CoCoME in Fractal

Lubomir Bulef?, Toméas Bure®, Thierry Coupay& Martin Décky",
Pavel Jezek Pavel Parizei Frantisek Plasif, Tomas Poch
Nicolas Rivierré, Ondej Sery, Petr ima

'Department of Software Engineering
Faculty of Mathematics and Physics, Charles Unitxers
Malostranské nasti 25, Prague 1, 11800, Czech Republic
{lubomir.bulej, tomas.bures, martin.decky, pavelgk, pavel.parizek,
frantisek.plasil, tomas.poch, ondrej.sery, petrap@dsrg.mff.cuni.cz

2Institute of Computer Science, Academy of Scierufehe Czech Republic
Pod Vodarenskowi, Prague 8, 18000, CzechRepublic
{bulej, bures, plasil}@cs.cas.cz

SFrance Telecom R&D
Issy les Moulineaux, France
{thierry.coupaye, nicolas.rivierre}@orange-ftgroagpm

This chapter presents our solution to the CoCoMdtgasnent that is based on
the Fractal component model. The solution involiiesiodeling architecture in
Fractal ADL, (ii) specification of component behawviia behavior protocols,
(i) checking compatibility of components, (iv) nécation of correspondence
between component code and behavior specificatemd (v) run-time
monitoring of non-functional properties. Among tissues we have faced was
the need to modify the architecture - the compohésiarchy was reorganized
in order to improve clarity of the design and therarchical bus was split into
two independent buses. These were modeled by pramibomponents, since
Fractal does not support message bus as a fisg-elatity. Since the CoCoME
assignment does not include a complete UML behaspecification (e.g. via
activity diagrams and state charts), behavior paitofor all the components
are based on the provided plain-English use cafes, UML sequence
diagrams, and the reference Java implementation.

1 Introduction

1.1 Goalsand scope of the component model

Fractal [4] is a classical component model withaapis stemming from Darwin [19].
It supports components as first-class conceptsadiodis their hierarchical nesting.

* This work was partially supported by the Czech daray of Sciences project 1ET400300504
and its results will be used in the ITEA/EUREKA jact OSIRISE!12023.

2 Lubomir Bulej et al.

Since first published in 2002, Fractal has gainégnéion of the professional
community and become quite popular; it is one efkly projects hosted by the OW2
Consortium and it has been often used as the core platforrotfeer OW2 projects.
Annual Fractal workshops take place collocated witarnational conferences.

Fractal aims at providing support for modeling #tedent levels of abstraction. It
focuses not only on the design of an applicatiom, ib also provides tools and
environment for development, deployment, and ruetiffractal also tries to address
the limitations in extensibility and adaptation,iefhare often found in other run-time
supporting component systems (e.g., EJB [30], C28},[or .Net [22]). By providing
an open set of control capabilities, Fractal allamustomizing the component model
with regard to the target platform (e.g. to loweemory footprint of an embedded
mobile application by excluding reflection capaiek and lifecycle management).

In Fractal, a component is both design and runtmity with explicit provided
and required interfaces. Each component consistsvof parts: acontent that is
responsible for application functionality (i.e. ilaments the component’s frame), and
a membrane, which contains a set of controllers that implemeann-functional
aspects. For the purpose of composition, all coraptmare defined by theframe
andarchitecture. A frame is formed by external interfaces of a pament, while an
architecture defines the internal structure of tloenponent, i.e. its subcomponents
and their composition (via binding of interfaceSemantics of the composition is
defined via behavior protocols (a specific procesgebra); Fractal also supports
divide and conquer via interface specification.

Component behavior is specified using behavior quois (BP) that allow to
model and verify the behavior compliance. The veation tools can verify (i) the
composition correctness (both horizontal and valtiovith respect to behavior
specification (in BP) independently of the implenaion, and (ii) the relation
between the model (in BP) and implementation (iraja

Deployment description is not a part of the ardattitee and behavior specification.

1.2 Modeled cutout of CoCoME

We model all aspects of the CoCoME example withetkeeption of extra-functional

properties, which were not modeled but were moadaat runtime. In the process of
modeling the example in Fractal, we modified theioal architecture in order to

improve clarity of the design and to cope with liaions of Fractal. In particular, the

hierarchical bus was split into two independent dsushat were modeled via
components, since Fractal does not support medszmgs. We verify correctness of
composition (i.e. behavior compliance) with respecbehavior for all components,

and correspondence of code to behavior specificdtio primitive components (our

approach allows modeling only such behavior thég & regular language); the
verification tools are based on the BP checker 3mdh PathFinder. Performance of
components was monitored via a custom controller.

1 OW2 Consortium is an international community oéogsource middleware developers.

CoCoME in Fractal 3

1.3 Ben€fit of the modeling

The two major benefits of our approach to modeliag: (i) verification of
composition correctness with respect to behaviecigation, and (i) verification of
correspondence between code and behavior speificaDther benefits include
generation of code skeletons from the model andmgnmonitoring.

Usage of Fractal with behavior protocols and vesifion tools is quite easy;
learning curves of both Fractal and behavior prot®are short and both can be used
in a matter of days.

1.4 Effort and lessonslear ned

We have needed approximately 10 person-months tiehibe CoCoME example in
its entirety (we treat nearly all aspects of tharaple). As detailed further in the text,
the lessons learned include detailed understanafirtbe limits that our architecture
model and behavior specification has, especiallyereh support for legacy
technologies that do not fit the model frameworkascerned.

15 Structureof the chapter

The rest of this paper is organized as follows. tS&cintroduces the Fractal
component model and its behavior protocol extensBertt. 3 presents our solution
for the CoCoME assignment using Fractal. Sect.eégmts automated transformation
from FractalADL to code skeletons, which signifidgn helps during the
implementation process. In Sect. 5, the analytichgues for verification of
behavior compliance of components are presentedSect. 6, the available tools
supporting the verification are then summarized aocbmpanied with results of our
experiments.

2 Component Model

Fractal is specified as a platform independent aomept model. The specification
(now in version 2.0) [5] defines the key concept&mctal and their relations. It also
defines controlling (management) functionality ofgonents to be implemented by
component controllers (Sect. 2.1). Controllers sewr.g., for creating components,
their reconfiguration, lifecycle management; theeifaces of controllers are defined
in pseudo IDL with mapping to Java, C and CORBA IDL

The platform independent specification of Fractas bbeen reified by a number of
implementations. To the most important ones beltuia [4] (a Java implementation
with support for mobile devices), AOKell [28] (avdaimplementation employing
aspect oriented programming), and FractNet [7N@&T. implementation). Moreover,
there are Fractal implementations aiming at spe@fiplication domains. To these
belong Plasma [17] (C++ multimedia applications)oAutive [3] (Java grid
computing), and Think [31] (operating system ket@ealevelopment).

4 Lubomir Bulej et al.

There are also a number of tools, extensions dmdries for Fractal ranging from
graphical development of applications to a Swind aMX support. For the purpose
of this paper, to the most notable tools and exbessbelong the FractalRMI [11]
(seamless distribution using RMI), FractalADL [HML-based ADL language for
defining architectures of Fractal components), BrattalBPC [10] (Fractal Behavior
Protocol Checker), which is an extension allowingedfication of component
behavior and verification of component communigattompliance.

2.1 Static View (metamodel)

The Fractal component model relies on componentsaa& building blocks. Since
Fractal is a hierarchical model, components magitieer composite or primitive. In
the case of a composite component, the componemfios a number of sub-
components. An application in Fractal is represgfiga single (typically composite)
top-level component.

A component may have a number of interfaces (“poitsother component
systems such as Darwin) which are the points oksxdo the component. Each
interface is an instance of its type, which staélbessignature of the interface, its kind,
contingency and cardinality. The interface kindeigher server or client, which
corresponds to provided and required interfacdarwin.

The contingency specifies whether an interfacendmdatory or optional. In the
case of client interfaces, contingency is usefulexpress what of the component
requirements are vital to its functionality, andigfhdo not have to be addressed
while still guaranteeing a consistent componentab@hr. In the case of server
interfaces, contingency is used to express e.gfabethat a server interface of a
composite component does not have to be bound gebecomponent (effectively
leaving such functionality unimplemented). The oaatity is either singleton or
collection, permitting either a single or multiple interfaostance(s).

An interesting concept of Fractal ghared component. This concept allows an
instance of a component to be a part of several-(rested) parent components. It is
especially useful when modeling shared resources.

Internally, a Fractal component is formed bymembrane and content. The
membrane encapsulates the component’s functioneiribss” interfaces and also the
controllers with their “management” interfaces. Té@ntent consists of several sub-
components (in the case of a composite componentymplementation code,
encapsulation of legacy components, etc. (in tlse cha primitive component). Each
of the controllers is responsible for particularmagement functionality. Predefined
controllers include the lifecycle controller for meging the lifecycle, binding
controller for binding client interfaces, contenontroller for introspecting and
managing sub-components, etc. As mentioned in $eétractal is an open model,
thus the set of controllers is customizable an@émsible. The actual way controllers
are implemented depends on a particular Fractaleimgntation. In Julia, a dedicated
technique of combiningixins using the ASM tool [2] for byte-code manipulatiizn
employed, while AOKell relies on aspect orientedggamming using either AspectJ
or Spoon.

