
Department of Distributed and Dependable Systems
Technical report no. 2013/05
November 11, 2013

On Interpolants and Variable Assignments

Pavel Jančík, Jan Kofroň

Abstract: Craig interpolants are widely used in program verification as a means of abstraction. In
this paper, we introduce Partial Variable Assignment Interpolants (PVAIs) as a generalization of Craig in-
terpolants. Variable assignment focuses computed interpolants by restricting the set of clauses taken
into account during interpolation. PVAIs can be for example employed in the context of DAG inter-
polation, in order to prevent unwanted out-of-scope variables to appear in interpolants. Furthermore,
we (i) present a way to compute PVAIs for propositional logic based on an extension of the Labeled
Interpolation Systems, and (ii) analyze the strength of computed interpolants and prove the conditions
under which they have the path interpolation property.

This work is partially supported by the Grant Agency of the Czech Republic project P202/11/0312, and
Charles University Foundation grant 203-10/253297.

D3S, Technical Report no. 2013/05 2 Motivation

1 Introduction

In software model checking Craig interpolants play an important role. They are typically used to re-
fine an abstraction of a program. Many techniques have been introduced to compute interpolants for
various theories such as propositional logic, conjunctive fragments of linear arithmetic, and octagon
domain. For propositional logic, McMillan’s [7] and symmetric Pudlák’s [9] interpolation systems are
well established. They are generalized by the Labeled Interpolation Systems [5] (LISs), which permit to
systematically compute interpolants of different logical strength from the same refutation.

Given two formulas A and B such that A∧B is unsatisfiable, a Craig interpolant is a formula I such
that A implies I , I is inconsistent with B and I is defined over the common variables of both A and B.
In other words, I is an over-approximation of A (that is why it can be effectively used for abstracting
a set of behaviors of a system, represented by A) which is disjoint from B (which often represents the
errors).

In this paper, we introduce Partial Variable Assignment Interpolants (PVAIs) – a generalization of Craig
interpolants – which, in addition to the standard subdivision of an unsatisfiable formula into A and B
parts, takes as input also the specification of a partial variable assignment (PVA). The assignment is used
to restrict the original interpolation problem being solved to the cases conforming to the assignment
(sub-problem). A sub-problem is a part of the original problem where the clauses (constraints) satisfied
by the assignment are removed. Due to the above restriction the interpolants contain only variables
relevant to the sub-problem, i.e. those shared between the A and B parts of the sub-problem.

In the motivation example below we show how the PVAIs apply to program verification. For in-
stance, in the context of DAG interpolation [1] (and abstract reachability graphs), the sub-problem can
be seen as computing a node interpolant – an over-approximation of states reachable by any path to a
given node. Then, the properties of PVAIs guarantee that the interpolant contains only in-scope pro-
gram variables.

An alternative approach could be to solve each sub-problem directly by means of multiple calls to
a SAT/SMT solver and of standard Craig interpolation. The method we propose allows to perform
a single call to a solver on a problem which encompasses all the sub-problems, thus processing the
parts common to multiple sub-problems only once, and to generate a single proof from which all the
interpolants are computed. The presence of a single proof, in turn, enables the application of existing
techniques in order to generate collections of interpolants which satisfy properties relevant to verifica-
tion, such as path interpolation [11, 6]; in the case of PVAIs, a collection may consist of the interpolants
associated with the different sub-problems. Moreover, if one is interested in systematically generating
interpolants of different logical strength (a feature intuitively relevant to verification since it affects the
coarseness of the over-approximations realized by interpolants [10]), then the approach proposed in
this paper allows to do that by extending and adapting the framework of LISs.

In regards to that, we present the new framework of Labeled Partial Assignment Interpolation Systems
(LPAISs) – a generalization of LISs, which computes PVAIs for propositional logic. The interpolants
computed by LPAISs are of smaller size compared to the ones yielded by LISs from the same proof.

We define the notion of logical strength for LPAISs and show how introducing a partial order over
LPAISs allows to systematically compare the strength of the generated interpolants. We also show how
LPAISs can be used to generate collections of interpolants which enjoy the path interpolation property.
Moreover we generalize the results even for different sub-problems. In the context of abstract reachabil-
ity graphs (ARG), node interpolants for different nodes come from different sub-problems. Due to the
generalization, node interpolants for any path in abstract reachability graph have the path interpolation
property.

2 Motivation

In the following, we illustrate a possible application of PVAIs, which originally motivated this work.
Later, we generalize the idea to make it applicable in other contexts.

