

Using Connectors for Deployment of Heterogeneous
Applications in the Context of OMG D&C Specification

Lubomír Bulej 1, 2, Tomáš Bureš 1,2

1 Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering
Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{ bulej,bures} @nenya.ms.mff.cuni.cz
http://nenya.ms.mff.cuni.cz

2 Academy of Sciences of the Czech Republic
Institute of Computer Science
{ bulej,bures} @cs.cas.cz
http://www.cs.cas.cz

1. Introduction

Component-based software engineering is a paradigm advancing a view of
constructing software from reusable building blocks, components. A component is
typically a black box with a well defined interface, performing a known function.
The concept builds on the techniques well known from modular programming,
which encourage the developers to split a large and complex system into smaller
and better manageable functional blocks and attempt to minimize dependencies
between those blocks.

Several aspects of component-based programming have been embraced by the
software development industry and as a result, there are now several component
models, such as Enterprise Java Beans [12] by Sun Microsystems, CORBA
Component Model [8] by OMG, and .Net [5] by Microsoft, which are extensively
used for production of complex software systems.

There are also a large number of other component models, designed and used
mainly by the academic community. While most of the academic component
models lack the maturity of their industrial counterparts, they aim higher with
respect to fulfilling the vision of the component-based software engineering
paradigm. This is mainly reflected in support for advanced modeling features, such
as component nesting, or connector support. While we are aware of a number of
component models used in academia, we are most familiar with SOFA [11,7] and
Fractal [6]. Throughout the paper, we will use these models along with EJB as a
test-bed for our experiments.

Typically, component applications are modeled as distributed and platform
independent, with a particular execution platform selected during development.

 Using Connectors for Deployment of Heterogeneous Applications 2
 in the Context of OMG D&C Specification

However, the current trends in software industry concerning enterprise integration
may hint that platform independence on the level of design is not enough.

Our aim is to make possible creating heterogeneous applications which, in
addition to the above, can consist of components written using different component
models. This brings us two problems that need to be solved – 1) making the
different components work together, and 2) deploying the resulting heterogeneous
application.

The two problems may seem orthogonal, but in fact they are connected due to
the nature of the differences between component models. These differences
comprise mainly component packaging format and deployment, component
instantiation and lifecycle management, communication middleware, hierarchical
composition of components, etc. To make the different components work together
and create a truly heterogeneous component application, we need to overcome
those differences.

A key problem in making components from different component models work
together is communication. Connections in different component models have
different semantics and typically use different communication middleware to
achieve distribution. Contemporary solutions to this problem usually employ
middleware bridges (e.g. BEA WebLogic, Borland Janeva, IONA Orbix and Artix,
Intrinsyc J-Integra, ObjectWeb DotNetJ, etc.) to connect components form
different component technologies, which only tackles the issue of different
middleware and leaves out the issue of different semantics and other (connection
related) differences between the component models.

We propose to use software connectors [1] to define the semantics for
connections between components from different component models. Based on
requirements placed on a specific connection, the implementation of a connector
can be automatically generated or, if the semantics allows it, a suitable middleware
bridge can be used to mediate the connection.

Deployment of component applications is one of the most burning problems for
the majority of component models. The deployment process generally consists of
several steps, which have to be performed in order to successfully launch a
component application. Without deployment support and tools, a component model
is unusable for serious software development.

Most of the component models address the deployment issue in some way, but
the differences between various component models have made it difficult to arrive
at a common solution. Therefore the deployment process for component
applications is specific to a particular component technology and a vendor. Worse,
even applications written for a standardized component technology (e.g. EJB) have
to be deployed in a vendor specific way using the vendor’s proprietary tools.

The above mentioned situation makes the integration of components from
different component models and the deployment and maintenance of the resulting
application practically impossible.

A promising approach to deployment of heterogeneous component applications
is modeling the application in a platform independent manner and mapping the
platform independent model into the target environment to ensure interoperability.
The first step in this direction has been done by the Object Management Group (the
body behind CORBA and the CORBA Component Model [8]), who has published

 Using Connectors for Deployment of Heterogeneous Applications 3
 in the Context of OMG D&C Specification

a specification concerning deployment and configuration of distributed component-
based applications [9]. Following the MDA [10] approach, the specification
presents platform independent models of the application, target environment, and
the deployment process, which are then expected to be transformed to platform
specific models suitable for specific component technologies and mapped to
particular programming environment.

