is structure-aware
locality-preserving even if full propagation is used. However, to prove further
properties, the restricted propagation is necessary.

Lemma 3.22. Let (A,B) be an unsatisfiable pair of sets of NNF formulas. Let
ρ be a refutation tree for (Â∪ B̂) and let π and σ be partial variable assignments
such that π is an extension of σ. Let Lab and Lab′ be structure-aware locality-
preserving labeling functions with restricted propagation for (A,B, π, ρ) and for

42

(A,B, σ, ρ), respectively. Let Lab−π→σ be the restricted-assignment labeling func-
tion for Lab with restricted propagation. If Lab �L Lab′ then Lab−π→σ � Lab′.

Proof. By Corollary 3.5 it is enough to show that Lab−π→σ �L Lab′. For contra-
diction assume that there exist a vertex v and a literal l such that Lab−π→σ(l, v) 6�
Lab′(l, v). We analyze which alternative of Definition 3.20 could have been used
to set the value of Lab−π→σ(l, v):

1. If the first alternative is used then Lab−π→σ(l, v) = ab and π |= l, so
Lab(l, v) = d+. As Lab(v, l) � Lab′(v, l), we have that Lab−π→σ(l, v) =
ab ≈ d+ � Lab′(l, v).

2. If the second alternative is used then var(l) is unassigned by σ and Â−σ -local
or Âσ̄-local, so Lab′(l, v) = a = Lab−π→σ(l, v) because Lab′ is structure-aware
locality-preserving.

3. If the third alternative is used then var(l) is unassigned by σ and B̂−σ -local
or B̂σ̄-local, so Lab′(l, v) = b = Lab−π→σ(l, v) because Lab′ is structure-aware
locality-preserving.

4. If the fourth alternative is used then var(l) is unassigned by σ and Â−σ B̂
−
σ -

clean so Lab′ labels it consistently a or b. Moreover there exist v′ and l′

such that var(l) = var(l′) and Lab(l′, v′) ∈ {a, ab, d+}. Since Lab �L Lab′,
Lab′(l′, v′) = a. As var(l) is consistently labeled by Lab′, Lab′(l, v) = a =
Lab+

π→σ(l, v).

5. If the fifth alternative is used then Lab−π→σ(l, v) = Lab(l, v) � Lab′(l, v).

As a result, no alternative could be used to get that Lab−π→σ(l, v) 6� Lab′(l, v).
Therefore, Lab−π→σ �L Lab′.

Lemma 3.23. Let (A,B) be an unsatisfiable pair of sets of NNF formulas. Let
ρ be a refutation tree for (Â∪ B̂) and let π and σ be partial variable assignments
such that π is an extension of σ. Let Lab be a structure-aware locality-preserving
labeling function with restricted propagation for (A,B, π, ρ) Let Lab−π→σ be the
restricted-labeling function for Lab with restricted propagation.

If the following holds:

• no variable assigned by π and not assigned by σ is B̂−σ -local or B̂σ̄-local,

• all occurrences of literals satisfied by π and not satisfied by σ lie in the
derivation trees from A,

• if Lab and Lab−π→σ both cut off a branch at some vertex, they agree on which
branch is cut off,

then Lab � Lab−π→σ.

Proof. First, we show that Lab �L Lab−π→σ. For contradiction assume that there
exist a vertex v and a literal l such that Lab(l, v) 6� Lab−π→σ(l, v). We analyze
which alternative of Definition 3.20 could have been used to set the value of
Lab−π→σ(l, v):

43

• If the first alternative is used then from π |= l and because Lab is locality-
preserving, we get that Lab(l, v) = d+ � ab = Lab−π→σ(l, v).

• If the second alternative is used then the weakest label a is assigned to l
consistently by Lab−π→σ.

• If the third alternative is used then Lab−π→σ(l, v) = b and var(l) is either B̂−σ -
local or B̂σ̄-local. According to the assumptions, var(l) is not assigned by
π. Since all literals satisfied by π and not satisfied by σ lie in the derivation
trees of A, it must hold that B̂−σ = B̂−π , B̂σ̄ = B̂π̄, Â−σ ⊇ Â−π and Âσ̄ ⊇ Âπ̄.
As a result, var(l) is either B̂−π -local or B̂π̄-local, so Lab(l, v) = b because
Lab is structure-aware locality-preserving.