As an example, consider the source code at the left-hand side of Fig. 1 and the corresponding abstract
reachability graph (ARG) at the right-hand side. The node 1 is the initial node, while the node 6 is the node
representing an error location. The edge constraints τij encode the semantics of corresponding program
statements. Note that τ12 comes from the call of the max function in main (at the line 6). Further, in the
node 3, the parameter i is the only live variable; similarly in the node 4 the parameter j is the only live
variable. In the context of program verification, an important question is what is the set of reachable

1

D3S, Technical Report no. 2013/05 3 Preliminaries

� �
1: int max(int i, int j) {
2: if (i > j)
3: return i;

else
4: return j;
5: }

// The main function
6: assert(max(random(), 0) >= 0);� �

2

1

3 4

5

6

τ12 ≡ j = 0

τ23 ≡ i > j τ24 ≡ ¬(i > j)

τ35 ≡ result = i τ45 ≡ result = j

τ56 ≡ ¬(result >= 0)

Figure 1: Motivation example

states (on paths ending) at a particular node [3, 8] known as a reachability problem.
The ARG is converted into the Cond condition1, which represents all execution paths in the ARG.

Additional structure-encoding Boolean variables vi correspond to the nodes in the ARG. For each (but
the final) node, a node formula µi encoding the actions on the outgoing edges is created; the resulting
Cond formula can be found in Fig. 2.

We describe the meaning of µ2. The first conjunct v2 ⇒ (v3∨v4) guarantees that if a path reaches the
node 2, an outgoing edge is taken so the path does not terminate in 2. The second conjunct (v2 ∧ v3)⇒
τ23 guarantees that if a path goes via the edge 2 → 3, the semantics of the edge is preserved (i.e. edge-
constraint τ23 holds). Similarly, the third conjunct preserves the semantics of the edge 2→ 4.

The Cond formula is satisfiable (a model exists) if and only if a feasible error trace exists. If Cond
is unsatisfiable, one can split the nodes into A and B, divide Cond correspondingly, and compute a
Craig interpolant which includes all paths from A to B. Thus, it over-approximates the states reachable
at any node on the boundary between A and B. For instance, let us assume that A = v1 ∧ µ1 ∧ µ2
and B = µ3 ∧ µ4 ∧ µ5. The interpolant over-approximates the states reachable at the nodes 3 or 4; it
may contain both the variables being in-scope at the node 3 (variable i) and at the node 4 (variable j)2.

µ1 ≡ (v1 ⇒ v2) ∧ ((v1 ∧ v2)⇒ τ12)
µ2 ≡ (v2 ⇒ (v3 ∨ v4)) ∧ ((v2 ∧ v3)⇒ τ23)∧

∧ ((v2 ∧ v4)⇒ τ24)
µ3 ≡ (v3 ⇒ v5) ∧ ((v3 ∧ v5)⇒ τ35)
µ4 ≡ (v4 ⇒ v5) ∧ ((v4 ∧ v5)⇒ τ45)
µ5 ≡ (v5 ⇒ v6) ∧ ((v5 ∧ v6)⇒ τ56)

Cond ≡ v1 ∧ µ1 ∧ µ2 ∧ µ3 ∧ µ4 ∧ µ5

Figure 2: The Cond formula

Preferably, the solution of the reachability problem for a
node should not contain out-of-scope program variables.
For the node 3 interpolant this means the variable j should
be removed (e.g., eliminated by quantification which is a
well-known bottleneck in verification).

Using PVAIs, the problem of out-of-scope program vari-
ables can be effectively solved. We consider only such vari-
able assignments where the structure encoding variables vi
are assigned. By setting a variable vi to False, the paths via
the node i are blocked. Moreover, the node formula µi is
satisfied, thus not present in the sub-problem. To compute an interpolant for the node 3, the assign-
ment is π3 ≡ v4. The assignment must block exactly the paths not going through the node 3 – here it
is only the path via the node 4. In the A part, the sub-problem for the node 3 contains only the edge
actions (the program state variables) at the paths to the node 3, and in the B part only those actions at
the paths out of that node. The program state variables shared by the A and B parts of the sub-problem
represent the in-scope variables, which are exactly those that may appear in PVA Interpolants.