Upon careful examination, though, the OMG specification stops short of
providing support for deployment of heterogeneous component applications. The
failure rests with the fact that the OMG expects the platform independent model to
be mapped into a single target environment at a time. In effect, this means that the
specification can be used to define a number of deployment mechanisms, but each
of the deployment mechanisms will only support a single target environment.
Interoperability between heterogeneous target environments is only provided at a
conceptual level, which is rather insufficient.

We believe that the specification should support deployment of heterogeneous
applications, rather than conceptually compatible but functionally incompatible
deployment mechanisms for heterogeneous target environments. We extend the
OMG specification to support deployment of heterogeneous component
applications by introducing connectors as bridges between the heterogeneous parts
of an application, and by extending the model to support construction of
connectors during deployment.

Throughout the paper, we will use a model of a simple component application
depicted in Figure 1 as a running example. The rest of the paper is organized as
follows. Section 2 presents an overview of software connectors and their use in
overcoming the differences between component models. Section 3 provides a short
overview of the relevant parts of the OMG specification, and Section 4
demonstrates the deployment of a heterogeneous application using connectors and
the OMG model of deployment process. We discuss related work in Section 5 and
conclude the paper in Section 6.

Provided interface

Required interface

Client B

Server
component

Client C

Client A

Component binding

Fig. 1. A model of a simple component application. There is a server component providing
two different services with two clients connected to one service and another client connected
to the other service.

 Using Connectors for Deployment of Heterogeneous Applications 4
 in the Context of OMG D&C Specification

2. Software Connectors

Software connectors are first class entities capturing communication among
components. Although connectors may be very complex, modeled by complicated
architectures reflecting different communication styles [4], it is sufficient for the
purpose of this paper to view a connector as a number of connector units attached
to their respective components (see Figure 2).

Apart from modeling and representing inter-component communication,
connectors have another important feature – they can be generated automatically
based on a high-level description expressed in terms of a communication style and
non-functional properties [4]. That allows a developer to concern herself just with
components’ business logic and not with glue code (often containing middleware
dependent parts) used to provide communication among components in distributed
environment.

The whole trick of using connectors is to plug an appropriate connector
instance between every two components. However, as the concept of connectors is
not typically present in current component models, it is often necessary to extend
them to support connectors. That is easily done by hooking in the process of
component instantiation and binding. Upon instantiation of a component, we create
the server connector units and make sure that whenever component interfaces are
queried, a connector reference to a corresponding server connector unit is returned
(instead of returning a direct reference to a component interface). Similarly,
whenever an interface is being connected to another component, a client connector
unit is created and bound using the connector reference. In our approach, the
connector reference is a container holding a set of server unit identities depending
on available transport methods (e.g. Java reference for in-address-space
connections, RMI reference for RMI connections, or IOR for CORBA
connections).

Provided interface

Required interface

Client B

Server
component

Client C

Client A

Component binding

Distribution boundary

Server connector unit

Client connector unit

Fig. 2. A model of a simple component application using connectors to capture inter-
component interactions. Each connector is split into two parts respecting the distribution
boundary. In the case of the procedure call-based connectors (i.e. those used in the example)
there is typically one server unit and zero to many client units.

 Using Connectors for Deployment of Heterogeneous Applications 5
 in the Context of OMG D&C Specification

When instantiating a connector unit at runtime, the information as to what
implementation is to be used for that particular connector unit is looked up in a
structure called connector configuration map, which contains pairs <interface
discriminator, connector unit implementation>. The interface discriminator
uniquely identifies either a server interface, in which case the discriminator is a
pair <component, interface name>, or a client interface, in which case the
discriminator is a tuple <client component, client interface name, server dock
name, server component, server interface name>. Such a description reflects the
fact that a connector unit attached to a server interface is created in advance and
can exist on its own, while a connector unit attached to a client interface is created
during component binding when the binding target is already known.

3. Overview of the OMG D&C Specification

As mentioned earlier, the OMG Deployment and Configuration Specification is the
first step towards unified deployment of component applications. The specification
provides three platform independent models, the component model, the target
model, and the execution model. These models represent the three major
abstractions used during the deployment process, which uses these models to
deploy an application.

For use with specific component models, the platform independent models
should be transformed to platform dependent models, capturing the specifics of the
concrete platform. A more detailed overview can be found in [3], and yet more
details can be found in the specification itself [9].

To reduce the complexity, the models are split into the data model and the
management (runtime) model, with the management models describing runtime
entities dealing with the data models. The management models are not important in
the scope of this paper; therefore we will only deal with the data models.