• If the fourth alternative is used then the weakest label a is assigned to l
consistently by Lab−π→σ.

• If the fifth alternative is used then Lab(l, v) = Lab−π→σ(l, v) by definition.

As a result, no alternative can violate the claim that Lab(l, v) � Lab−π→σ(l, v), so
we have proved that Lab �L Lab−π→σ. To conclude that Lab � Lab−π→σ, notice
that Lemma 3.4 is applicable in this situation, because the second condition of the
lemma is trivially satisfied (there are no variables assigned by σ not assigned by
π), while the other two conditions are among the assumptions of this lemma.

3.3.4 Combining partial results

Lemma 3.24. Let (A, S,B) be an unsatisfiable triple of sets of NNF formulas.
Let ρ be a refutation tree for (Â ∪ Ŝ ∪ B̂) and let π and π′ be partial variable
assignments. Let Lab be a structure-aware locality-preserving labeling function
with restricted propagation for (A, S ∪ B, π) and let Lab′ be a structure-aware
locality-preserving labeling function with restricted propagation for (A∪ S,B, π′).
Assume σ = π ∪ π′ is a valid assignment (i.e. π and π′ are not contradictory
together), and that the following conditions hold:

• All occurrences of literals satisfied by π′ and not satisfied by π are in the
trees from S ∪B.

• All occurrences of literals satisfied by π and not satisfied by π′ are in the
trees from A ∪ S.

• Variables assigned by π′ and not assigned by π have the strongest label b
assigned by Lab.

• Variables assigned by π and not assigned by π′ are not B̂−σ -local nor B̂σ̄-local.

• If Lab and Lab′ both cut off a branch at some vertex of ρ then they agree
on which branch is cut off.

If Lab′ �L Lab then

Lab � Lab+
π→σ � LabSσ � Lab−σ→π′ � Lab′,

where Lab+
π→σ is the extended-assignment labeling function for Lab, LabSσ is the

strongest successor labeling function for Lab+
π→σ induced by S and Lab−σ→π′ is the

restricted-assignment labeling function for LabSσ .

44

Proof. We drop the assignments from notations of the labeling functions to sim-
plify them, because it should not cause any confusion.

Note that the assumptions of Lemma 3.23 and Lemma 3.13 are almost covered
by the assumptions of this lemma. We can cover the missing assumptions from
the assumption that Lab and Lab′ do not disagree on cutting a branch at any
vertex. From it we show that Lab and Lab+

π→σ do not disagree and that LabS

and Lab−π→σ do not disagree.
Suppose that Lab and Lab+

π→σ disagrees on which branch is cut off at some
vertex. Since σ is a valid extension of π and only encoding variables can have
label g, it follows that in case of Lab one pivot has label g while in case of Lab+

π→σ
both pivot have label g. It follows that the second pivot has label g due to π′, so
it has label g also when using Lab′. As a result, Lab and Lab′ would also disagree
on which branch to cut off at this vertex, which is forbidden. Similar reasoning
is used to show that also Lab and Lab′ do not disagree on cutting a branch at
any vertex.

As a result, by applying Lemmas 3.13, 3.16 and 3.23 every comparison except
for the last one is obtained:

Lab � Lab+ � LabS � Lab−

To prove the last comparison, we assume there is a vertex v and a literal l such
that Lab−(l, v) 6� Lab′(l, v). We go through the alternatives of Definition 3.20

• If the first alternative is used then Lab−(l, v) = ab. Moreover, σ |= l but
var(l) is unassigned by π′. As a result π |= l and Lab(v, l) = d+. Hence
Lab−(l, v) = ab ≈ d+ = Lab(l, v) � Lab′(l, v).

• If the second alternative is used then Lab−(l, v) = a and var(l) is either
Â−π′-local or Âπ̄′-local. Since Lab′ is structure-aware locality-preserving, we
have Lab′(l, v) = a

• If the third alternative is used then Lab−(l, v) = b which is the strongest
label.