3 Preliminaries

Resolution Refutations. A literal is a variable or its negation. A clause is a finite disjunction of literals.
Let Θ be a set of literals. We write 〈Θ〉 for the clause containing the literals from Θ. A clause can be also
composed from multiple sets of literals, as in 〈Θ,Θ′〉 or 〈Θ, {l}〉 – we represent the latter as 〈Θ, l〉 for
brevity. Let 〈Θ, p〉 and 〈Θ′, p〉 be clauses. Their resolvent is the clause 〈Θ,Θ′〉 and p is the pivot. We write
Res(〈Θ, p〉, 〈Θ′, p〉, p) for the resolvent of clauses 〈Θ, p〉 and 〈Θ′, p〉with pivot p. We assume that a clause
does not contain both a literal and its negation. In the following, we consider propositional formulas
in conjunctive normal form, i.e., as conjunctions (or equivalently sets) of clauses. For a literal l or a set of

1The Cond has the same meaning as ArgCond in [2].
2This is an inherent property of Craig interpolants, independent from ARG encoding.

2

D3S, Technical Report no. 2013/05 4 Partial Variable Assignment Interpolants

propositional formulas A, Var(l) and Var(A) respectively denote the variable of l or the set of variables
in the formulas of A.

Definition 3.1 (Resolution proof (taken from [5])). A resolution proof R is a tuple (V,E, cl, piv, s), where V
is a set of vertices, E is a set of edges, piv is a pivot function, cl a clause function, and s ∈ V a sink vertex.

(V , E) form a full binary DAG (i.e., all the vertices except for the leaves have the in-degree 2), the sink
has the out-degree 0. For each inner node v there exist edges (v1, v), (v2, v) ∈ E and it holds: cl(v) =
Res(cl(v1), cl(v2), piv(v)).

We drop the subscripts if clear from the context. A proof is a resolution refutation proof if cl(s) = ⊥. To
distinguish between vertices in resolution proofs and in abstract reachability graphs, we use the term
node for ARG, and the term vertex for resolution proofs.

Craig Interpolants. The Craig interpolant [4] for the pair of formulas (A,B) such that A∧B is unsatis-
fiable is a formula I such that (1) A⇒ I , (2) B ∧ I ⇒ ⊥, and (3) Var(I) ⊆ Var(A) ∩ Var(B).

An interpolant sequence for the unsatisfiable formulaA1∧A2∧...∧An is a tuple of formulas (I0, I1,In),
where I0 ≡ > is an interpolant for (>, A1∧ ...∧An), Ii is an interpolant for (A1∧ ...∧Ai, Ai+1∧ ...∧An),
and In ≡ ⊥ is an interpolant for (A1 ∧ ... ∧ An,>). If, for all i, Ii ∧ Ai ⇒ Ii+1 (inductive step), then
(I0, I1,In) is also said to satisfy the path interpolation property. In [6], it was proved that path in-
terpolation property holds for any LISs, including the well-known McMillan’s and Pudlák’s systems,
whenever the interpolant sequence is computed from the same proof.

Variable assignments. Let A be a set of formulas. A variable assignment assigns either True (>) or
False (⊥) to each variable in the Var(A) set. Alternatively, the variable assignment can be seen as a
conjunction of literals. A partial variable assignment (PVA) π assigns values only to a subset of variables
in Var(A). A PVA π can be used as an assumption w.r.t. a formula φ (i.e., π |= φ) to restrict the set of
models of φ to those compatible with π.

Definition 3.2 (Clauses under assignment). Let A be a set of clauses and π be a PVA over Var(A). We define
the sets of satisfied clauses Aπ and of unsatisfied clauses Aπ as follows:

Aπ = {〈Θ〉|〈Θ〉 ∈ A ∧ π |= 〈Θ〉} Aπ = {〈Θ〉|〈Θ〉 ∈ A ∧ π 6|= 〈Θ〉}

In the rest of the paper, we make use of the following simple facts: For any set A and any PVA π
it holds that A = Aπ ∪ Aπ and Aπ ∩ Aπ = ∅. A satisfied clause in Aπ contains at least one literal set
to True by π, while, for an unsatisfied clause in Aπ , every literal is either unassigned or falsified. The
unsatisfied clauses Aπ determine the sub-problem. We use π |= l to express that a literal l evaluates to
True in a given PVA π.

4 Partial Variable Assignment Interpolants

In this section, we extend the standard notion of Craig interpolation to that of partial variable assignment
interpolation, which, in addition to the subdivision of an unsatisfiable formula into an A and a B parts,
requires the specification of a PVA. Based on this new concept, in Sect. 4.1, we present the framework
of Labeled Partial Assignment Interpolation Systems, a generalization of [5], and prove its soundness; next,
in Sect. 4.2, we relate interpolation to logical strength, and show how the introduction of a partial order
on LPAISs allows to systematically compare the strength of the generated interpolants.

