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Abstract

Connectors are used in component-based systems as
first-class entities to abstract component interactions. In this
paper, we propose a way to compose connectors by using
fine-grained elements, each of them representing a single,
well-defined function. We identify an experimentally proven
set of connector elements, which, composed together, model
four basic component interconnection types (procedure call,
messaging, streaming, blackboard), and allow for connector
variants to reflect distribution, security, fault-tolerance, etc.
The presented results are based on a proof-of-the-concept
implementation where connectors are semi-automatically
generated.

1. Introduction and motivation
1.1 Background

The concept of “connector” was introduced in software
architectures as a first-class entity representing component
interactions [1]. The basic idea is that components of an
application contain only the application business logic,
leaving the component interaction-specific tasks to
connectors. However, such a characterization is too vague,
since it does not strictly draw a line between component and
connector responsibilities.

Different types of connectors are associated with
architecture styles in [1] and analyzed as well as classified
e.g. in [2,3]. Every architectural style is characterized by a
specific pattern of components and connectors, and by
specific communication styles (embodied in connectors).
Thus, a style requires specific connector types. For example,
in the pipe-and-filter architectural style, an application is a
set of filters connected by pipes. As stream is here the
inherent method of data communication, the pipe connector
is used to mediate a unidirectional data stream from the

output port of a filter to the input port of another filter.
Interestingly, the main communication styles found in
software architectures correspond to the types of interaction
distinguished in different kinds of middleware — remote
procedure call based middleware (e.g. CORBA [4], RMI
[5]), message oriented middleware (e.g. JIMS [6], CORBA
Message Service [4], JORAM [7]), middleware for
streaming (e.g. Helix DNA [8]), and distributed shared
memory (e.g. JavaSpaces [9], relational databases).

In general, a communication style represents a basic
contract among components; however, such a contract has
to be elaborated further when additional requirements are
imposed (e.g. security, transactions). This triggers the need
to capture the details not visible to components, but vital for
an actual connection. This comprises the
technology/middleware used to realize the connection,
security issues such as encryption, quality of services, etc.
These details are usually referred to as non-functional resp.
extra-functional properties (NFPs). They should be
considered an important part of a connector specification,
since they influence the connection behavior (reflecting
these properties directly in the components’ code can
negatively influence the portability of the respective
application across different platforms and middleware). The
NFPs are addressed mainly in reflective middleware
research [10,11], which actually does not consider the
connectors (in terms of component-based systems), but
implements a lot of their desired functionality.

To our knowledge, there are very few component models
supporting connectors in an implementation, e.g. [12] and
[13]. However, these component systems do not consider
middleware and do not deal with NFPs. As an aside, the
term “connector” can be also found in EJB [14], to perform
adaptation in order to incorporate legacy systems but
capturing neither communication style nor NFPs.



1.1 The goals and structure of the paper

As indicated in Section 1.1, a real problem with
component models supporting connectors is that they are
scarce and those existing do not benefit from the broad
spectrum of functionality offered by the variety of existing
middleware. Thus, a challenge is to create a connector
model which would address this problem. Specifically, it
should respect the choice of a particular communication
style, offer a choice of NFPs, allow for automated
generation of connector code, and benefit from the features
offered by the middleware on the target deployment nodes.
With the aim to show that this is a realistic requirement, the
goal of this paper is to present an elaboration of the
connector model designed in our group [15,16] which
covers most of the problems above, including connector
generation and removal of the middleware-related code from
components.

The goal is reflected in the structure of the paper in the
following way. In Section 2, we focus on the basic
communication styles supported by middleware and present
a generic connector model able to capture these styles and
also reflect NFPs. At the end of the section we present the
way we generate connectors. In Section 3, we use the
generic model to specify connector architecture for each of
the communication styles with respect to a desired set of
NFPs. An evaluation of our approach and related work are
discussed in Section 4, while Section 5 summarizes the
contributions.

2. Connectors vs. middleware

2.1 Component interactions reflected by

middleware

In this section, we assume the connections among
components are reflected in ADL (Architecture Description
Language) via bindings of the components’ interfaces (e.g.
as in [17]). This assumption is mostly triggered by the
practical need to employ an implementation
environment/middleware based on subroutine calls. This
assumption leads us to considering only the types of
component interaction that are reflected in a middleware —
procedure call, messaging, streaming, blackboard (see
Table 1). Interestingly, these interaction types correspond
also to the examples of connectors in [1].