CoCoME in Fractal 5

Instantiation of Fractal components is performemhgisin API defined by Fractal
specification. It defines a bootstrap componenttdigc that serves for creating
component instances. The created instances aredrestli connected according to the
application architecture using controller interfac&his way of instantiation implies
that an application requires a main class thatamgites and starts particular
components using the API.

Besides creating such a main class manually, spaltyf for each application,
there is also an option of using FractalADL. Thisltallows defining architecture of
components using an ADL. It parses the ADL desiaiipand builds the application
accordingly using Fractal API.

FractalADL is in fact a declarative descriptiontafw to instantiate components.
This, however, implies that FractalADL operates hwitomponent instances as
opposed to components (such as found in UML 2)thatit is not possible to specify
component cardinality.

More information on the development process in falanay be found in [21][18].

2.2 Behavioral View

The applications behavior is specified via behayiatocols originally employed in
the SOFA component model [27]. In the Fractal plaaf this formalism is used by
FractalBPC which is a Fractal extension allowingedfication of component
behavior and verification of component communicagompliance.

The behavior is not captured as a whole (by a sibghavior protocol). Instead,
each of the application’s components has one behgwbtocol associated with it
(frame protocol) that describes the component’s behavior as dbiservable by the
environment of the component, i.e. the componetde is abstracted in terms of
capturing the traces of events related to methdts caossing the component
boundary. Assuming component A requires an interfacthat is provided by
component B and assuming the interfaces A.l an@i®.bound together, these events
are: (i) issuing a method request M on componestraguired interface I: 1.4 (ii)
accepting a method request M on component B’s geaviinterface |: ?1.M1, (iii)
sending a response to method request on comporepr®/ided interface I: !I.N,
(iv) accepting a response to method request issureccomponent A’s required
interface 1I: ?1.M. Component's behavior is then described by an esgion
(component’s frame protocol), where these events & connected together using
several operators (; for sequence, + for alternatiier repetition and | for parallel
execution). To simplify expressing method callsg tollowing abbreviations are
introduced: ?1.M (stands for ?IM LM), ?1.M{P} (stands for ?I.M; P; LM]),
where {} specifies a reaction to accepting the method E&ls a protocol here). The
abbreviations !I.M, and !'I.MP} have a similar meaning.

Having a set of components with formal specificatad their behavior via their
frame protocols, the components can be connectg&thier and compatibility of their
behavior can be verified [1] (components horizontaimpliance — meaning
compliance at a particular level of nesting).

Every composite component also has a hand-writeméd protocol that specifies
its behavior. During the development of procesa ocbmposite component, its frame

6 Lubomir Bulej et al.

protocol can be verified against the behavior & imternals [1] (the vertical
compliance — meaning compliance of components gacadt levels of nesting) — the
internal behavior of a composite component is dbsdrby anarchitecture protocol

of its subcomponents (this behavior protocol is éeer not hand-written, but it is, in
a way, automatically generated from frame protooblthe components that are part
of the composite component’s architecture).

The verification process of the horizontal and ieaftcompliance assures that the
application’s architecture is composed correctfyatidition to it, the verification of
primitive components’ frame protocols against thesde can be done (code model
checking) [1], which guarantees that the behaviescdbed by the top-level
architecture protocol corresponds to the true behasf the application. However,
model checking of a single component faces a sagmif problem, as most of today’s
model checkers require a complete program to verifya so-called missing
environment problem [25]. This problem can be sdl\®y generating an artificial
environment and combining it with the code of tlenponent, forming a complete
program — such a program can then be passed taddiesioJPF model checker [32]
and its compliance to the component’s frame prdtoan be verified [26].

2.3 Deployment view

The Fractal specification does not address isseiesed to deployment. As a result,
each implementation of Fractal deals with deployhirea specific way. For instance,
Julia, the most widely used Fractal implementatiodava, is local (i.e., it provides
no support for distribution). A Fractal applicationJulia is executed by a dedicated
Java class that instantiates and starts the compora# the application. Besides
having such a class specifically created for egmblieation, it is possible to use a
generic launcher that is part of FractalADL.

Although Julia does not support distribution bltsit is possible to use extending
libraries which add this feature. This is the cagEractalRMI library, which provides
distribution using RMI. FractalRMI, however, is ni¢d only to Julia, it introduces
distribution to other Java-based implementationsrattal (e.g. AOKell).

FractalRMI is integrated with FractalADL. Thus,ist possible to specify a target
deployment node for each component in FractalADld aubsequently use the
FractalADL launcher to instantiate a distributeglagation.

Apart from local implementations of Fractal therksoaexist special purpose
implementations which bring the support for digttibn already in their core and do
not need any extensions. This is for example tise o ProActive, which aims at grid
computing.

Another important issue of deployment related te @oCoME example is the
support for different communication styles (e.gethod invocation, asynchronous
message delivery, etc.), which are reified by défeé middleware (e.g., RMI, JMS,
etc). Fractal does not provide any direct suppoor fmodeling different
communication styles. It addresses this issue paltially by defining so called
composite bindings, which are in fact regular components that encapsuhe use of
middleware. Such binding components can be buitiguthe Dream framework [7]
which provides Fractal components for constructbmiddleware.

CoCoME in Fractal 7

3 Modeling the CoCoMe

Employing Fractal in the CoCoME assignment reveaederal issues that required
modifications of the architecture. These modificai are presented and justified in
Sect. 3.1 (Static view). Since behavior specifaratusing Behavior Protocols is
supported by Fractal, each of the components offthding System was annotated
with its frame protocol. As CoCoME assignment doesinclude complete behavior
specification, these protocols are created baseth@rCoCoME UML specification
and the reference implementation and further deedriin Sect. 3.2 (Behavioral
view). Sect. 3.3 (Deployment view) presents deplegtand distribution using
Fractal-specific means (FractalRMI and FractalADIn).Sect. 3.4 (Implementation
view), we describe beside the basic Fractal implgat®n strategy also the details
related to performance evaluation and estimatioddi#onally, Sect. 3.5 presents
behavior specification of two components featuringon-trivial behavior
(CashDeskApplication and CeshDeskBus) in more ldeBahavior specification of
the rest of the components can be found in Appeadik on the Fractal-CoCoME
web page [33].

31 Staticview

As the architecture of the Trading System usedrictal differs slightly from the
CoCoME assignment, this section presents the neabldichitecture and justifies the
modifications made. In general, there are two soiitmodifications: (i) Modifications
which are not directly related to Fractal and dd imdluence complexity of the
solution, but rather contribute to the clarity bétdesign and the other views (in Sect.
3.2 — 3.4). (ii) Modifications directly forced byaecific properties of Fractal. These
modifications reveal strengths and limitations cddtal and therefore should be taken
into account in the comparison between differentietiog approaches.

The (i) modifications include reorganization of tleemponent hierarchy and
explicit partitioning of EventBus into two indepesrd buses. All primitive
components are left unchanged, but the composegauemts GUI and Application
located in the Inventory component are substititgdomponents StoreApplication,
ReportingApplication (compare Fig. 1 and Fig. 3)eThew components more clearly
encapsulate the logical units featuring orthogdoattionality, whereas the old ones
merely present a general three tier architectutee BtoreApplication component
encapsulates the store functionality as requiredhieyCashDeskLine component in
UC1l (use case #1 in CoCoME assignment), whereasoriRegApplication
encapsulates functionality for managing goods adus UC3 - UC7. The Data
component is left unchanged. Second modificatiothefcomponent hierarchy relates
to UC8, as neither the architecture in CoCoME ass@nt, nor its reference
implementation provides a full UC8 functionality.p&ifically, UC8 expects
communication among EnterpriseServer and Store8ri@wever no interface for
the communication is present. Moreover, the refegeémplementation includes UC8

8 Lubomir Bulej et al.

functionality as a part of UC1, which, however, gliobe independent. The reference
implementation deeply exploits the fact that itnist distributed and accesses the
shared database, which would not be the casedaldife implementation. Therefore,
the new architecture is enriched by explicitly sligtishing the EnterpriseServer
component and the ProductDispatcherlf and MoveGbausrfaces that encapsulate
UC 8 functionality (Fig. 3).

ProductWithStockltemTO

ComplexOrderEntryTO «component» {I
ComplexOrderTO

OrderEntryTO TradingSystem::Inventory

OrderTO

ProductTO

ProductWithSupplierAndStockltemTO * «component» {]
ProductWithSupplierTO .Gul StoreTO
SaleTO : EnterpriseTO
StockltemTO 1 1 | 4 ReportTO
StoreWithEnterpriseTO A\ KJ\
SupplierTO Storelf ;
upplier CashDesk 1 Re,
CashDesk 1 Connectorlf
Connectorlf(O— * «component» q]
SaleRegistered)* } ‘Application
Event
Event j\ 1 1
EnterpriseQuerylf Persistencelf StoreQuerylf
TradingEnterpris 1 1 1
ProductSupplier 8rd§rs{gryd
* t —| ProductOrder
«compenent» g] Stockitem
:Data Store
‘ Product
N
(PJDBC
1
1 «component» $:|
:Database

Figure 1. The original design of the Inventory component sCOME

]

1 s:||1 a:|||1 a:|||1 B a:|||1 g]

1 T 7 «component» D
B)

«components
extCommChannal:EventChannel

hy

Figure 2: The original design of the CashDeskLine componei@éCoME

Events for finished
sales are sent through
this interface to the Inventory.