Definition 4.1 (Partial Variable Assignment Interpolant). Let R be a (A,B)-refutation and π a partial vari-
able assignment over Var(A ∧ B). The partial variable assignment interpolant (PVAI) is a formula I such
that:

(D4.1.1) π |= A⇒ I

(D4.1.2) π |= B ∧ I ⇒ ⊥

(D4.1.3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)

(D4.1.4) Var(I) ∩ Var(π) = ∅

3

D3S, Technical Report no. 2013/05 4.1 Labeled Partial Assignment Interpolation System

Since π |= A⇔ Aπ , D4.1.1 and D4.1.2 can be equivalently rewritten as π |= Aπ ⇒ I and π |= Bπ∧I ⇒ ⊥.
In the following we use (A,B, π) to denote that the PAI is computed from (A,B)-refutation using the
partial assignment π. Note that a PAI cannot be computed as a standard interpolant followed by the
application of a partial assignment (I[π]). The reason is that, according to D4.1.3, the PVAI excludes not
only the variables assigned by π, but, e.g., also all unassigned variables that occur in satisfied clauses
only, which can instead appear in I[π].

A partial assignment can be viewed as a way of removing constraints (satisfied clauses) from being
considered during interpolant computation. Thus, there is no need for the variables local to removed
constraints to occur in the interpolant itself. However the price to pay is an additional assumption in
the form of a partial assignment.

4.1 Labeled Partial Assignment Interpolation System

The idea of computing interpolants of various strength as introduced by the Labeled Interpolation Sys-
tems (LIS) [5] can be extended to compute partial variable assignment interpolants. First, we need to
extend the original definitions to take variable assignments into account.

Definition 4.2 (Labeling function [5]). LetL = (S,v,u,t) be the lattice of Fig. 3, where S = {⊥, a, b, ab, d+}
and ⊥ is the least element and let R = (V,E, cl, piv, s) be a resolution proof over a set of literals Lit. A function
LabR,L : V × Lit → S is called labeling function for a refutation proof R iff ∀v ∈ V and ∀l ∈ Lit, LabR,L
satisfies the following:

(D4.2.1) LabR,L(v, l) = ⊥ if and only if l /∈ cl(v) (literal not in the vertex clause), and

(D4.2.2) LabR,L(v, l) = LabR,L(v1, l) t LabR,L(v2, l), where v1, v2 are the predecessor vertices with positive
and negative pivot, respectively, if l ∈ cl(v)

ab

d+

a b

⊥

Figure 3: Lattice of labels (according v)

The label d+ is used only for literals satisfied by an assign-
ment. From the condition D4.2.2 it follows that the labeling func-
tion is fully determined once the labels of the literals in the leaves
have been specified. Note that we omit subscripts R and L if
clear.

Naming conventions. Let us assume a pair of sets of clauses
(A,B) and a PVA π. The clause sets are split into four groups,
the unsatisfied clausesAπ andBπ which specify the sub-problem
and are taken into account during interpolation, and the satisfied clauses Aπ and Bπ , which are disre-
garded.

We define the following properties (including the standard locality and sharedness) of variables. We
say that a variable v is unassigned if v 6∈ Var(π). An unassigned variable v is:

Aπ-local if v ∈ Var(Aπ) and v 6∈ Var(Bπ)
Bπ-local if v 6∈ Var(Aπ) and v ∈ Var(Bπ)
AπBπ-shared if v ∈ Var(Aπ) and v ∈ Var(Bπ)
AπBπ-clean if v 6∈ Var(Aπ) and v 6∈ Var(Bπ)

The properties above are independent from occurrence of the variable in Var(Aπ) resp. Var(Bπ). The
“clean” variables occur only in the satisfied clauses. We say that a variable v is McMillan-labeled3 if the
fact that v is AπBπ-shared or AπBπ-clean implies it is labeled b. A variable v is labeled consistently if all
occurrences of the variable in the proof are labeled by the same label. Formally:
∀x, x′ ∈ V, l ∈ cl(x), l′ ∈ cl(x′) : Var(l) = Var(l′) = x⇒ Lab(v, l) = Lab(v′, l′)

Locality. The meaning of the locality preserving labeling is the same as in LIS, (only) the locality
preserving labeling functions (are guaranteed to) yield interpolants.