However, the connector instances implementing a
particular component communication style can vary in the
way they capture NFPs, such as real-time constraints,
middleware interoperability, monitoring, and security, as
well as fault tolerance, transaction context modification, etc.
In Appendix, for each communication style, we list the
NFPs we consider important and sensible in middleware-
based connectors. The features are mostly mutually
orthogonal; the few cases where they are not are clearly

Table 1. Communication styles

Communic

. Description
ation style p

A classical client server call. The client is
Procedure |blocked until the request is processed by the
call server and result is returned. Example: CORBA
remote procedure call

An asynchronous message delivery from a
Messaging |[producer to the subscribed listeners. Example:
CORBA event channel service

A uni- or bidirectional stream of data between a

Streaming |sender and (multiple) recipients. Example: Unix
pipe
A communication via shared memory. An object
is referenced by a key. Using this key the object

Blackboard may be repeatedly read, written, and deleted.
Example: JavaSpaces

indicated by grey bars.

2.2 Connector model and construction

We model connectors using a notation based on [15],
capturing connectors as a composition of elements
(Figurel). Using the elements we can model connectors with
different NFPs. Compared to [15], we use structured
connector elements to capture fine-grained parts of
middleware, such as marshaling, unmarshaling, etc. Using
the notation, Figure 1 shows a sample architecture of a
connector (reflecting the procedure call communication
style) where several client components can have access to a
single server component. Roles, the black resp. white circles
are in principle generic interfaces of the connector. They
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skeleto interceptor
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quest mgr.
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c) skeleton architecture

Figure 1. Example of a Procedure call
connector



will be later bound to a requires resp. provides interface of
a component. They are on the connector frame (its
boundary, the solid rectangle). Having a specific, typically
elementary, functionality, each of the elements provides a
part of the connector implementation. In principle, the
designer of a connector specifies instances of elements and
bindings between them (i.e. connector’s architecture).

Deployment units (dotted lines) define the distribution of
connectors. In principle, a deployment unit groups together
the elements to be instantiated in a single address space. The
responsibility for constituting a link between elements that
crosses unit boundaries is delegated to the elements on both
sides of the link. Typically, the underlying middleware is
used to implement the link. Obviously, specification of
deployment units has to be a part of connector architecture
specification, because the boundaries have a significant
impact on the resulting architecture.

The evolution of a connector comprises several activities
captured on the activity diagram in Figure 2. Based on a
desired communication style and a set of envisioned NFPs,
the developer designs a connector architecture by
identifying the roles, elements, their links and distribution
units and also identifies the potential value space of the
associated NFPs. Typically, an architecture specification is
written in an ADL notation (see Figure 3).

Now, for a specific architecture A and its set of NFP
domains, two activities can take place simultaneously (for
better understanding, we illustrate the process in terms of a
Java implementation): (i) a connector builder is created (a
Java class), serving as a factory for connectors based on A;
(ii) for each NFP domain D associated with A (Appendix),
a specific value nfv, € D is chosen. Based on all the nfv
values chosen this way, specific connector element factories
are selected (an element factory is a Java class which can
later generate a concrete element class). Now, each role in
A is substituted by the actual interface determined by a tied
component. In addition, this substitution is “announced” to
element factories which generate concrete elements (element
adaptation). Finally, the connector builder is run to
instantiate the whole connector from the adapted elements.

Several steps of the connector construction process can
be automated. They are emphasized in Figure 2 by solid

Design/Choice Connector

Communication\ (from a repository architecture
style - (ADL level)
+ +
Desired NFP NFP domains

set

T T .
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( Concrete Concrete
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(with generic
roles, fixed
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Figure 2. Connector evolution steps

Creating
builder

Running builder

/* This is the ProcedureCall connector
from Figure 1 specified in the component
definition language of the SOFA component
model (http://nenya.ms.mff.cuni.cz).