CoCoME in Fractal 9

EventBus from the CoCoME assignment (Fig. 2) regmesa composite of buses
eventChannel and extCommChannel. As there is narapp benefit of having the
eventChannel outside the CashDesk component, EwentiB split into two
independent buses CashDeskLineBus and CashDeskBuish correspond to
extCommChannel and eventChannel, respectively. Meme CashDeskBus is moved
inside the CashDesk component where it more n#yubslongs, since it mediates
mostly the communication among the components anites internal to CashDesk.

As to the (ii) modifications, Fractal does not sopggmessage bus as a first-class
entity. Therefore, the CashDeskLineBus and CashBeskouses are modeled as
primitive components, multiplexing the publishedsseges to each of the subscribers
(compare Fig2 and Fig. 3).

Despite the modifications made, many parts of thegiral design and prototype
implementation are adopted even when ‘“unrealist&lich as the CardReader
component communicating with Bank through CashDegligation instead of
directly, which presents a security threat with Ridbde interception possibility. In
order to share as much of the CoCoME assignmeiptoasible, other parts of the
design such as the data model and the transfectelgee left unmodified. The Fractal
implementation is designed to use Hibernate andydatabase for persistency as is
the case with the prototype implementation.

3.2 Behavioral view

The behavior protocols describing application’s dgbr are meant to be part of the
specification of the application. Created at theligation design stage, they allow
developers to verify that the implementation is ptiant with the design, or, in other
words, that it really implements the specificatibtowever, as the behavior protocols
were not part of the specification of the CoCoMEsigsment, they had to be
recreated from the description provided in it.

The provided specification contains only sequeriegrdms and use-cases, which
do not provide as precise and unambiguous spetidficaf the application’s behavior
as it is required to formally verify the resultimgplementation correctness (in order
to be sufficient, the specification would have twliude more complete UML
description, like collaboration and activity diagra or state machines). For this
reason, we had to use the reference implementatiovided also as a part of the
specification and use both the UML descriptions #redreference implementation to
create the behavior protocols for the applicatiBnproblem has however arisen
during the behavior protocol development proceswe-found that the reference
implementation is not fully compliant with the Cd@k UML specification as
provided — there are two major differences betwiberreference implementation and
the specification: (i) missing continuation of tpbayment process after erroneous
credit card payment — UC1, (ii) missing implemeiotatof UC8. We solved this
problem by creating two alternatives of the protece the first specifying the
behavior imposed by the CoCoME UML specificationgd ahe second specifying the
behavior observable in the reference implementatide our component-based
implementation of the application is based on #ference implementation (we have
reused as much of the reference implementation esdgossible), we show later in

10 Lubomir Bulej et al.

the text that our implementation (and the refereimeplementation) is not exactly
following the requirements imposed by the CoCoME IUspecification (by formally
refuting it).

Tradingsystem a

- oom o
JEET— EH EH
[CashbeskBus.
HU%O[
nnnnnnn y %j
o
— g] 5]
°
O N N p
e
o=3—-20 E=
| el O— &

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 3: Final architecture, as it is used in the Fractatleling approach

Regarding the behavior specification, it is alsativaoting that we do not model
the behavior of the actors (e.g. customer, casbjgtified by the UML model as we
model only the software components that are pathefapplication’s architecture.
However, as the behavior of agents is observalalénterfaces provided for the GUI
part of the application, the behavior protocolsctiééing the behavior of application’s
components also transitively impose restrictionsbehavior of agents, though the
actual formal verification is done against the Gdinponents.

We show that creating behavior protocols as pathefapplication specification
allows precisely defining the required applicat®behavior early in the development
process (in the application design stage). Suctifsgetion then provides not only the
global view that is required to correctly create #pplication’s architecture, but also
a per component behavioral view that can serve preeise guide for developers of
specific component implementations. Furthermore, gphecification can be used to
formally verify that the implementation really coligs with the specification
requirements and that all the application compahe@ithough each might be
implemented by a different developer) are compatibhd together provide the
functionality (exposed by their behavior) requitedthe specification.

CoCoME in Fractal 11

3.3 Deployment view

From the deployment point of view, we introducedesv changes mainly to the
middleware used in the reference architecture. &lobginges were motivated by the
way Fractal can be distributed and by the libraaesilable for the distribution.

We have used FractalRMI instead of Sun RMI. Fr&dllis a library for Fractal
that allows transparent distribution. The compogsere not aware of the fact that
they communicate remotely.

In a similar fashion, we have eliminated the usedMf, which has been used in
the reference architecture for implementing buSés.have replaced each of the both
busses by a component that is responsible for nguthe messages. Remote
communication in this case may be again transpgresdlized using FractalRMI.

The Fractal specification also lays out another wéysolving distribution and
various communication styles. It defines so calleoimposite bindings. Each
composite binding consists of a number of bindioghponents. These components
are classical components from the Fractal pointiefv, their responsibilities are to
encapsulate or implement middleware. A significdip in implementing the
composite bindings is provided by the Dream framdwwhich implements Fractal
components that support construction of commurdcatniddleware with various
communication styles, including JMS.

Our choice of FractalRMI is transparent and recuite additional implementation
effort. We did not use the composite bindings ameain also because Dream is still
under development; additionally, our solution bsngp restrictions to the modeled
CoCoME example.

Another important aspect of deployment is the wapldyment is planned and
performed. In our approach, we have put the infeimnaabout deployment into
FractalADL. Each specified component is annotateth \an element virtual-node
which states the deployment node to which the caomapbis to be deployed. The
actual distribution is then realized via FractalRMI

34 Implementation view

The Fractal implementation is based both on thet&raarchitecture model of the

application and the provided reference implemeotatiWe have created a
FractalADL model of the application architectureingsthe FractalGUI modeling

tool [11], taking into account the changes mentibite Sect. 2.3 and Sect. 3.3. The
resulting model was then extended by hand to accmfate behavior protocol

specification, because it is not supported by tbeeting tool.

To speed up and simplify the development, we hasedua tool to create
component skeletons from the architecture modelreMtetailed description of the
transformation can be found in Sect. 4. The fumetigoart of the application was then
adapted from the CoCoME reference implementation @mtegrated into the
generated component skeletons.

12 Lubomir Bulej et al.

34.1 Testing theimplementation against use-case scenarios

To enable the testing of functional properties #jpt by behavior protocols,

FractalBPC allows monitoring communication on théeifaces of a component C
when the application is running. The runtime checkeegrated in FractalBPC
automatically tests whether C communicates witlelottomponents in a way that is
allowed by C’s frame protocol. Any violation of tfrmme protocol by C or one of the
components communicating with C is reported.

In addition, the reference implementation of theding system contains a small
test suite for testing the behavior of the impletadon against the use case scenarios
described in the CoCoME assignment. The test shiésed on the jUnit [16]
framework, contains a number of tests which exerciperations prescribed by the
respective use cases and verify that the systepomels accordingly.

As it is, however, the test suite from the refeeeimaplementation is unsuitable for
testing. The key issues are testing of crosscutiiogcerns, test design, and
insufficient automation.

The tests attempt to verify not only that the inmpdmtation functions correctly, but
also impose timing constraints on the executed atjmers. This makes the tests
unreliable, because two orthogonal aspects aredest the same time. Combined
with rather immodest resource requirements of fh@ieation arising from the use of
“heavy-duty” middleware packages for database fonelity, persistence, and
message-based communication, the application éfiéshto meet the test deadlines
on common desktop hardware, even though it funstamrectly.

Moreover, the tests always expect to find the trgdsystem in a specific state,
which is a very strong requirement. To accommoditeall the applications
comprising the trading system are restarted andl#t@base is reinitialized after each
test run, which adds extreme overhead to the ggtiacess.

This is further exacerbated by insufficient autaomabof the testing infrastructure.
The trading system consists of a number of compsnench as the enterprise server
and clients, store server and clients, databasersatc. Starting the trading system is
a long and complicated process, which can takeraker@nutes in the best case, and
fail due to insufficient synchronization betweentpaf the system in the worst case.
Manual starting of the trading system, combinedhwvttte need for restarting the
system after each test run, makes the test suite jmesent form unusable.

To enable testing in a reasonably small environmeettake the following steps to
eliminate or mitigate the key issues, leading tccamsiderable increase in the
reliability of the tests as well as reduced testinte:

* We simplify the implementation of the trading systby eliminating the GUI
components, leaving just the business functionalityich allows the trading
system to be operated in headless mode.

* We eliminate the validation of extra-functional pesties from testing; timing
properties of the trading system are gathered atime by a monitoring
infrastructure described in Sect. 3.4.2. Validatafnextra-functional system
properties is independent from functional testingl as based on the data
obtained during monitoring.

* We improve the testing infrastructure by automatihg start of the trading
system. This required identifying essential andeo@ssary code paths and
fixing synchronization issues between various pafthe system.

CoCoME in Fractal 13

34.2 Runtime monitoring of extra-functional properties

The extra-functional properties articulated in theCoME assignment enhance the
functional specification with information related timing, reliability, and usage
profile. The specification provides two kinds ofoperties: assumed and required.
Assumed properties reflect domain knowledge andrd®sthe environment in which
the system will be expected to operate. The reduipzoperties reflect the
requirements on performance of the system withéngtivironment.