Definition 4.3 (Locality preserving labeling). A labeling function Lab for a (A,B, π)-refutationR is locality
preserving iff ∀v ∈ V,∀l ∈ cl(v):

(D4.3.1) (satisfied literals) Lab(v, l) = d+ ⇔ π |= l

3Please refer to the labeling of McMillan’s interpolation system as defined in [5].

4

D3S, Technical Report no. 2013/05 4.1 Labeled Partial Assignment Interpolation System

(D4.3.2) (Aπ-locality) Var(l) is unassigned and Aπ-local⇒ Lab(v, l) = a

(D4.3.3) (Bπ-locality) Var(l) is unassigned and Bπ-local⇒ Lab(v, l) = b

(D4.3.4) (AπBπ-cleanness – satisfied clauses)
Var(l) is unassigned and AπBπ-clean⇒ it is consistently labeled as a or b.

The label of AπBπ-shared variables can be set freely to a, b, or ab. The same holds for falsified (not
satisfied) literals; their labels are irrelevant since they are removed by the assignment filter (defined
later).

From the D4.3.1 requirement (and the shape of the lattice L) it follows that the assumption (assign-
ment) π can be used in the resolutions where the pivot is labeled d+. The D4.3.2 and D4.3.3 requirements
are equivalent to the standard ones meaning that A-local and B-local variables have to have a or b la-
bels, respectively. However, in our case the locality is considered only over unsatisfied clauses (Aπ resp.
Bπ).

The D4.3.4 requirement is specific to the PVAI and deals with variables which occur in the satisfied
clauses only. For such a variable it is required that the label is consistently either a or b. This requirement
guarantees that such variables do not occur in the interpolant due to ab-resolution.

Filters. For a clause 〈Θ〉, a labeling function Lab, a resolution-proof vertex v ∈ V , and a label c, we
define the match filter | as 〈Θ〉|c,v,Lab = {l ∈ 〈Θ〉 | c = Lab(v, l)} which preserves only literals with
specified label and similarly we define the upward filter� as 〈Θ〉�c,v,Lab= {l ∈ 〈Θ〉 | c v Lab(v, l)}.

Moreover given a partial assignment π and a clause 〈Θ〉we define the assignment filter [] as 〈Θ〉[π] =
{l ∈ 〈Θ〉 | Var(l) 6∈ Var(π))}. The filter removes all the assigned literals (satisfied and falsified ones).

Note that we remove the labeling function and vertex from the subscript if clear from the context.
Moreover we assume that negation has a higher precedence than filters and (as usual for unary opera-
tors) filters have a higher precedence than other binary logical operators. E.g., the ¬〈Θ〉[π]�a ∧〈Θ′〉|b can
be rewritten as (¬((〈Θ〉[π])�a)) ∧ (〈Θ′〉|b).

Interpolation system. An interpolation system is a procedure of computing an interpolant from a
refutation. It assigns a partial interpolant to each vertex of the refutation proof, while yielding the final
interpolant in the sink vertex.

Definition 4.4 (Labeled Partial Assignment Interpolation System). Let Lab be a locality preserving labeling
function for a valid (A, B, π)-refutation R.

The Labeled Partial Assignment Interpolation System LpaItp(Lab, R) is defined as follows:

Leaf v: 〈Θ〉, [I]

I =

 〈Θ〉[π]|b,v,Lab if 〈Θ〉 ∈ Aπ
¬ 〈Θ〉[π]|a,v,Lab if 〈Θ〉 ∈ Bπ
> if 〈Θ〉 ∈ Aπ ∪Bπ

Inner vertex v:
v1 : 〈p,Θ1〉, [I1] v2 : 〈p̄,Θ2〉, [I2]

〈Θ1,Θ2〉, [I]

I =


I1 ∨ I2 if Lab(v1, p) t Lab(v2, p) = a
I1 ∧ I2 if Lab(v1, p) t Lab(v2, p) = b
(I1 ∨ p) ∧ (I2 ∨ p) if Lab(v1, p) t Lab(v2, p) = ab
I2 if Lab(v1, p) = d+

I1 if Lab(v2, p) = d+

The main difference comparing to LIS are additional d+ resolution rules. For instance, consider the
last rule, where Lab(v2, p) = d+. In contrast to the standard rules, the partial interpolant is simpler,
because it does not contain I2. Generally, the d+ rules cut out the satisfied sub-tree of the proof. Usually,
the later in the refutation proof the assigned variable is resolved, the bigger sub-tree is cut out and the
smaller the resulting interpolant is.