Full version of this fragment is in [18]*/

connector frame ProcedureCall <ClientType,
ServerType> {
multiple role ClientRole {
provides:
ClientType ClientProv;
}i
role ServerRole {
requires:
ServerType ServerReq;
}i
i

connector architecture SampleProcedureCall
implements ProcedureCall
unit Client ({
inst EStub stub;
}i
unit Server ({
inst ESkeleton skeleton;
inst EInterceptor interceptor;
bind skeleton.callOut to interceptor.in;
}i
delegate ClientRole.ClientProv to
Client.stub.calllIn;
bind Client.stub.lineOut to
Server.skeleton.lineln;
bind Server.skeleton.lineOut to
Client.stub.lineln;
subsume Server.interceptor.out to
ServerRole.ServerReq;

}i

Figure 3. Sample Procedure Call CDL definition

lines (builder generation, element adaptation and assembly).
The actions represented by dashed lines have to be done
manually; however, we believe that even they could be
automated to a certain degree.

3. Building real connectors

By analyzing several middleware designs and
implementations [4,5,6,7,8,9], we have identified a list of
NFPs which can be addressed in
middleware (see Appendix). In this
section, we suggest a connector
architecture for Procedure call and
Messaging communication styles
reflecting an appropriate spectrum of
the identified NFPs. The other two
(Streaming and Blackboard) are due to
space reason omitted. Their detail
description can be found in [18].
Similar to the example from Section 2,
we map a single NFP to one or more
connector elements organized in a

Connector
builder

Connector
instance



specific pattern to achieve the desired connector
functionality.

3.1 Procedure call

The proposed connector architecture for the procedure
call communication style is depicted in Figure 4a. It consists
of a server deployment unit and multiple client deployment
units. For simplicity, only one client deployment unit is
shown. The other client units (identical in principle) are
connected to the server deployment unit in the way
illustrated in Figure 1.
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Figure 4. Proposed procedure call connector
architecture

c) skeleton architecture

In summary, the connector NFPs (listed in Appendix) are

mapped to elements as described below. In principle,

distribution is mapped to the existence of stubs and
skeletons, and the NFPs dependent on distribution are
reflected by the existence or variants of the elements inside
the stub or the skeleton — encryption by an encrypt/decrypt
element, connection quality by a send/recv element, and
fault-tolerance by a distributor element replicating calls to
multiple server units.

In more detail, the functionality of particular elements is
following:

* Roles. Not reflecting any NFP, roles form the connector
entry/exit generic points.

* Interceptors reflect the monitoring property. In principle,
they do not modify the calls they intercept. If monitoring
is not desired, these elements can be omitted.

* Adaptors implement the adaptation property. They solve
minor incompatibilities in the interconnected
components’ interfaces by modifying the mediated calls.
An adaptation can take place on the client side as well as
on the server side (thus affecting all clients). If no
adaptation is necessary, the elements can be omitted.

o Stub. Together with a skeleton element, the stub
implements the distribution property. This element
transfers a call to the server side and waits for a response.
The element can be either primitive (i.e. directly mapped
to the underlying middleware) or compound. A typical
architecture of a stub is on Figure 4b. It consists of a
request manager, which, using the attached marshaller,
creates a request from the incoming calls and blocks the
client thread until a response is received. An encryption
element reflects the encryption property; sender/receiver
elements transport a stream of data and also reflect the
connection quality property. The fault-tolerance property
is implemented by a distributor performing call
replication. The stub element is needed only when
distribution is required.

» Skeleton is the counterpart of the stub element. Again, its
architecture can be primitive or compound (Figure 4c).
The elements in the compound architecture are similar to
those in compound stub. The servant manager uses the
attached marshaller to create a call from the received data
and assigns it to a worker thread. Again, skeleton can be
omitted if distribution is not required.

» Synchronizer reflects the threading policy property. It
synchronizes the calls going to the server component,
allowing, e.g., a thread-unaware code to work properly
in a multithreaded environment.

o Transaction mgr. implements the transaction property.
When appropriate, it can modify the transaction context
of the mediated calls.