These parameters can be used in performance analythe system architecture
preceding the implementation of the system to yditifat the proposed architecture
has the potential to satisfy performance requirdmeldowever, pure model-based
performance analysis is typically used to deternpriacipal performance behavior,
such trends in response to requests, not the gotwBdrmance of a real system in a
real environment.

Deciding whether a particular instance of a systemtisfies the performance
requirements dictated by the specification requéneslyzing performance data from a
real system. Runtime monitoring requires the anslys performance data to be
performed isochronously with system execution. Thisits the level of detail
compared to offline analysis, but provides immealigtformation on high-level
performance attributes. On the other hand, the flata performance measurements
intended for offline analysis can be used to cartlee assumptions and to calibrate a
generic performance model to reflect the environtmaard properties of a particular
instance of the system.

High-level performance data suitable for monitoriage typically exported by
applications using technologies such as JMX [14] SNMP [29], for which generic
monitoring tools are available. However, exportpegformance data is the final step.
The data has to be first obtained using either @wliGation-specific or a generic
approach.

Application-specific approach requires that an agapion collects performance
data internally, using its own measurement infradtire. This allows obtaining
certain application and domain specific performamesrics that cannot be obtained
using a generic approach, but it also requiresuttioly support for performance
measurements in various places directly in the @mgntation of application
components, which in turn requires mixing functioaad non-functional aspects of
implementation. This can be alleviated using aspegented programming which
allow separating the implementation of functionad anon-functional aspects of a
system.

A generic approach based on architectural aspeqwoits the description of
application architecture as well as the capaldlitief the runtime to obtain
performance data. Architectural aspects are useidstoument an application with
performance data collection capabilities, but ttagiplication is less intrusive than in
the case of classical aspect oriented programnbi@cause it is performed only at the
design-level boundaries exposed by the applicatiorhitecture. As a result, the
instrumentation is completely transparent to theettgper and does not require
modifications in the implementation of an applioatiwhich in turn allows the work
on performance monitoring to be done in parallethwidevelopment. Another
advantage of using architectural aspects is tha@application source code does not
have to be available, but that was not an isstieisrparticular case.

14 Lubomir Bulej et al.

Selecting performance properties for monitoring
To demonstrate the concept of using architecturspeets for performance
monitoring, we have identified the following exti@actional properties from the
CoCoME assignment that would be suitable for maimitp

» t13-3: Time for signaling an error and rejectinglBn

» t15b2-2: Time waiting for validation

» t14-1: Time for showing the product descriptioricpr and running total

» t34-1: Time for querying the inventory data store

We have taken into account the importance of thepgnties with respect to the
performance of the system, therefore the preferaraemostly on required properties
associated with internal actions of the system. (e to execute a database query)
and not external actors and hardware (e.g. timewiéch a light display). We have
also taken into account assumed properties that tieev potential to be covered by a
Service Level Agreement (i.e. guaranteed by anreateservice provider, such as a
bank in case of credit card validation), where rntanitig can be used to ensure that an
external contractor fulfills its obligations.

Performance related extra-functional propertiescaity specify acceptable ranges
for various performance metrics. An important aspemsidered during selection of
properties for monitoring was also the observapilif the required performance
metrics on the design level of abstraction, i.ea@hponent boundaries represented by
component interfaces. Performance metrics thatdcoot be calculated from data
collected at component boundaries would have toexgicitly supported by the
implementation.

Technical implementation

To obtain performance data from a system implentengéng the Fractal component
model, we have taken advantage of the mixin-basedtauction of controllers within

a component membrane (see Sect. 2.1) supportedhebylulia implementation of

Fractal.

We have extended the membrane to include a perfarenanonitoring controller
and an interceptor on component business interfades interceptor provides events
related to business method invocations to the othetr which stores these events and
calculates simple statistics and durations of netihgocations. When an application
stops, it writes the collected data to disk. Famtime performance monitoring, the
controller provides a simple JMX based interfaceicivhallows configuring what
methods and events should be observed and alswsaléxcessing the simple
summary statistics.

This approach is similar to that of FractalJMX [1@}hich is a Fractal extension
that allows exposing the functional and controkifaces of Fractal components in a
JMX agent and collecting simple statistics relatednethod invocations We have
however implemented a custom interceptor which jles low-level data to the
performance monitoring controller. The data carubed both for offline analysis and
performance monitoring. JMX interface is used fomamagement of monitoring
controllers and for exposing simple statistics alted from the low-level data.

CoCoME in Fractal 15

Measurement results

Of the above extra-functional properties, we hageided to focus on t15b2-2, which
is the assumed time of credit card validation. gsinsimple simulator of the UC1
scenario, we have collected performance data ckldte invocations of the

validateCard() method on the Banklf interface of tBank component. The
simulation was configured for 50 cash desks, dairiel second intervals, and each
processing 50 sales. The validateCard() method him Bank component was
implemented to wait a random time according to thistogram specification

associated with the t15b2-2 property.

The distribution of validateCard() invocation timealculated from the measured
data is identical to the specified distribution,igthserved as a basic validation of the
approach. Using the measured data, we have perfoaneanalysis with the goal to
determine the average load on the Bank componeptessed as the number of
validateCard() method invocations during a 60-sdcorerval. This load may be
covered by a Service Level Agreement with a bankjctv may only guarantee
specific performance of its card validation seniiteesponse to a specific load.

ions in a 60 d window

of i

0 200 400 600 800 1000 1200 1400

Simulation time [seconds]

Figure 4: The load on the card validation service of the Bamfaponent

The results of the analysis are shown in Fig. 4hwhe dashed line denoting the
maximal load on the Bank component given the alminmilation parameters. The
rising edge of the curve starting at time O coroesfs to the delayed startup of
individual cash desks, while the falling edge stgrapprox at time 1100 corresponds
to closing of cash desks after they have proces8esdles.

We would like to emphasize that the above analyais been performed on data
collected without actually modifying a single liré application code. Information

16 Lubomir Bulej et al.

about the distribution of durations of validateGarthvocations could be used to
monitor the performance of the card validation s@rnprovided by a bank. On the
other hand, runtime analysis (and throttling) ofidateCard() invocation rate can be
used to ensure that a store does not violate dacedrevel Agreement.

The overhead of the measurement was 40 microseq@ardsethod invocation, in
99% of cases, without any attempt at performancémigation. The duration of
validateCard() invocation was between 4 and 5 sxdn 90% of cases. The
difference between the times is 5 orders of mageitwhich in this particular case
makes the overhead of the measurement insignifi€au space constraints, we have
only included the above analysis. The Distributgdt&n Research Group project
page on CoCoME in Fractal [33] provides additiom&lasurement results.

35 Specification of selected components

This section is mostly focused on behavioral viiwCoCoMe components. More
specifically, it assumes that the specificatiorcomponent structure, interfaces, and
overall architecture is taken over from the CoColdgsignment with the few
modification mentioned in Sect. 3.1. As emphasizedSect. 3.2, the behavior
specification provided here is done in behaviott@eols and stems from the CoCoMe
use cases and the component behavior encoded iratlaeimplementation provided
in the CoCoMe assignment. Since the behavior spatiin of the whole application
is too large to fit into space reserved for thiqmler, two “interesting” components
(CashDeskApplication and CashDeskBus) were chosen démonstrate the
capabilities of behavior protocols. Interested erathay find the specification of
other “interesting” components in the appendix arldspecification at [33].

Demonstrating the ordinary usage of this formalighe behavior protocol of
CashDeskApplication describes the actual behavice oash desk. In principle, it
captures the state machine corresponding to tleepsatess. In contrast, the behavior
protocol of CashDeskBus illustrates the specifiy whexpressing mutual exclusion

Since both these protocols are non-trivial, thainihteresting” fragments are
omitted in this section.

35.1 CashDeskApplication

The CashDeskApplication has application specifibawsor — its frame protocol
reflects the state of the current sale. It indisaivhat actions a cash desk allows the
cashier to perform in a specific current sale stdtee “interesting” parts of the
protocol take the following form.

(
| NI TI ALI SED

(
?CashDeskAppl i cati onHandl er. onSal eStart ed
)

SALE_STARTED

?CashDeskAppl i cati onHandl er. onPr oduct Bar codeScanned{
! CashDeskConnect or . get Product Wt hSt ockl tem
! CashDeskAppl i cati onDi spat cher. sendProduct Bar codeNot Val i d+
I CashDeskAppl i cati onDi spat cher. sendRunni ngTot al Changed

CoCoME in Fractal 17

)*% # <--- LOOP
?CashDeskAppl i cat i onHandl er. onSal eFi ni shed;
SALE_FI NI SHED

. ?CashDeskAppl i cat i onHandl er . onPaynent Mbde

PAYI NG BY_CASH
(

(
(

?CashDeskAppl i cati onHandl er. onCashAnpunt Ent er ed
)*.

On Enter
?CashDeskAppl i cati onHandl er. onCashAnpunt Conpl et ed{
I CashDeskAppl i cati onDi spat cher. sendChangeAnount Cal cul at ed

?CashDeskAppl i cati onHandl er. onCashBoxCl osed{
! CashDeskAppl i cati onDi spat cher. sendSal eSuccess;
! CDLEvent D spat cher . sendAccount Sal e;
| CDLEvent Di spat cher. sendSal eRegi st er ed

)
)

*

I (
Enabl e Express Mode
?CDLEvent Handl er. onExpr essModeEnabl ed{
I CashDeskAppl i cati onDi spat cher. sendExpr essMbdeEnabl ed

*

D sabl e Express Mde
?CashDeskAppl i cati onHandl er . onExpr essMbdeDi sabl ed
)*

To communicate with each of the buses CashDeskBdiCashDeskLineBus, the
component features a pair of interfaces (CashDeghkégiionHandler,
CashDeskApplicationDispatcher and CDLEventHandBLEventDispatcher). The
interfaces contain a specific method for each etygm that can occur on a bus. In
addition, the interface, CashDesklInterface serveget the data from Inventory.