Theorem 4.5 (Correctness). LpaItp(Lab, R), for a valid (A, B, π)-refutation R and a locality preserving label-
ing function Lab, generates a partial variable assignment interpolant.

Proof. The main idea of the proof is the same as the one for LIS. By structural induction we show that
for each vertex v of a resolution proof the following invariants hold:

5

D3S, Technical Report no. 2013/05 4.1 Labeled Partial Assignment Interpolation System

(T4.5.Inv1) π |= A ∧ ¬〈Θ〉�a,v,Lab⇒ I

(T4.5.Inv2) π |= B ∧ ¬〈Θ〉�b,v,Lab⇒ ¬I

(T4.5.Inv3) Var(I) ⊆ Var(Aπ) ∩ Var(Bπ)

where I is the partial interpolant of the vertex v and cl(v) = 〈Θ〉.
These invariants are equivalent to the PVAI constraints for the sink node (where the ¬〈Θ〉 = >). We

omit the labeling function Lab from subscripts (since it is unique in the proof) and vertex if clear.

Base cases. The base cases take place in the leaf vertices of the proof where the hypotheses operations
are applied.

Hyp-Aπ : 〈Θ〉 ∈ Aπ so I = 〈Θ〉[π]|b

(T4.5.Inv1) π |= A∧¬〈Θ〉�a⇒ 〈Θ〉[π]|b holds becauseA⇒ 〈Θ〉 and 〈Θ〉 ⇔ (〈Θ〉�a ∨〈Θ〉|b) so 〈Θ〉∧¬〈Θ〉�a⇒
〈Θ〉|b. Moreover it holds π |= 〈Θ〉|b ⇔ 〈Θ〉[π]|b because the 〈Θ〉 so even 〈Θ〉|b is not satisfied by the
partial assignment π, so all the assigned literals evaluate to ⊥.

(T4.5.Inv2) π |= B ∧¬〈Θ〉�b⇒ ¬〈Θ〉[π]|b holds because ¬〈Θ〉�b⇒ ¬〈Θ〉|b. Moreover it holds π |= ¬〈Θ〉|b ⇔
〈Θ〉[π]|b. The reason is the same as above, all the assigned literals evaluate to ⊥.

(T4.5.Inv3) Var(〈Θ〉[π]|b) ⊆ Var(Aπ) ∩ Var(Bπ). The label b for literals implies that literal variables are
AπBπ-shared. Otherwise the locality preserving requirement D4.3.2 yields to a contradiction since
it requires the label a. Moreover the assignment filter is applied so the partial interpolant does not
contain any assigned variable.

Hyp-Bπ : 〈Θ〉 ∈ Bπ so I = ¬〈Θ〉[π]|a. The situation is symmetric to Hyp-Aπ case.

(T4.5.Inv1) π |= A ∧ ¬〈Θ〉�a⇒ ¬〈Θ〉|a holds because ¬〈Θ〉�a⇒ ¬〈Θ〉|a. Moreover π |= 〈Θ〉|a ⇔ 〈Θ〉[π]|a
because all the assigned literals in the 〈Θ〉 clause evaluate to ⊥ under the assignment π.

(T4.5.Inv2) π |= B ∧ ¬〈Θ〉�b⇒ 〈Θ〉|a holds because B ⇒ 〈Θ〉 and 〈Θ〉 ⇔ (〈Θ〉�b ∨〈Θ〉|a). It follows that
〈Θ〉 ∧ ¬〈Θ〉�b⇒ 〈Θ〉|a. Moreover as shown above π |= 〈Θ〉|a ⇔ 〈Θ〉[π]|a.

(T4.5.Inv3) Var(¬〈Θ〉[π]|a) ⊆ Var(Aπ) ∩ Var(Bπ). The label a for literals implies that literal variables
are AπBπ-shared. Otherwise the locality preserving requirements D4.3.3 yields to a contradiction
since it requires label b. Moreover the assignment filter is applied so the partial interpolant does not
contain any assigned variable.

Hyp-Aπ , Hyp-Bπ : 〈Θ〉 ∈ Aπ ∪Bπ so I = >.

(T4.5.Inv1) π |= A ∧ ¬〈Θ〉�a⇒ > holds trivially.