• If the fourth alternative is used then Lab−(l, v) = a. This means that
var(l) is assigned by π and not assigned by π′ and Â−π′B̂

−
π′-clean. Since Lab′

is structure-aware locality-preserving, var(l) is consistently labeled a or b.
Since Lab−(l, v) 6� Lab′(l, v), it must be true that Lab′(l, v) = b. More-
over, from the fact that the fourth alternative is used, we have that there
exist a leaf v′ and a literal l′ such that var(l) = var(l′) and LabS(l′, v′) ∈
{a, ab, d+}. Since var(l) = var(l′) and Lab′ labels var(l) consistently we
get that Lab′(l′, v′) = b. Now consider the label of l′ at v′ for Lab. We know
that var(l′) is assigned by π. If π |= l′ then Lab(l′, v′) = d+ contradict-
ing the assumption that Lab(l′, v′) � Lab′(l′, v′). Finally, if π |= ¬l′ then
Lab(l′, v′) = Lab+(l′, v′) = LabS(l′, v′), because the last alternatives of Def-
initions 3.10 and 3.14 are used. Thus Lab(l′, v′) ∈ {a, ab, d+} contradicting
the assumption that Lab(l′, v′) � Lab′(l′, v′).

• If the last alternative is used then Lab−(l, v) = LabS(l, v).

45

Thus we have derived that if Lab−(l, v) 6� Lab′(l, v) then also LabS(l, v) 6�
Lab′(l, v). We continue with the analysis which alternative of Definition 3.14 is
used to label l in v:

• If the first alternative is used then LabS(l, v) = a and var(l) is either Â−σ -
local or Âσ̄-local. Since the literals satisfied by π and not satisfied by π′

occur only in the trees from A ∪ S, it follows that (Â ∪ Ŝ)−σ ⊆ (Â ∪ Ŝ)−π′ ,

(Â ∪ Ŝ)σ̄ ⊆ (Â ∪ Ŝ)π̄′ , B̂−σ = B̂−π′ and B̂σ̄ = B̂π̄′ . As a consequence, every

(Â∪Ŝ)−σ -local variable is also (Â∪Ŝ)−π′-local and every (Â∪Ŝ)σ̄-local variable

is also (Â ∪ Ŝ)π̄′-local. However, this means that var(l) is either (Â ∪ Ŝ)−π′-

local or (Â ∪ Ŝ)π̄′-local variable, but this contradicts our assumption that
the last alternative of Definition 3.20 and not the second one is used for
labeling Lab−(l, v).

• If the second alternative is used then LabS(l, v) = Lab+(l, v).

Thus we have derived that if LabS(l, v) 6� Lab′(l, v) then Lab+(l, v) 6� Lab′(l, v).
We continue with the analysis which alternative of Definition 3.10 is used to label
l in v:

• If the first alternative is used then Lab+(l, v) = d+ and σ |= l. Since
Lab+(l, v) 6� Lab′(l, v), it follows that Lab′(l, v) = b. If π |= l then
Lab(l, v) = d+ contradicting the assumption that Lab(l, v) � Lab′(l, v).
However, if π 2 l then π′ |= l, but this contradicts the fact that Lab′ is
structure-aware locality-preserving.

• If the second alternative is used then Lab+(l, v) = a and var(l) is either Â−σ -
local or Âσ̄-local. It is easy to see that then it is also either (Â∪Ŝ)−σ -local or
(Â∪ Ŝ)σ̄-local. By the argument shown above in the discussion of the alter-
native used to determine LabS(l, v), we get that var(l) is either (Â ∪ Ŝ)−π′-

local or (Â ∪ Ŝ)π̄′-local. Since Lab′ is structure-aware locality-preserving,
Lab′(l, v) = a, contradicting the assumption Lab+(l, v) 6� Lab′(l, v).

• If the third alternative is used then the strongest label b is assigned, con-
tradicting the assumption that Lab+(l, v) 6� Lab′(l, v).

• If the fourth alternative is used then Lab+(l, v) = a, x = var(l) is unas-
signed by σ, Â−σ B̂

−
σ -clean and there exist a leaf v′ and a literal l′ such that

var(l′) = x and Lab(l′, v′) ∈ a, ab. Let us consider the possible category of
x in (A ∪ S,B, π′).
It cannot be (Â ∪ Ŝ)−π′-local nor B̂−π′-local, because the last alternative was
used when considering the value of Lab−(l, v).

If it is (Â ∪ Ŝ)−π′B̂
−
π′-clean then it is consistently labeled a or b. Since

Lab+(l, v) 6� Lab′(l, v), it must, in fact, be consistently labeled b. However,
in this case we have that Lab′(l′, v′) = b and Lab(l′, v′) ∈ a, ab contradicting
the assumption that Lab � Lab′.