The protocol specifies three parallel activitieheTfirst one is the sale process
itself, while the other two deal with cash desk magvitching. In the initial state, the
sale process activity is waiting for SaleStartedEveon the CashDeskBus
(?CashDeskAppl i cati onHandl er. onSal eStarted) . It denotes beginning of a new
sale. Then;(operator) BarcodeScannedEvent is accepteas(iDeskAppl i cat i on-
Handl er. onPr oduct Bar codeScanned) for each sale item. Repetition operator (*)
ensures that arbitrary finite number of events te@naccepted. In reaction (the
expression enclosed in {}) to each BarcodeScanned&the price is obtained from
Inventory. (CashDeskConnect or. get Product WthStocklten) . Depending on the
result, the rest of the CashDesk is informed alibat change of total sale price
(r CashDeskAppl i cati onDi spat cher . sendRunni ngTot al Changed) or, alternatively
(+ operator), ProductBarcodeNotValidEvent is issuedCaghDeskAppl i cati on-

Di spat cher . sendPr oduct Bar codeNot Val i d) . When SaleFinishedEvent is accepted
(?CashDeskAppl i cati onHandl er . onSal eFi ni shed) , the sale process reaches the

18 Lubomir Bulej et al.

payment phase which is specified in similar mankénen one sale is finished, the
sale process activity returns to the initial stédeaccept another sale (repetition
operator *). In parallel operators (|), the caskkdperforms two other activities to
process cash desk mode switching events comingditivar of the buses.

This simplified version of the frame protocol doest capture paying by credit
card and does not cope with events not allowedgarticular sale process state.

352 CashDeskBus

The particular bus behavior comprises of two déféraspects — events serialization
and multiplexing. While the former aspect takest parmodeling “many to one”
messages, the latter aspect is related to “oneattyfrmessages. The event passing is
synchronous, meaning that if an event is emittedabgublisher component, the
component is blocked until all subscribers proctes event. If there is another
component wanting to emit a message when the bpsoessing another message,
the component is also blocked. Such behavior cporeds to the implementation
using FractalRMI. This behavior might be prone teadlocks, but fortunately,
absence of deadlocks is one of properties we cafy wsing the behavior protocols.

As discussed in Sect. 3.1, the bus is implementedé @omponent. For every
publisher and subscriber, it has an interface déointg a method for every event type.
As the bus component does not contain any appitdbgic, its protocol can be
generated using the information from the architects which components are
involved in subscriber role, which components areolved in publisher role and
what event types do they accept, resp. emit. Tihiatson is not typical for behavior
protocols.

The method used to model the serialization in behaprotocols follows the
typical model of mutual exclusion in Petri nets errfowing a token. The protocol
representing the bus is accepting events from emeducers in parallel, but it does
not propagate them to the subscribers immediatadtead of it, the bus protocol is
waiting for the token event which is emitted by gegl protocol. As the helper
protocol does not produce another event until gerees response from the previous
one, the bus event propagation parts are mutuatihuded. Finally, the bus protocol
must have empty parallel branch accepting the spaiten events. Although the
helper protocol in the model produces many spakertoevents which are just
accepted by the empty parallel branch with no otrss, this is not a performance
issue in the implementation. In the implementatistandard Java synchronization
with passive waiting is used to achieve the mutxalusion — important is observable
behavior, the means can differ in the implementaéind model.

The multiplexing is straightforward — when the bascepts an event from a
producer and the token, the event is propagated smbscribers.

The following protocol is a fragment of the Cashkgs protocol Rasnpesksus

(?CashBoxControl | er Di spat cher. sendExpr essMdeDi sabl ed{
?Hel per .t oken{
I CashDeskGUI Handl er. onExpr essMbdeDi sabl ed|
I'Li ght Di spl ayControl | er Handl er . onExpr essMbdeDi sabl ed|
! Car dReader Cont r ol | er Handl er. onExpr essMbdeDi sabl ed|
! CashDeskAppl i cat i onHandl er. onExpr essMbdeDi sabl ed
}

)*

CoCoME in Fractal 19

|
(?CashDeskAppl i cati onDi spat cher. sendExpr essModeEnabl ed{
?Hel per . t oken
! CashDeskGUI Handl er. onExpr essMbdeEnabl ed|
I Li ght Di spl ayHandl er . onExpr essMbdeEnabl ed|
! Car dReader Cont r ol | er Handl er . onExpr essMbdeEnabl ed

}

*

| ?Hel per .t oken*

The fragment captures the synchronous deliveringexgressModeEnabled and
ExpressModeDisabled events. When the CashBoxCtertrobmponent emits the
ExpressModeDisabled event, it is accepted by the [gashBoxController-

Di spat cher . sendExpr essMbdeDi sabl ed). Then, after accepting the token event, the
ExpressModeDisabled event is delivered in parédielll subscribers (CashDeskGUI,
LightDisplayController and CardReaderController).s Athe method calls are
synchronous in behavior protocols, the bus waitl @l subscribers acknowledge
the event delivery. Then, the token is returnec (tinst closing curly brace) and
finally, the CashBoxController is notified aboutcsassful delivery to all subscribers
(the second closing curly brace). In the similaanmer, the ExpressModeEnabled
event is processed.

While the events from producers are accepted ialighr which ensures that no
producer can issue an event in a wrong moment;jngaior the equal token within
the processing of distinct events ensures the rhaetgusion of the event deliveries,
so the subscribers need not to care about pasafielThe final part of the fragment
(?Hel per . t oken*) accepts the unnecessary token events.

As there must be a token event source, the spatifit must be enriched by a
helper protocol Reper! Hel per.token*. The complete frame protocol of the
CashDeskBus component featuring mutual exclusighésa obtained by composing
the prOt0C0|S E)ashDeskBusand melperby the consent Operator 'C:J;s)hDeskBusD{Helper.Token)
Pheper It synchronizes the opposite actionse{ per . t oken and?Hel per. t oken) and
replaces them by single internal action.

4 Transformations

In the process of implementing CoCoME componentsractal, we have used a tool
allowing for automated transformation of FractalABlpecification to component
code fragments. The tool runs as a backend to &fedt and operates on the
abstract syntax tree of a parsed ADL descriptidme implementation artifacts it can
produce comprise code skeletons of component adesf and code skeletons for
primitive components.
A fragment of a code skeleton generated by the i®provided below, showing

the Coordinator component from the CoCoME example.

public class Coordinatorlnpl inplenments
Bi ndi ngController, CoordinatorEventHandlerlf {

R R T TR
/1 Required interface Coordi natorEvent Di spat cherl f

20 Lubomir Bulej et al.

[R T T
prot ected Coordi nat or Event Di spat cher | f
Coor di nat or Event Di spat cher | f;

R R T T
/'l Provided interface CoordinatorEvent Handl er| f
[e T R
public void onSal eRegi st er edEvent (
org...cashdeskl i ne. Sal eRegi st eredEvent arg0) {
/] TCDO Cenerated method

}

R e T
/1 1nmplenentation of the BindingController interface
R R R T
public Object |ookupFc(String clientltfNane) ...
if (clientltfNane.equal s("CoordinatorEventD spatcherlf")) {
return Coordi nat or Event Di spatcherlf;

}
o

public void bindFc(String cltltfName, Object serverltf) ... {
if (cltltfName.equal s("CoordinatorEvent Di spatcherlf")) {
Coor di nat or Event Di spat cherl f =
(Coordi nat or Event Di spat cher|f) serverltf;
return;

}

The generated code contains implementation of thdirg controller, which is
vital for binding required (client) interfaces. Thequired interfaces are reflected in
the code by protected instance variables contairéferences to the bound provided
interfaces of other components. The provided iata$ offered by the component are
reflected in theimplements clause of the generated class. The tool also ga®ra
skeleton for each method of the provided interfaces

5 Analysis

As a behavior protocol specifies behavior via alite sequences of method calls on
component’s interfaces, the property to be analygembmpliance of the behavior of
components as correctness of communication on coenis interfaces. In general,
by correctness of communication, we mean absen@®mimunication errors, i.e. a
situation in which two or more components do noetnexpectations of the others.
Three types of communication errors are identifieall activity — the issued event
cannot be accepteao activity (deadlock) — all of the ready events’ tokens are
prefixed by “?”, andnfinite activity (divergence) — the composed protocols “cannot
reach their final events at the same time”, so that composed behavior would
contain an infinite trace (only finite traces atewaed).

CoCoME in Fractal 21

The compliance of behavior is of two kindwrizontal compliance and vertical
compliance. Horizontal compliance refers to correctness afgwnication among
components on the same level of component hierarghgreassertical compliance
refers to correctness of communication on adjatemis of component hierarchy, i.e.
whether a composed component is correctly impleetehy its subcomponents. The
vertical compliance is therefore a kind of behazi@ubtyping.