(T4.5.Inv2) π |= B ∧ ¬〈Θ〉�b⇒ ⊥.

We will show that the assumptions of the implication are unsatisfied. The reason is that ¬〈Θ〉�b
evaluates (is equivalent) to ⊥ given assignment π.

From 〈Θ〉 ∈ Aπ it follows that ∃l ∈ Θ such that π |= l (The literal l makes the clause 〈Θ〉 satisfied
by π). The label of l is d+ (locality of labeling function – D4.3.1) so the literal is preserved by the
upward-filter�b.

Thus π |= ¬〈Θ〉�b⇔ ⊥.

(T4.5.Inv3) Var(>) ⊆ Var(A) ∩ Var(B) holds trivially.

Before the proof of the theorem 4.5 will continue (moving from leaves to inner vertices), auxiliary
lemmas are needed. The first one is used to introduce upward-filter for pivot variables. The second
lemma connects the assumptions of the current vertex and the assumptions of its predecessor (the as-
sumptions in the induction hypothesis).

6

D3S, Technical Report no. 2013/05 4.1 Labeled Partial Assignment Interpolation System

Lemma 4.6 (Introducing upward-filters). Let p be a variable and c ∈ L be a label and v a vertex. It holds:

|= p⇒ ¬〈p〉�c,v and |= p⇒ ¬〈p〉�c,v

Proof. The upward-filter �c,v can either preserve the literal p or filter it out. In the first case the filter
evaluates to ¬〈p〉 which is equivalent to p and the implication |= p ⇒ p holds trivially. In the second
case the filter evaluates into the empty clause, i.e. ¬False and the implication |= p ⇒ ¬False holds
trivially.

For the second equation of the lemma the same reasoning applies.

Lemma 4.7 (Filters in the predecessor vertices). Let 〈Θ1,Θ2〉 be a clause of an inner vertex v. Let 〈p,Θ1〉,
〈p,Θ2〉 be the clauses of the (positive and negative) predecessors of v (called v1, v2). Let LabR,L be a labeling
function for the given proof and c ∈ L a label. Then it holds:

¬〈p〉�c,v1 ∧¬〈Θ1,Θ2〉�c,v⇒ ¬〈p,Θ1〉�c,v1 and
¬〈p〉�c,v2 ∧¬〈Θ1,Θ2〉�c,v⇒ ¬〈p,Θ2〉�c,v2

Proof (Lemma 4.7). The upward-filter � filter preserves all the literals whose labels are equal to or
above the given label (e.g.,�a preserves literals with labels a, ab, d+). From D4.2.1 and D4.2.2 it follows
that ∀l ∈ 〈Θ1,Θ2〉 it holds Lab(v1, l) v Lab(v, l), so the literals preserved by the upward filter in the
vertex v1 (excluding pivot) are also preserved by the upward filter in the successor vertex v. From the
above it follows that 〈Θ1,Θ2〉�c,v1⇒ 〈Θ1,Θ2〉�c,v , which can be equivalently rewritten into contrapositive
implication ¬〈Θ1,Θ2〉�c,v⇒ ¬〈Θ1,Θ2〉�c,v1⇒ ¬〈Θ1〉�c,v1

The final implication ¬〈p〉�c,v1 ∧¬〈Θ1,Θ2〉�c,v⇒ ¬〈p,Θ1〉�c,v1 with the pivot p holds because the same
filter is applied on the pivot (the pivot is either filtered out or preserved by both filters).

And symmetric facts hold for the negative successor.

Proof (Continuation of Theorem 4.5 – Correctness).

Induction hypothesis. Now, we focus on the inductive step. Be v1 positive predecessor of the inner
vertex v and v2 its negative predecessor. Let p be the pivot variable. From the induction hypothesis we
know that for the predecessor vertices the following invariants hold:

π |= A ∧ ¬〈p,Θ1〉�a,v1⇒ I1 and π |= B ∧ ¬〈p,Θ1〉�b,v1⇒ ¬I1 and
π |= A ∧ ¬〈p,Θ2〉�a,v2⇒ I2 and π |= B ∧ ¬〈p,Θ2〉�b,v2⇒ ¬I2

(IH)

For each type of resolution, we establish the induction invariants for the vertex v.

Res-a: Lab(v1, p) t Lab(v2, p) = a. In this case the pivot variable has the label a in both predecessors
v1 and v2.