3.1 Component Data Model

The component data model captures the logical view of a component application.
A high level overview of the component data model is depicted in Figure 3. The
key concept is a component package, which represents a reusable work product. A
component package is a realization of a specific component interface, and contains
possibly multiple implementations of the realized interface. As a reusable product,
the package contains configuration of the encapsulated implementations, and
selection criteria for choosing an implementation by matching the criteria to the
capabilities of the individual implementations.

The implementation of a component interface can be either monolithic, or an
assembly of other components. A monolithic implementation consists of a set of
implementation artifacts that make up the implementation. The artifacts can
depend on each other and can be associated with a set of deployment requirements
and execution parameters. The deployment requirements have to be satisfied
before an artifact can be deployed.

 Using Connectors for Deployment of Heterogeneous Applications 6
 in the Context of OMG D&C Specification

An assembly of components, depicted in Figure 4, contains references to other
component packages to serve as subcomponents of the assembly. The instances of
subcomponents are connected using connections between endpoints defined by
subcomponents and external endpoints of the assembly. To allow for configuration
of an assembly, which in itself does not carry any implementation code, the
configuration properties of an assembly are delegated to its subcomponents
through a defined mapping.

3.2 Target Data Model

The target data model describes the computational environment into which the
application is deployed. The environment, termed domain, consists of
computational nodes, interconnects and bridges. Since the target model is not
important in the scope of the paper, we will not describe the model in greater
detail.

3.3 Execution Data Model

The execution data model depicted in Figure 5 describes the physical structure of a
component application. The model represents a flattened view of the original
component data model describing the logical structure of an application. The
execution data model the application in terms of component instances, connections
between endpoints of the instances, and assignment of the instances to
computational nodes in the target environment

The component instances carry configuration properties which can be used to
influence their behavior, and their implementation is in turn described in terms of
implementation artifacts. The artifacts, which are binary files containing
implementation code, can carry individual execution parameters, which can be

Fig. 3. An overview of the component data model

 Using Connectors for Deployment of Heterogeneous Applications 7
 in the Context of OMG D&C Specification

used to tell the computational node how to treat a particular implementation
artifact. Since the artifacts can be shared by multiple implementations, the
execution parameters can be defined per implementation.

3.4 Deployment Process

Prior to deployment, the component application must be developed, packaged, and
published by the provider and obtained by the user. The deployment process
defined in the specification then consists of five stages and is performed by a
designated actor called deployer.

Installation. During installation, the software package and its component data

model is put into a repository, where it will be accessible from other stages of
deployment. The location of the repository is not related to the target execution
domain. Also, the installation does not involve transfer of binary files to the
computational nodes in a domain.

Configuration. When the software is installed in the repository, its

functionality can be configured by the deployer. The software can be configured
multiple times for different configurations. The configuration stage is meant solely
for functional configuration of the software, therefore the configuration should not
concern any deployment related decisions or requirements.

Planning. After a software package has been installed into a repository and

configured, the deployer can start planning the deployment of the application. The
process of planning involves selection of computational nodes the software will
run on, the resources it will require for execution, deciding which implementation
will be used for component instances, etc. The planning does not have any
immediate effects on the environment, but produces a physical description of the
application in the execution data model, termed deployment plan.

Fig. 4. A detailed view of the component assembly description

 Using Connectors for Deployment of Heterogeneous Applications 8
 in the Context of OMG D&C Specification

Preparation. Unlike the planning stage, the preparation stage involves
performing work in the target environment in order to prepare the environment for
execution of the software. The actual transfer of files to computational nodes in the
domain can be postponed until the launch of the application.

Launch. After preparation, the application is brought up to the executing state

during the launch stage. As planned, instances of components are created and
configured on computational nodes in the target environment and the connections
among the instances are established. The application then runs until terminated.

4. Integrating Connectors with Deployment

We have presented the two basic concepts we intend to employ to support
deployment of heterogeneous component applications. Software connectors,
described in Section 2 will be used to overcome the differences between various
component models, while OMG D&C Specification, briefly introduced in
Section 3 will be used to model the deployment process of a heterogeneous
application.

Since the OMG specification does not support the description of heterogeneous
component applications and does not directly support connectors, we have to find a
way to combine the two approaches. To use connectors with a component
application, there are basically two tasks that need to be done, and which need to
be integrated with the OMG deployment process:
1. At some point, the implementation of all connectors needs to be generated,

which comprises connectors for component bindings a) present in the initial
architecture of an application, and b) that can emerge at runtime as a result of
passing a reference to component interface

2. The connectors need to be instantiated and bound to their respective components
when launching an application. Additionally, the connector configuration map

Fig. 5. An overview of the execution data model

 Using Connectors for Deployment of Heterogeneous Applications 9
 in the Context of OMG D&C Specification

(described at the end of Section 2) must be prepared for each node to allow for
later instantiation of connectors that result from reference passing.