Checking of horizontal and vertical compliance nsmkense only if behavior of
each primitive component corresponds to its framaqeol, i.e. if each primitive
component can accept and emit method calls on xtsrreal interfaces only in
sequences that are determined by its frame protddds correspondence can be
checked in two ways: (i) code model checking wita modified Java PathFinder [15]
(JPF) and (i) run-time checking.

Code model checking of primitive components withFJBlIlows exhaustive
verification whether the implementation of eachptive component corresponds to
its frame protocol. Since each primitive componéntchecked in isolation, the
problem of missing environment has to be faced gJBathFinder checks only
complete programs) via constructing an artificiavieonment for a component and
checking the complete program composed of the coemptoand environment. The
behavior of an environment is specified by the congmt’s inverted frame protocol,
which is derived from the frame protocol by reptagiall the accept events with emit
events and vice versa.

Although the well-know problem of state explosion partially mitigated by
application of code model checking to isolated |ifira components (a single
component has a smaller state space than the w&ppleation), still the checking has
very high time and space complexity; for highlyglel components, it may even not
be feasible. We address this by optional heuriséinsformations of environment’s
behavior specification that help reduce the complesf a component environment,
while making the checking not exhaustive (not latetd interleavings are checked if
the heuristic transformations are used). Alterredyiyit is also possible to use run-
time checking in such a case.

The basic idea of run-time checking is to monitatinod call-related events on the
component’s external interfaces at run-time andckhehether the trace composed
from the events is specified by the component'sm&grotocol. Since only a single
run of an application is checked in this way (rime checking is inherently not
exhaustive), a violation of a frame protocol may be detected for many runs of the
application that involves the erroneous componenthis respect, the technique of
run-time checking is similar to testing.

6 Toolsand results

Verification of an application consists of two seprirst step is checking the
protocols compliance. Protocols of all componergsduto implement a composite
component are checked against the frame protocahefcomposite component.
Second step is checking whether the implementadfothe primitive components
correspond to their protocols.

22 Lubomir Bulej et al.

Compliance of the whole Trading System was checlgiag the dChecker [6] tool
with positive result. The dChecker tool is basedtramslation of the protocols into
minimized finite state machines. Then, composia¢esspace is generated on the fly
to discover a potential bad activity error or deatll Moreover, in order to fight the
state explosion problem, dChecker supports bothllphiand distributed verification,
so that the full computational power of multiproe@sand multicomputer systems is
exploited. For illustration, correctness of the weharchitecture takes 192 seconds to
be verified on a 2xDualCore at 2.3GHz with 4GB RAI@. Specifically, the protocol
of CashDeskApplication is translated into finitextet machine consisting of 944
states. The composite state space of CashDeskdee208029 states and it takes 8
seconds to be verified (on the same PC).

Correspondence of the implementation of primitiv@emponents to their frame
protocols is verified by the Java PathFinder (JRi©del checker. Since JPF, by
default, checks only low level properties like dieats and uncaught exceptions, we
use JPF in combination with the behavior protod@aker (BPC) [26]. Component
environment is represented by a set of Java clabsg¢sare constructed in a semi-
automated way: (i) The EnvGen tool (Environment &ator for JPF) is used to
generate the classes according to the behavioifispéion of the environment via the
component’s inverted frame protocol, and (ii) thengrated classes are manually
modified if the environment has to respect datasfland the component's state in
order to behave correctly (original behavior praisc do not model data and
component's state explicitly).

By code checking implementation of the CashDeskispfibn against the frame
protocol created according to the reference spmtifin of UC1, we were able to
detect the inconsistency between the referenceeimghtation and specification of
UC1 that is first mentioned in Sect 3.2. Detectdnhis inconsistency took 2 seconds
on a 2xDualCore at 2.3GHz with 4 GB RAM PC. Codeeatfing of the
implementation of CashDeskApplication against tlaenke protocol created according
to the reference implementation has not reporteyl @mnor and took 14 seconds.
Nevertheless, switching between the express antialanmode is not checked, since
the environment is not able to find whether theligption is in the express mode or
not, and thus it does not know whether it can #iggayment by credit card
(forbidden in the express mode). Moreover, we alsd to introduce the
CashAmountCompleted event into the frame protocol amplementation of
CashDeskApplication. This change was motivatecheyneed to explicitly denote the
moment when the cash amount is completely specifigdginally, the
CashAmountEntered event with a specific value sfatgument was used for this
purpose). Were the CashAmountCompleted event ndedidthe environment for
CashDeskApplication would exercise the componerguch a way that a spurious
violation of its frame protocol would be reporteg JPF.

As for run-time checking, the special version ofR used again. The difference
is that notification is not performed by JPF, bytrontime interceptors of method
calls on component’s external interfaces; moreoverbacktracking in BPC is needed
since only a single run of the application is chegtk

When using the tools, however, the state explogimblem became an issue.
Some of the behavior protocols (namely CashDeskBusData) originally featured
prohibitively large state space. Thus, in ordefight the state explosion problem,

CoCoME in Fractal 23

heuristics were employed. First, CashDeskBus pobtee separated into multiple
protocols (as if for multiple components), so titatan be represented by multiple
smaller finite state machines in contrast to a lsinghfeasibly large state machine.
Second, method calls inside behavior protocol ef Erata component are explicitly
annotated by the thread number. This is again deroro the fight state explosion as
this makes the protocol more deterministic whileggrving the same level of
parallelism. For these reasons, protocols on th€dME Fractal web page differ
from the protocols described in Sect. 3.5 and Appenas they include also the
heuristics.

7 Summary

In this chapter, we presented our solution to tb€@ME assignment that is based on
the Fractal component model extended with support domponent behavior
specification.

Several issues in the UML specification and refeeerimplementation were
discovered and solved during implementation of @@CoME assignment in the
Fractal component model. Most notably, the compbherarchy was reorganized in
order to improve clarity of the design and the &iehical bus was split into two
independent buses. These were modeled by prinmdtweponents, since Fractal does
not support message bus as a first-class entity.

Behavior of all components of the Trading Systemsjeecified via behavior
protocols. Since the CoCoME assignment does nbideca complete UML behavior
specification (e.g. via activity diagrams and stelti@rts), behavior protocols for all
the components are based on the provided plainigngse cases, the UML sequence
diagrams, and the reference Java implementationafyication of code model
checking to our implementation (based on the refseimplementation), we were
able to detect inconsistency between the spedificaind reference implementation
of UC1 (details in Sect. 3.2. and Sect. 5). Consatiy, we have created two versions
of behavior protocols for several components —wemsion corresponds to the UML
specification and the second to the reference imefeation.

For deployment and distribution, we have used Biagytecific means (FractalRMI
and FractalADL). Since the buses are representgutitnitive components that route
the message, use of JIMS was eliminated.

One limitation of our approach is only partial sopp for extra-functional
properties via monitoring (no static analysis ispéwyged). In particular, performance
is monitored by custom component controllers fer dilia implementation of Fractal.

Very useful is support for verification of primigvcomponent’s code against the
behavior specification (behavior protocols). Usitigat, it was possible to check
whether the implementation corresponds to the Hehaspecification created at
design time.

24 Lubomir Bulej et al.

Acknowledgements

The authors would like to thank Marc Leger (Frameégecom R&D) for providing the
transformation tool that generates primitive comgrarskeletons from FractalADL.

References

1. Adamek, J., Bures, T., Jezek, P., Kofron, J., Me¥igl Parizek, P., Plasil, F.: Component
Reliability Extensions for Fractal Component Model,
http://kraken.cs.cas.cz/ft/public/public_index.pht@006

2. ASM web sitehttp://asm.objectweb.org/

3. Baude F., Baduel L., Caromel D., Contes A., Huet Morel M. and Quilici R.:
Programming, Composing, Deploying for the Grid,"®RID COMPUTING: Software
Environments and Tools", Jose C. Cunha and OmeRdna (Eds), Springer Verlag,
January 2006.

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, $tefani, J. B.. The FRACTAL
component model and its support in Java. Softvac¢tPExper. 36(11-12), 2006

5. Bruneton, E., Coupaye, T., Stefani, J. B.: FraGtainponent Model, version 2.0-3. Feb
2004

6. dChecker web sitéattp://dsrg.mff.cuni.cz/projects.phtml?p=dchecker

7. Dream web sitehttp://dream.objectweb.org/

8. FRACTNET web sitehttp://www-adele.imag.fr/fractnet/

9. Fractal ADL web sitehttp://fractal.objectweb.org/fractaladl/index.html

10. Fractal BPC web sitédttp://fractal.objectweb.org/fractalbpc/index.html

11. Fractal GUI web sitehttp://fractal.objectweb.org/fractalgui/

12. Fractal IMX web siteittp://fractal.objectweb.org/fractaljmx/

13. Fractal RMI web sitehttp://fractal.objectweb.org/fractalrmi/index.html

14. Java Management Extensions (JMX) Specification, sisar 2.0, JSR 255,
http://icp.org/en/jsr/detail?id=255

15. Java PathFinder web sitefp://javapathfinder.sourceforge.net/

16. JUnit web sizehttp://www.junit.org/

17. Layaida, O., Hagimont, D.: PLASMA: A Component-bdgeamework for Building Self-
Adaptive Applications, Proceedings of SPIE/IS&T $@sium On Electronic Imaging,
Conference on Embedded Multimedia Processing amdn@mications, San Jose, CA,
USA, Jan 2004