3.2 Messaging

The proposed connector architecture for the messaging
communication style is depicted in Figure 5a. It consists of
a distributor deployment unit and several sender/recipient
units. (In a fault-tolerant case, there can be multiple
distributor deployment units.) The sender/recipient
deployment unit allows for sending messages to other
attached components (as well as for receiving messages
from them). The distributor deployment unit is in the middle
of this logical routing star. For simplicity, only one
sender/recipient deployment unit is shown. Other
sender/recipient units would be connected to the distributor
deployment unit in a similar way.

The connector NFPs (listed in Appendix I) are mapped
to elements as described below.

* Roles. The sender role serves to sending messages.
Depending on the recipient mode property, the reception
can work either in push mode, employing the push role
to automatically deliver the incoming messages to the
attached component via a callback interface; or in pull
mode, when the attached component polls for new
messages via the pull role. If the component does not
need to receive messages, the recipient role can remain
unconnected.
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Figure 5. Proposed messaging connector architecture

Queue. Together with the pull role, this implements the
pull variant of the recipient mode property. Thus, the
queue is present only when the message reception works
in pull mode to buffer the incoming messages if
necessary.

Interceptors implement the monitoring property
(similarly to the procedure call architecture).

Adaptor reflects the adaptation property by modifying
the mediated messages.

Transaction mgr. implements the transaction property.
Its presence is meaningful only if message reception
operates in push mode.

Message sender/receiver tealize the distribution
property. Each of them performs communication with
remote nodes. It can be either primitive (directly
implemented by underlying middleware) or compound
(its typical architecture is on Figure 5b). It is similar to
the stub element, however the request manager is
replaced by a message manager which allows the
messages to be transferred in both directions. The
distributor deployment unit supports implementation of
the fault-tolerance property.

Distributor. Being inherent to the communication style,
it is a central part of the connector architecture. It
distributes all the incoming messages to the attached
recipient components. The element reflects delivery
strategy property by implementing different policies for
message routing (one recipient, all recipients, group
address, etc.).

3. Evaluation and related work

To our knowledge, there is no related work addressing all
of the following issues in a single component model and/or
in its implementation. 1) Reflecting the component
interaction types which are supported by existing
middleware, 2) providing the option of choosing from a set
of NFPs, and 3) at least a partial generation of a connector
with respect to the middleware available on target
deployment nodes.

In addressing the first issue, we have identified four basic
communication styles that are directly supported by
middleware (i.e. procedure call, messaging, streaming,
blackboard). These styles correspond to the connector types
mentioned in software architectures in [1]. Medvidovic et al.
in [3] go further and propose additional connector types
(adaptor, linkage, etc.); in our view, being at a lower
abstraction level, these extra connector types are a potential
functional part of the basic four connector types (e.g.,
adaptation is a feature of each of our connector types).

To address the second issue, we have chosen the
approach of reflecting a specific NFP as a set of reusable
connector elements. Following the idea of capturing all the
communication related functionality in a connector (leaving
the component code free of any middleware dependent
fragments), we have managed to compose the key connector
types in such a way that NFPs are realized via connector
elements and a change to a NFP implies only a replacement
of few connector elements, leaving the component code
untouched. Here, our approach is similar to reflective
middleware [10,19,20,11], which is also composed of
smaller parts; here, however, middleware-dependent code is
inherently present in a component, making it less portable.
Our work is also related to [21], which proposes a way to
unify the view on NFPs influencing quality of service in
real-time CORBA. It does not consider different
communication styles, connectors as the communication
mediators, and relies on having the source code of both the
application and the middleware available.

In addressing the third issue (automatic generation), we
have automated the connector builder generation, element
adaptation, and connector assembly; however we plan to
automate to a certain degree the design process of a
connector architecture, including a supporting tool for
connector element choice. The idea of automated
middleware communication-related code generation is
employed in ProActive [22], where stubs and skeletons are
generated at run-time. However, ProActive is bound only to
Java, does not consider other communication styles than
RPC, and does not address NFPs.

Prototype implementation: As a proof of the concept, a
prototype implementation of a connector generator for the
SOFA component model [23] is available [17],
implementing three of the proposed four communication
styles (procedure call, messaging, and datastream).



Designed as an open system employing plugins for an easy
modification, the connector generator allows, for example,
switching transparently between RMI and CORBA (Java
IDL [24]), as well as to combine these middleware
technologies.