4.1. Preparing connectors

To generate a connector, a connector generator needs to have enough information
concerning the requirements for the communication the connector is expected to
mediate. The specification of connector features has the form of a communication
style and non-functional properties. Each connection among instances of
components in an assembly can have different requirements.

The planning stage of the deployment process appears to be the most suitable
moment for generating connectors. The planning is performed by the deployer
using a planner tool. The tool takes as input the component data model, describing
the component application, and the target data model, describing the target
environment. Using the tool, the deployer assigns instances of components to
nodes in the target environment and verifies that an instance can be placed on a
particular node. The planner tool has all the information required for generation of
connectors, except for the connection requirements.

The specification of connection requirements is not a part of the OMG
specification, which therefore needs to be slightly modified. To make the
information available, we have extended the AssemblyConnectionDescription in
the component data model class with another association named
connectionRequirement. The association is used to describe the connection
requirements.

The connector-aware part of the planner can then communicate with a
connector generator [4] and provide the necessary information. For each assembly
connection, the generator synthesizes the implementation artifacts and
configuration required to instantiate connector and returns the code fragments to
the planner. The connector-aware part of the planner then replaces the assembly
connections in the component data model with pairs of components encapsulating
the connector units connected to the original components.

This step in fact transforms the enhanced component data model (see Figure 6)
back into the original plain data model, which can be then transformed to
deployment plan according to the original specification, and for which the planner
does not need to be modified.

What is important to note, though, that while we transform connectors to
components in the context of the OMG specification, connectors are not really
components that would be present in the architecture of an application. Connectors
are instantiated at runtime, the instance depends on the type of the server a
connector unit connects to, and their encapsulation in components as seen in the
component data model is merely an implementation convenience.

4.2. Instantiating connectors

The output of the planning stage is a deployment descriptor, describing the
physical structure of the application as assigned onto nodes in the target

 Using Connectors for Deployment of Heterogeneous Applications 10
 in the Context of OMG D&C Specification

environment. The plan is then broken into pieces with respect to the distribution
boundaries and disseminated to individual nodes. The runtime on each of the nodes
uses the fragments of the deployment plan to instantiate components and connector
units. Depending on the type of the connector unit one of the following actions is
taken:
1. Server connector unit is instantiated and bound to its corresponding component.

The unit registers its reference (using a name obtained from execution
parameters in the deployment plan) in a naming service so as to be accessible by
clients.

2. Bound client connector unit (i.e. representing a binding in the initial
architecture) is instantiated and its corresponding component is bound to it. The
unit retrieves a reference to a previously registered server connector unit from
the naming service (using a name obtained from the deployment plan) and
establishes the binding.

3. Future client connector unit (i.e. a unit that does not exist in the initial
architecture but which can emerge at runtime as the result of reference passing)
is stored in the connector configuration map for later use.

Since the implementation of a client connector unit depends also on the server

component, there can be multiple implementations of a client unit. This is
addressed by providing all the implementations in the deployment plan as different
artifacts implementing one component and performing the actions 2 or 3 stepwise
for the individual artifacts.

5. Evaluation and Related Work

Our approach to deployment of heterogeneous component applications builds upon
two major concepts, the concept of software connectors, which is used to define
semantics of connections between components from different component models,
and the concept proposed by the OMG D&C specification, which unifies
deployment of component based applications on conceptual level, but which in
itself cannot provide for deployment of heterogeneous applications.

Fig. 6. Application architecture after transformation of the enhanced description

Provided interface

Required interface

Client B

Server
component

Client C

Client A

Component binding

Client
Connector

Unit
(Client A)

Server
Connector

Unit

Client
Connector

Unit
(Client B)

Server
Connector

Unit

Client
Connector

Unit
(Client C)

Distribution boundary

Inter-unit reference

 Using Connectors for Deployment of Heterogeneous Applications 11
 in the Context of OMG D&C Specification

The original component data model present in the specification assumed direct
communication between components. That requires that the artifacts providing
component endpoints have to be connected together, which makes it impossible to
abstract away the middleware technology used for communication. We have made
a slight modification to the original OMG specification to enable expression of
connection requirements in form of communication styles and nonfunctional
properties, which can be used to generate connectors. This allows postponing the
selection of communication middleware until the planning stage of the deployment
process, or introducing logging, monitoring, or encryption into communication
without changing the original application or its description.