If it is (Â ∪ Ŝ)−π′B̂
−
π′-shared then especially x ∈ V ar(B̂−π′). However, we

know that B̂−π′ = B̂−σ because all literals satisfied by π and not satisfied by

π′ occur only in the trees from A ∪ S. Thus x ∈ V ar(B̂−σ), contradicting
the assumption that it is Â−σ B̂

−
σ -clean.

46

• If the last alternative is used then Lab+(l, v) = Lab(l, v), but this together
with the assumption that Lab+(l, v) 6� Lab′(l, v) contradicts the assumption
that Lab � Lab′.

We have exhausted all the possibilities, always reaching a contradiction, so
the original assumption Lab−(l, v) 6� Lab′(l, v) must be false. This means that
Lab− �L Lab′. By Corollary 3.5, Lab− � Lab′.

Theorem 3.25 (Path interpolation property – inductive step). Let (A, S,B)
be an unsatisfiable triple of sets of NNF formulas. Let ρ be a refutation tree for
(Â∪Ŝ∪B̂) and let π and π′ be partial variable assignments. Let Lab be a structure-
aware locality-preserving labeling function with restricted propagation for (A, S ∪
B, π) and let Lab′ be a structure-aware locality-preserving labeling function with
restricted propagation for (A ∪ S,B, π′). Let the interpolant computed by SALIS
for (A, S∪B, π, ρ, Lab) be denoted by I and let the interpolant computed by SALIS
for (A∪ S,B, π′, ρ, Lab′) be denoted by I ′. Assume the following conditions hold:

• All occurrences of literals satisfied by π′ and not satisfied by π are in the
trees from S ∪B.

• All occurrences of literals satisfied by π and not satisfied by π′ are in the
trees from A ∪ S.

• Variables assigned by π′ and not assigned by π have the strongest label b
assigned by Lab.

• Variables assigned by π and not assigned by π′ are not B̂−σ -local not B̂σ̄-local.

• If Lab and Lab′ both cut off a branch at some vertex of ρ then they agree
on which branch is cut off.

If Lab �L Lab′ then π, π′ |= I ∧ S → I ′.

Proof. If π and π′ are contradicting each other, then the claim holds trivially. So
suppose that σ = π ∪ π′ is a valid assignment. By Lemma 3.24 we have that

Lab � Lab+
π→σ � LabS � Lab−σ→π′ � Lab′,

where Lab+
π→σ is the extended-assignment labeling function for Lab, LabS is

the strongest successor for Lab+
π→σ induced by S and Lab−σ→π′ is the restricted-

assignment labeling function for LabS. Let the interpolants computed by Lab+
π→σ,

LabS, and Lab−σ→π′ be denoted by I+, IS, and I−, respectively. We get π, π′ |=
I → I+ by applying Theorem 3.9, π, π′ |= I+ ∧S → IS by applying Lemma 3.17,
π, π′ |= IS → I− by applying Theorem 3.9, and finally π′ |= I− → I ′ by applying
Theorem 3.8.

Together, the desired result is obtained:

π, π′ |= I ∧ S =⇒ I+ ∧ S =⇒ IS =⇒ I− =⇒ I ′

47

When we compare the assumptions of Theorem 3.25 with the assumptions for
the path interpolation property of LPAIS in [?], we see that ours imply theirs.
Moreover, with the exception of the last one, our assumptions are not that much
stronger. The last assumption deserves a little discussion. In general, we do
not know how to decide this condition solely from the given labeling functions,
without actually propagating all the labels. However, it is easy to see that if this
condition is violated then in at least one tree both assignments need to satisfy at
least one literal. So, if for each tree from A∪S∪B, at most one assignment satisfies
a literal from this tree, then the last assumption is satisfied. This assumption is
not in conflict with the intended usage as presented in [?], so SALIS can also be
used in the context of abstract reachability graphs.

48

4. Evaluation

Though a proper implementation of the proposed system is not a part of this
thesis, an experimental implementation of the unrestricted version of the system
has been written as a part of the PeRIPLO project [?]. However, this implemen-
tation has not been tested thoroughly yet, because it takes a long time to prepare
proper large inputs, often consisting of thousands and more variables.