18. Loiret, F., Servat, D., Seinturier, L. : A First garimentation on High-Level Tooling
Support upon Fractal, Proceedings of the 5th latiisnal ECOOP Workshop on Fractal
Component Model (Fractal'06), Nantes, France, 2006

19. Magee, J., Dulay, N., Eisenbach, S., Kramer, JeclByng Distributed Software
Architecture, Proceeding of the 5th European Sakwdngineering Conference
(ESE'C95) LNCS 989, (Springer-Verlag) page 137-1285

20. Mencl, V., Bures, T.: Microcomponent-Based Compdr@ontrollers: A Foundation for
Component Aspects, Proceedings of APSEC 2005, Tdipevan, IEEE CS, Dec 2005

21. Mencl, V., Polak, M.: UML 2.0 Components and Fracta Analysis, Proceedings of the
5th International ECOOP Workshop on Fractal Compoméodel (Fractal'06), Nantes,
France, July 2006

22. Microsoft .NET Framework web sititp://www.microsoft.com/net/

23. Object Management Group, Corba Components, version3.0,
http://www.omg.org/docs/formal/02-06-65.pdiune 2002

CoCoME in Fractal 25

24. OMG, Object Management Group: UML Profile for Schiadbility, Performance and
Time, http://www.omg.org/cqgi-bin/doc?formal/2005-01-3D05

25. Parizek, P., PIasil, F.: Modeling Environment foongpoment Model Checking from
Hierarchical Architecture, Proceedings of Formapésts of Component Software (FACS
'06), Prague, Czech Republic, Sep 20006

26. Parizek, P., PIasil, F., Kofip J.: Model checking of Software Components: Corimgin
Java PathFinder and Behavior Protocol Model Chedkerceedings of 3DIEEE/NASA
Sofrware Engineering Workshop (SEW-30], IEEE Cormepu8ociety, pp. 133-141, Jan
2007

27. Plasil, F., Visiovsky, S.: Behavior Protocols for Software CompdsenlEEE
Transactions on Software Engineering, Vol. 28, Niy.Nov 2002

28. Seinturier, L., Pessemier, N., Duchien, L., Coupdye A Component Model Engineered
with Components and Aspects. CBSE'06. LNCS 40632006.

29. Simple Network Management Protocol (SNMP), RFC 1157
http://www.fags.org/rfcs/rfc1157.html

30. Sun Microsystems, JSR 220: Enterprise JavaBeansg&ididh 3.0

31. THINK web site http://think.objectweb.org

32. Visser, W., Havelund, K., Brat.,, G., Park, S., lard-.: Model Checking Programs,
Automated Software Engineering Journal Volume 10mier 2, Apr 2003

33. Fractal CoCoME web sitéttp://dsrg.mff.cuni.cz/cocome/fracjal

Appendix

This section contains the full behavior specificatdf the CashDeskApplication and
CashDeskBus components discussed in the Sectthg. 5 ashDeskBox component,
and the StoreApplication component. In comparisothé protocols published on the
project site [33], the interface names are slighthyreviated for brevity. In a similar
vein, the CashDeskBus protocol is presented fomplsdity in a form of a single
protocol containing a number of parallel activities mentioned in Sect. 6, the
CashDeskBus protocol used for compliance checkiag gplit into smaller parts to
overcome technical difficulties with state explasio

TradingSystem::CashDeskL ine::CashDesk::CashDeskApplication

(
| NI TIALI SED

(#Accept and throw away events that are not expected in this phase
?CashDeskAppl i cati onHandl er. onSal eFi ni shedEvent +
?CashDeskAppl i cati onHandl er. onPaynent ModeEvent +
?CashDeskAppl i cati onHandl er. onCashAnpunt Ent er edEvent +
?CashDeskAppl i cati onHandl er. onCashBoxCl osedEvent +
?CashDeskAppl i cati onHandl er . onPr oduct Bar codeScannedEvent +
?CashDeskAppl i cati onHandl er. onCredi t Car dScannedEvent +
?CashDeskAppl i cati onHandl er . onPl NEnt er edEvent
*-

)
The inportant part:

?CashDeskAppl i cati onHandl er. onSal eSt art edEvent
)

SALE_STARTED
(

26 Lubomir Bulej et al.

The inportant part:

?CashDeskAppl i cat i onHandl er. onPr oduct Bar codeScannedEvent {
ExpressMbde & products.size == 8

NULL

+

(
I CashDeskConnector | f. get Product Wt hSt ockl tem
I CashDeskAppl i cati onDi spat cher. sendProduct Bar codeNot Val i dEvent
T
! CashDeskAppl i cat i onDi spat cher. sendRunni ngTot al ChangedEvent
)
Hi#
+
?CashDeskAppl i cati onHandl er. onSal eSt art edEvent +
?CashDeskAppl i cat i onHandl er. onPaynent ModeEvent +
?CashDeskAppl i cati onHandl er . onCashAnount Ent er edEvent +
?CashDeskAppl i cat i onHandl er. onCashBoxd osedEvent +
?CashDeskAppl i cat i onHandl er. onCr edi t Car dScannedEvent +

?CashDeskAppl i cati onHandl er. onPl NEnt er edEvent
)*; # <--- LOOP

The inportant part:
?CashDeskAppl i cati onHandl er. onSal eFi ni shedEvent ;

?CashDeskAppl i cati onHandl er. onSal eSt art edEvent +
?CashDeskAppl i cati onHandl er . onSal eFi ni shedEvent +
?CashDeskAppl i cati onHandl er. onCashAnpunt Ent er edEvent +
?CashDeskAppl i cati onHandl er. onCashBoxC osedEvent +
?CashDeskAppl i cati onHandl er. onCr edi t Car dScannedEvent +
?CashDeskAppl i cati onHandl er. onPl NEnt er edEvent +
?CashDeskAppl i cati onHandl er. onProduct Bar codeScannedEvent

)*
)
SALE_FI NI SHED

The inportant part:
?CashDeskAppl i cati onHandl er. onPaynent ModeEvent ;
HitH

?CashDeskAppl i cati onHandl er. onSal eSt art edEvent +
?CashDeskAppl i cati onHandl er. onSal eFi ni shedEvent +
?CashDeskAppl i cati onHandl er. onCashBoxC osedEvent +
?CashDeskAppl i cati onHandl er. onPaynent MbdeEvent +
?CashDeskAppl i cati onHandl er. onProduct Bar codeScannedEvent +
?CashDeskAppl i cati onHandl er. onPl NEnt er edEvent
)*

)i

PAYI NG_BY_CASH

(

(

(
?CashDeskAppl i cati onHandl er. onSal eSt art edEvent +
?CashDeskAppl i cati onHandl er. onSal eFi ni shedEvent +
?CashDeskAppl i cat i onHandl er. onCashBoxCl osedEvent +
?CashDeskAppl i cati onHandl er. onPaynent MbdeEvent +
?CashDeskAppl i cati onHandl er. onPr oduct Bar codeScannedEvent +
?CashDeskAppl i cat i onHandl er . onPl NEnt er edEvent +
?CashDeskAppl i cati onHandl er. onCr edi t Car dScannedEvent +
The inportant part:
?CashDeskAppl i cat i onHandl er . onCashAnount Ent er edEvent
)

On Enter

The inportant part:

CoCoME in Fractal 27

?CashDeskAppl i cati onHandl er. onCashAnount Ent er edEvent
I CashDeskAppl i cati onDi spat cher. sendChangeAnount Cal cul at edEvent

(

?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cat i onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
-

)*
The inportant part:

onSal eSt art edEvent +

onSal eFi ni shedEvent +
onPaynent MbdeEvent +
onCashAnount Ent er edEvent +
onPr oduct Bar codeScannedEvent +
onPl NEnt er edEvent +

onCr edi t Car dScannedEvent

?CashDeskAppl i cati onHandl er. onCashBoxC osedEvent {
! CashDeskAppl i cati onDi spat cher. sendSal eSuccessEvent;
I CashDeskDi spat cher. sendAccount Sal eEvent ;
| CashDeskDi spat cher. sendSal eRegi st er edEvent

}
)

+

PAYI NG_BY_CREDI TCARD
(

(
?CashDeskAppl i cati onHandl er.
CREDI TCARD_SCANNED
(
?CashDeskAppl i cati onHandl er

! BankLock. | ock;
I Bankl f . val i dat eCar d;

onCr edi t Car dScannedEvent ;

.onPl NEnt er edEvent {

(
I CashDeskAppl i cati onD spat cher. sendl nval i dCr edi t Car dEvent
+

(
! Bankl f . debi t Card;

I CashDeskAppl i cati onDi spat cher. sendl nval i dCr edi t Car dEvent

)
I BankLock. unl ock

¥
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
?CashDeskAppl i cati onHandl er.
-

)

?CashDeskAppl i cati onHandl er.
| BankLock. | ock;
I Bankl f . val i dat eCar d;
I Bankl f . debi t Car d;

onSal eSt art edEvent +

onSal eFi ni shedEvent +
onPaynent MbdeEvent +
onCashAnount Ent er edEvent +
onPr oduct Bar codeScannedEvent +
onCr edi t Car dScannedEvent +
onCashBoxC osedEvent

onPl NEnt er edEvent {

! CashDeskAppl i cati onDi spat cher. sendl nval i dCr edi t Car dEvent ;

! BankLock. unl ock

}
)

?CashDeskAppl i cati onHandl er. onCredi t Car dScannedEvent ;

CREDI TCARD_SCANNED
(
?CashDeskAppl i cati onHandl er.

onSal eSt art edEvent +

28 Lubomir Bulej et al.

?CashDeskAppl i cati onHandl er. onSal eFi ni shedEvent +
?CashDeskAppl i cat i onHandl er . onPaynent MbdeEvent +
?CashDeskAppl i cati onHandl er . onCashAnount Ent er edEvent +
?CashDeskAppl i cati onHandl er. onPr oduct Bar codeScannedEvent +
?CashDeskAppl i cat i onHandl er. onCr edi t Car dScannedEvent +
?CashDeskAppl i cati onHandl er . onCashBoxC osedEvent

* .