We have also described the integration of the connector generator into the
deployment process and pointed out places where the planner tool needs to be
modified to support the connector generator. By transforming the enhanced
component data model to the original component data model, we have avoided
excessive modifications to the planner tool. The transformation of component data
models is a generic process that can be used to enhance the expressive power of the
component data model as long as the advanced constructs can be transformed back
to the original data model.

To our knowledge, there is no other work concerning the use of connectors and
the OMG specification to support deployment of heterogeneous component
applications. There are, however, a number of mature business solutions for
interconnecting the leading business component models such as EJB [12], CCM
[8], and .NET [5]. A common denominator of these models is the lack of certain
features (e.g. component nesting), which makes the problem of their
interconnection a matter of middleware bridging. Each of those component models
has a native middleware for communication in distributed environment (RMI in
case of EJB, CORBA in case of CCM, and .NET remoting in case of .NET).

Even though the bridges represent mature software products, they limit the
heterogeneity of the application by prescribing the use of specific communication
mechanisms for the components. The connectors, on the other hand, represent a
high level view on the connection between components, and allow for the bridges
to be employed in the implementation of a connector if necessary.

6. Conclusion

We have presented an approach which we consider a step forward towards
deployment of heterogeneous component applications, which allows us to create
component applications composed of components implemented in different
component models. We have shown how to employ software connectors to
overcome the differences between component models and combined the use of
connectors with the OMG D&C specification for unified deployment of component
applications.

The presented solution is generic and platform independent, and can be used for
different component models. We have verified our approach on a prototype
implementation, which supports interconnection of components from SOFA,
Fractal, and EJB component models, and are currently developing basic tools for

 Using Connectors for Deployment of Heterogeneous Applications 12
 in the Context of OMG D&C Specification

deploying and execution of heterogeneous component applications. Mainly due to
space constraints, we had to omit some of the details, which can be found in [3].

In the future, we plan to enhance the connector generator and develop more
sophisticated tools, mainly the deployment planner and its integration with the
connector generator. The work presented in this paper is part of our efforts within
the Deployment Framework task of WP2 of the OSMOSE project. The results
related to the OMG D&C specification will be submitted to the OMG.

Acknowledgments. The authors would like to thank Petr T

�
ma for his valuable

comments. This work was partially supported by the Grant Agency of the Czech
Republic project number 201/05/H014.

References

[1] Balek, D., Plasil, F., Software Connectors and Their Role in Component Deployment,
Proceedings of DAIS'01, Krakow, Kluwer, Sep 2001

[2] Bulej, L., Bures, T., A Connector Model Suitable for Automatic Generation of
Connectors, Tech. Report No. 2003/1, Dep. of SW Engineering, Charles University,
Prague, Jan 2003

[3] Bulej, L., Bures, T., Addressing Heterogeneity in OMG D&C-based Deployment,
Tech. Report No. 2004/7, Dep. of SW Engineering, Charles University, Prague, Nov
2004

[4] Bures, T., Plasil, F., Communication Style Driven Connector Configurations,
Copyright Springer-Verlag, Berlin, LNCS3026, ISBN: 3-540-21975-7, ISSN: 0302-
9743, pp. 102-116, 2004

[5] Microsoft Corporation, .NET, http://www.microsoft.com/net, 2004
[6] ObjectWeb Consortium, Fractal Component Model, http://fractal.objectweb.org, 2004
[7] ObjectWeb Consortium, SOFA Component Model, http://sofa.objectweb.org, 2004
[8] Object Management Group, Corba Components, version 3.0,

http://www.omg.org/docs/formal/02-06-65.pdf, Jun 2002
[9] Object Management Group, Deployment and Configuration of Component-based

Distributed Applications Specification, http://www.omg.org/docs/ptc/04-08-02.pdf,
Feb 2004

[10] Object Management Group, Model Driven Architecture,
http://www.omg.org/docs/ormsc/01-07-01.pdf, Jul 2001

[11] Plasil, F., Balek, D., Janecek, R., SOFA/DCUP: Architecture for Component Trading
and Dynamic Updating, Proceedings of ICCDS'98, Annapolis, Maryland, USA, IEEE
CS Press, May 1998

[12] Sun Microsystems, Inc., Java 2 Platform Enterprise Edition Specification, version 1.4,
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf, Nov 2003