Since LPAIS is also implemented in PeRIPLO, we were able to find a small
example to demonstrate our claim that if the input is given as a NNF formula
and Tseitin’s encoding is used to transform the input, SALIS can produce smaller
interpolants than LPAIS. More precisely, variables that should not be a part of
the subproblem given by a partial assignment applied to the input in its original
form, can appear in interpolants computed by LPAIS but not by SALIS. We
fed the following input to the solver: A = {a,¬a ∨ b ∨ c,¬b ∨ (d ∧ (e ∨ f))},
B = {¬e,¬d ∨ ¬f,¬c ∨ (g ∧ f ∧ (d ∨ e))}, with partial variable assignment
σ |= ¬b. Note that the input is not in CNF, so PeRIPLO encodes the input to
CNF using a very concise Tseitin’s encoding. The refutation proof together with
the partial interpolants as computed by these systems can be seen in Fig. 4.1 and
4.2. Encoding variables are visible, they are denoted by CNF xx xx. Leaves with
clauses from A-part of the problem are colored green while leaves with clauses
from B-part are colored red. Inner vertices are colored orange or gray depending
on whether or not their clause is a unit clause. The color of the edge represents
the label of the corresponding pivot: green for a, red for b, black for d+, blue for g.
Notice that the interpolant computed by SALIS has only one variable, while the
interpolant computed by LPAIS has four variables with five occurrences. It can
be easily verified that the interpolant computed by SALIS is indeed an interpolant
for the narrower subproblem (A[σ], B[σ]) while the other interpolant is not.

After this trivial example, we were able to do at least a quick test on a non-
trivial one. An unsatisfiable formula with 29 variables was chosen at random
from examples from a SAT competition. Then, 10 different partitions into the A
and B parts were generated and for each such a partition, 24 random variable
assignments (8 for assigning one, five, and twenty variables each) were generated.
The results are promising. The average size of the interpolants computed by
LPAIS was 370 occurrences of variables, while the average size of the interpolants
computed by unrestricted SALIS was 11 occurrences.

Even though this is in no way a proper evaluation of our approach, it shows
that SALIS has a potential to significantly reduce the size of computed inter-
polants.

49

c2 : +
c

c1 : f
c

(f)

c0 : !f
c

(f)

c24 : d
c

(d)

c17 : !f !d
true

(d)

c18 : !f !CNF_56_49
true

(d)

c8 : CNF_40_37
c

(CNF_40_37)

c4 : CNF_40_34
c

(CNF_40_37)

c25 : !CNF_40_37 d
d

(CNF_40_37)

c10 : b
c

(b)

c9 : !b CNF_40_37
true

(b)

c11 : b c
c

(c)

c12 : !c
true

(c)

c13 : !c CNF_56_53
true

(CNF_56_53)

c14 : !CNF_56_53
true

(CNF_56_53)

c21 : f !CNF_56_53
true

(f)

c20 : !f !CNF_56_53
true

(f)

c19 : CNF_56_49 !CNF_56_53
true

(CNF_56_49) (CNF_56_49)

c16 : d !CNF_56_49
true

(d)

c15 : e d !CNF_56_49
true

(e)

c6 : !e
true

(e)

(e)

c23 : a
false

(a)

c22 : !a b c
c

(a)

c5 : e f
c

(e)

(CNF_40_34)

c3 : !CNF_40_34 e f
(or e f)

(CNF_40_34)

c7 : CNF_40_34 !CNF_40_37
false

(CNF_40_37)

Figure 4.1: SALIS example

50

c2 : +
(and (or c (or e f)) (or c d))

c1 : f
(or c (or e f))

(f)

c0 : !f
(or c d)

(f)

c24 : d
(or c d)

(d)

c17 : !f !d
true

(d)

c18 : !f !CNF_56_49
true

(d)

c8 : CNF_40_37
c

(CNF_40_37)

c4 : CNF_40_34
c

(CNF_40_37)

c25 : !CNF_40_37 d
d

(CNF_40_37)

c10 : b
c

(b)

c9 : !b CNF_40_37
true

(b)

c11 : b c
c

(c)

c12 : !c
true

(c)

c13 : !c CNF_56_53
true

(CNF_56_53)

c14 : !CNF_56_53
true

(CNF_56_53)

c21 : f !CNF_56_53
true

(f)

c20 : !f !CNF_56_53
true

(f)

c19 : CNF_56_49 !CNF_56_53
true

(CNF_56_49) (CNF_56_49)

c16 : d !CNF_56_49
true

(d)

c15 : e d !CNF_56_49
true

(e)

c6 : !e
true

(e)