4. Summary

In this paper, we presented a way to model and generate
“real connectors” employing existing middleware. We have
elaborated the connector model initially proposed in [15] to
reflect the commonly used communication styles, as well as
non- and extra-functional properties. In addition to
separating the communication-related code from the
functional code of the components, the model allowed us to
partially generate connectors automatically to respect (i) the
middleware available on the target nodes determined by
component deployment, and (ii) the desired communication
style and NFPs. Our further intentions include an
elaboration of automatic connector generation, including a
tool supporting the connector design process.
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Appendix

Procedure Call Messaging
Feature name Comment Feature name Comment

“receive” method is invoked). In pull mode the

recipient actively polls for incoming data.

distribution The connection may be either in one address distribution The messages may be exchanged within only one
space or span across several address spaces address space or across several address spaces
and/or computer nodes. and computers.
encryption |Encryption can be employed to provide security encryption |Encryption can be employed to provide security
even on insecure lines. = even on insecure lines.

) - - o} - :

9@ |connection |It may be necessary to assure some quality of S |connection [It may be necessary to assure some quality of

__5 quality connection (e.g. maximal latency, throughput :g quality connection (e.g. maximal latency, etc.)

k= 2| - p -

Z ete.) S [fault- Allows to groups of replicas instead of single
fault- The connector can support replication to make tolerance  |recipient making the application fault tolerant.
tolerance _ |the server fault-tolerant. adaptation The transmitted messages may be modified in

threading The calls may be serialized (single-threaded) or order to allow incompatible components to

policy left unchanged. cooperate.

adaptation Both the calls and their parameters may be monitoring The transmitted messages may be monitored

modified in order to allow incompatible allowing for profiling and other statistics (usage,
component interfaces to cooperate. throughput, etc.)

monitoring The calls and their parameters may be monitored | | transactions This feature specifies how to handle the

to allow for profiling and other statistics (usage, transactional context (e.g. requires, requires new,
throughput, etc.) etc.)
transactions This feature specifies how to handle the delivery This feature controls to whom the message
transactional context (e.g. propagate the clients’ | [strategy should be delivered. Possible values may be:
transaction at the callee side) exactly one, at least one, all.
Streaming recipient Every recipient can work either in pull or push
- C pull/push mode. In push mode every new message is
gature name omment mode immediately given to recipient (the recipient

distribution The data may be exchanged within Ol’lly one “accept message” method is invoked). In pul]
address space or across several address spaces mode the recipient actively polls the incoming
and computers. queue for new messages.

encryption Encryptlpn can be.employed to provide security Blackboard

even on insecure lines.

) - - Feature name Comment

@ |connection |It may be necessary to assure some quality of —

2 |quality connection (e.g. maximal latency, throughput, distribution The data may be shared pro components

E etc.) residing only in one address space or by

3 - components spanned across networks

= [fault- Allows for groups of replicas instead of single - P - P — -
tolerance  |recipients making the application fault tolerant. | | [encryption |Encryption can be employed to provide security

- - - - 2 even on insecure lines.
adaptation The transmitted stream may be modified in order E - -
to allow incompatible components to cooperate. | |'E conqectlon It may be necessary tg assure some quality of
— - - .2 |quality connection (e.g. maximal latency, throughput,
monitoring The transmitted messages may be monitored iS] etc.)
allowing for profiling and other statistics (usage, - -
throughput, etc.) adaptation The .acces.sed values may b.e transpafently
; - . modified in order to allow incompatible
duplexity The connector may be either unidirectional
Je components to cooperate.
(half-duplex) or bidirectional (full-duplex) — - -
: - monitoring The accessed data may be monitored allowing

=" If the connector is half-duplex, the stream can . .

=} . .. . . for profiling and other statistics (usage,

D |multicast  |have more recipients, allowing for e.g. audio and|

ol . . throughput, etc.)

< video broadcasting. - -

= L — . _ locking An attached component may obtain a lock onto aj

recipient Every recipient can work either in pull or push set of keys. The other components accessing the

pull/push mode. In push mode the received data are same data are temporarily blocked.

mode immediately given to recipient (the recipient