The inportant part:

?CashDeskAppl i cati onHandl er. onPl NEnt er edEvent {
! BankLock. | ock;
! Bankl f . val i dat eCar d;
! Bankl f . debi t Card;
! BankLock. unl ock;
! CashDeskAppl i cati onDi spat cher. sendSal eSuccessEvent ;
I CashDeskDi spat cher. sendAccount Sal eEvent ;
I CashDeskDi spat cher. sendSal eRegi st er edEvent

}

)

)

*

(
Enabl e Express Mode
?CashDeskHandl er. onExpr essMbdeEnabl edEvent
| CashDeskAppl i cati onDi spat cher . sendExpr essMbdeEnabl edEvent

*

Di sabl e Express Mde
?CashDeskAppl i cati onHandl er. onExpr essMbdeD sabl edEvent

)*

TradingSystem::CashDeskL ine:: CashDesk:: CashDeskBus

(! Hel per.token)*
sync{ Hel per .t oken}

(?CashBoxControl | er D spat cher. sendCashAnount Ent er edEvent {
?Hel per . t oken{
| CashDeskAppl i cati onHandl er. onCashAnmount Ent er edEvent |
! PrinterControll erHandl er. onCashAnount Ent er edEvent |
! CashDesk@GUI Handl er . onCashAnount Ent er edEvent
}
H*

(?CashBoxControl | er D spat cher. sendCashBoxd osedEvent {
?Hel per .t oken{
| CashDeskAppl i cati onHandl er. onCashBox{ osedEvent |
! PrinterControllerHandl er. onCashBoxCl osedEvent

}
I3

|
(?Car dReader Cont rol | er Di spat cher. sendCr edi t Car dScannedEvent {
?Hel per . t oken{
! CashDeskAppl i cati onHandl er. onCr edi t Car dScannedEvent

}
I3

(?CashBoxControl | er D spat cher. sendExpr essMdeDi sabl edEvent {
?Hel per . t oken{
! CashDeskGUl Handl er . onExpr essMbdeDi sabl edEvent |
I Li ght D spl ayControl | er Handl er. onExpr essWbdeD sabl edEvent |
| Car dReader Control | er. onExpr essMbdeDi sabl edEvent |
| CashDeskAppl i cati onHandl er . onExpr essMbdeDi sabl edEvent

CoCoME in Fractal

}
I

|(’?CashDeskAppI i cati onDi spat cher. sendExpr essModeEnabl edEvent {
?Hel per .t oken{
| CashDeskGUI Handl er . onExpr essMbdeEnabl edEvent |
I'Li ght Di spl ayControl | er Handl er. onExpr essMbdeEnabl edEvent |
! Car dReader Contr ol | er. onExpr essMbdeEnabl edEvent

}
19k

(?CashDeskAppl i cati onDi spat cher. sendChangeAnount Cal cul at edEvent {
! CashDeskGUI Handl er . onChangeAnount Cal cul at edEvent |
I PrinterControll erHandl er. onChangeAnount Cal cul at edEvent |
! CashBoxCont r ol | er. onChangeAnpunt Cal cul at edEvent
}

)*

|

(?CashDeskAppl i cati onDi spat cher. sendl nval i dCredi t Car dEvent {
| CashDeskGUI Handl er . onl nval i dOr edi t Car dEvent

)*}

|

(?CashBoxCont rol | er Di spat cher . sendPaynent ModeEvent {

?Hel per . t oken{

| CashDeskAppl i cati onHandl er . onPaynent ModeEvent

}
19k

(?Car dReader Cont rol | er Di spat cher. sendPl NEnt er edEvent {
?Hel per . t oken{
| CashDeskAppl i cati onHandl er. onPl NEnt er edEvent

}*
}
(?CashDeskAppl i cati onDi spat cher. sendProduct Bar codeNot Val i dEvent {

! CashDeskGUI Handl er . onPr oduct Bar codeNot Val i dEvent
}

)*

|

(?Scanner Control | er D spat cher. sendPr oduct Bar codeScannedEvent {
?Hel per . t oken{

! CashDeskAppl i cati onHandl er. onPr oduct Bar codeScannedEvent

}
I3

(?CashDeskAppl i cati onDi spat cher. sendRunni ngTot al ChangedEvent {
! CashDeskGUl Handl er . onRunni ngTot al ChangedEvent |
! PrinterControllerHandl er. onRunni ngTot al ChangedEvent
}

)*

|

(?CashBoxControl | er D spat cher. sendSal eFi ni shedEvent {
?Hel per . t oken{

! CashDeskAppl i cati onHandl er . onSal eFi ni shedEvent |
! PrinterControllerHandl er. onSal eFi ni shedEvent

}*
| }
(?CashBoxCont rol | er Di spat cher. sendSal eSt art edEvent {
?Hel per . t oken{
!'PrinterControllerHandl er. onSal eSt art edEvent |

! CashDeskAppl i cati onHandl er. onSal eSt art edEvent |
! CashDesk@UI Handl er . onSal eSt art edEvent

}*
})
(?CashDeskAppl i cati onDi spat cher. sendSal eSuccessEvent {

29

30 Lubomir Bulej et al.

I PrinterControllerHandl er. onSal eSuccessEvent |
! CashDeskGUI Handl er . onSal eSuccessEvent

)*}

|

accept spare tokens

?Hel per . t oken*

TradingSystem::CashDeskLine:: CashDesk::CashBox protocol

This component is an example of simple bus evemdymer and subscriber

containing no internal state information. In resg®o the cashier actions, which are
not modeled, it is sending events and in paraltelisi able to receive the

ChangeAmountCalculated event.

(
I CashBoxCont rol | er Di spat cher | f. sendCashAnount Ent er edEvent
+

I CashBoxCont rol | er Di spat cher | f. sendCashBoxCl osedEvent

"

I CashBoxCont rol | er Di spat cher| f. sendExpr essMbdeDi sabl edEvent
T

I CashBoxCont rol | er Di spat cher| f. sendPaynment ModeEvent

+

I CashBoxControl | er Di spat cherl f. sendSal eFi ni shedEvent
"

I CashBoxCont rol | er Di spat cher| f. sendSal eSt art edEvent

*

?CashBoxControl | er. onChangeAnount Cal cul at edEvent *

TradingSystem::Inventory:: StoreApplication protocol

This component is an example of a component from Ithventory part of the
application which does not directly communicatehvétbus.

(

(
?CashDeskConnect or | f. get Product Wt hSt ockl tem {
! Persi stenceQueryl f _1. get Per si st enceCont ext _1;
I StoreQuerylf_1.queryStockltem1

)
+

?Account Sal eEvent . bookSal e {
! Persi stenceQueryl f _1. get Per si st enceCont ext _1;
I StoreQueryl f_1.queryStockltenByld_1*;

! Persi stenceQueryl f_1. get Per si st enceCont ext _1;

! StoreQueryl f_1. queryLowSt ockl tens_1;

I StoreQueryl f_1. queryStoreByld_1;

! Product Di spatcher|f. order Product sAvai | abl eAt & her St or es;
(!'StoreQuerylf_1. order Product sAvai |l abl eAt & her Stores_1 + NULL)

~—
o —
-

I Persi stenceQueryl f_1. get Persi st enceCont ext _2;

(

I StoreQueryl f_1.
! StoreQueryl f_1.

A

(# Fig. 20
! StoreQueryl f_1.
I StoreQueryl f_1.

A

(# Fig 21
! StoreQueryl f_1.
I StoreQueryl f_1.
Fig. 23

I StoreQueryl f_1.

! StoreQueryl f_1.

I StoreQueryl f_1.

—~ N4~ 4~ ~ 4~

—~—
o —

CoCoME in Fractal
qguer yProduct Byl d_2*;

quer ySt or eByl d_2*

queryOrder Byl d_2;
quer ySt ockl t em 2*

quer ySt oreByl d_2;
quer yAl | St ockl tems_2

quer ySt ockl tenByl d_2

quer yLowst ockl tens_2

quer yProducts_2

?MoveGoodsl f . quer yGoodAmount {
| Persi st enceQueryl f _1. get Per si st enceCont ext _3;
| StoreQueryl f_1. queryProduct Byl d_3*

+

?MoveGoods| f . sendToQt her St or ef
! Persi st enceQueryl f _1. get Per si st enceCont ext _3;
I StoreQueryl f_1. queryStockltem 3*

}
) *
|

?MoveGoodsl f . accept

Fr o her St or ef

I Persi stenceQueryl f_1. get Persi st enceCont ext _4;

}

! StoreQueryl f_1. queryProduct Byl d_4*
*

31