(e)

c23 : a
false

(a)

c22 : !a b c
c

(a)

c5 : e f
(or c (or e f))

(e)

(CNF_40_34)

c3 : !CNF_40_34 e f
(or e f)

(CNF_40_34)

c7 : CNF_40_34 !CNF_40_37
false

(CNF_40_37)

Figure 4.2: LPAIS example

51

5. Conclusion

In this thesis we have examined the computation of interpolants in the presence
of partial variable assignments. Partial variable assignments were introduced to
the computation of interpolants in [?], where it was shown that, in the context
of abstract reachability graph, partial variable assignments can be employed in
computing node interpolants, where they can not only reduce the size of computed
interpolants, but also effectively solve the problem of out-of-scope variables.

We showed that if Tseitin’s encoding is used to encode input to a set of clauses,
then LPAIS does not exploit given partial assignment as much as it could. Since
Tseitin’s encoding is the standard way of encoding input to a set of clauses, this
represented a possibility of significant improvement of the system. We presented a
modification of the framework of LPAIS to address this issue and formalized it in
the form of a new framework of structure-aware labeled interpolation systems. We
proved it computes correct interpolants and also that the computed interpolants
provably contain only variables common to both parts of the subproblem defined
by a partial assignment even if Tseitin’s encoding is applied to the input. Then
we focused on the path interpolation property where we showed that additional
restrictions are needed to prove the property. We successfully showed restrictions
such that they do not break the correctness of the system, yet they are strong
enough to prove the path interpolation property under conditions that do not
prevent its intended use in the context of abstract reachability graph. Although
the system has not been tested thoroughly yet, first tests indicates that the
reduction of size of computed interpolants could be substantial.

Future work

The main task for the near future is to implement the proposed system, both the
restricted and the unrestricted version, properly and to test the implementation
thoroughly.

From the theoretical point of view, we laid some constraints on Tseitin’s
encoding to be used, which we have used to simplify the proofs. We would
like to lift these constraints and to prove the correctness of the system even if
Tseitin’s encoding is optimized, for example by allowing a single encoding variable
for multiple conjunctions or multiple disjunctions, or by using single encoding
variable for multiple occurrences of the same subformula. We think the first
one should be straightforward, but that the second one would demand that the
labeling function always assigns the label of its clause (a or b depending on to
which part the clause belongs to) to the literal with an encoding variable.

One possible direction of future work is to try to join interpolation with partial
assignment and interpolation for theories for first order logic such as linear integer
arithmetic.

52

List of Definitions

1.1 Definition (Derivation tree) . 4
1.2 Definition (Resolution tree) . 5
1.3 Definition (Refutation tree) . 5
1.4 Definition (Parent edge, child edge, incident edge) 6
1.5 Definition (Mapping edges to clauses) 6
1.7 Definition (Satisfied node) . 7
1.8 Definition (Branch in a refutation tree) 7

2.1 Definition (Labeling function) . 9
2.2 Definition (Resolution types and propagating labels) 9
2.4 Definition (Locality-preserving labeling [?]) 11
2.5 Definition (Clause filters [?]) . 12
2.6 Definition (Structure-aware Labeled Interpolation System) 12
2.9 Definition (Cutting resolution) . 16
2.15 Definition (Structure-aware locality-preserving labeling) 21

3.1 Definition (Labeling with restricted propagation) 25
3.6 Definition (Weakened-labeling filter) 28
3.10 Definition (Extended-assignment labeling function) 35
3.14 Definition (Strongest successor labeling) 38
3.20 Definition (Restricted-assignment labeling function) 41

53

	Introduction
	Preliminaries
	Structure-aware labeled interpolation system
	Introducing new label
	Locality-preserving labeling functions
	Relation between derivation and refutation tree

	Path interpolation property
	Modified version of SALIS
	Strength
	Proof of path interpolation property
	Step 1 – extending assignment
	Step 2 – moving formulas
	Step 3 – restricting assignment
	Combining partial results

	Evaluation
	Conclusion