(T4.7.Inv1) It follows that:

π |= p ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4.6)⇒ ¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v

(L4.7)⇒

⇒ A ∧ ¬〈p,Θ1〉�a,v1

(IH)⇒ I1

π |= p ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4.6)⇒ ¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v

(L4.7)⇒

⇒ A ∧ ¬〈p,Θ2〉�a,v2

(IH)⇒ I2

The first implication is application of Lemma 4.6. The second implication is application of Lemma
4.7 and the last one is the induction hypothesis.

From the previous implications it directly follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ (p ∨ p) ∧A ∧ ¬〈Θ1,Θ2〉�a,v⇒ (I1 ∨ I2)

The first equivalence is a simple logical consequence since p ∨ p ⇔ >, the second implication is a
consequence of the two equations above.

7

D3S, Technical Report no. 2013/05 4.1 Labeled Partial Assignment Interpolation System

(T4.7.Inv2) From the fact that the label of the pivot in the predecessor is a, it follows ¬〈p〉�b,v1⇔
¬〈p〉�b,v2⇔ > so Lemma 4.7 can be applied directly without any additional assumptions.

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ ¬〈p〉�b,v1 ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.7)⇒ B ∧ ¬〈p,Θ1〉�b,v1

(IH)⇒ ¬I1

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ ¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.7)⇒ B ∧ ¬〈p,Θ2〉�b,v2

(IH)⇒ ¬I2

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇒ (¬I1 ∧ ¬I2)⇔ ¬(I2 ∨ I2)

The first implication is a consequence of the two equations above and the second equivalence is
factoring out the negation.

(T4.7.Inv3) The third requirement (shared variables only) holds trivially. (We do not add any new
variables into the partial interpolant.)

Res-b: Lab(v1, p) t Lab(v2, p) = b. The proof is symmetric to the Res-a case. In this case the pivot
variable has the label b in both predecessors v1 and v2.

(T4.7.Inv1) The label of the pivot in the predecessor vertices is b so ¬〈p〉�a,v1⇔ ¬〈p〉�a,v2⇔ >. Thus
Lemma 4.7 can be applied directly without any additional assumptions. The third implication
comes from the hypothesis.

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ ¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4.7)⇒ A ∧ ¬〈p,Θ1〉�a,v1

(IH)⇒ I1

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ ¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4.7)⇒ A ∧ ¬〈p,Θ2〉�a,v2

(IH)⇒ I2

The equations above directly yield the result:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇒ (I1 ∧ I2)

(T4.7.Inv2) It follows that:

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.6)⇒ ¬〈p〉�b,v1 ∧B ∧ ¬〈Θ1,Θ2〉�b,v

(L4.7)⇒

⇒ B ∧ ¬〈p,Θ1〉�b,v1

(IH)⇒ ¬I1

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.6)⇒ ¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v

(L4.7)⇒

⇒ B ∧ ¬〈p,Θ2〉�b,v2

(IH)⇒ ¬I2

The first implication is application of Lemma 4.6. The second implication is application of Lemma 4.7
and the last one is the induction hypothesis.

From the previous implications, it directly follows that:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ (p ∨ p) ∧B ∧ ¬〈Θ1,Θ2〉�b,v⇒
⇒ (¬I1 ∨ ¬I2)⇔ ¬(I1 ∧ I2)

The first equivalence is a simple logical step due to the fact that p ∨ p ⇔ >; the second implication
is a consequence of the two equations above and the last equivalence factors out the negation.

Res-ab: Lab(v1, p) t Lab(v2, p) = ab

(T4.7.Inv1) It follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇒ p ∨ (p ∧A ∧ ¬〈Θ1,Θ2〉�a,v)
(L4.6)⇒

⇒ p ∨ (¬〈p〉�a,v1 ∧A ∧ ¬〈Θ1,Θ2〉�a,v)
(L4.7)⇒

⇒ p ∨ (A ∧ ¬〈p,Θ1〉�a,v1) (IH)⇒ (p ∨ I1)

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇒ p ∨ (p ∧A ∧ ¬〈Θ1,Θ2〉�a,v)
(L4.6)⇒

⇒ p ∨ (¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v)
(L4.7)⇒

⇒ p ∨ (A ∧ ¬〈p,Θ2〉�a,v2) (IH)⇒ (p ∨ I2)

8

D3S, Technical Report no. 2013/05 4.1 Labeled Partial Assignment Interpolation System

The first implication comes from the fact that p ∨ p ⇔ >. The second implication is application
of Lemma 4.6. The third implication is application of Lemma 4.7 and the last one is the induction
hypothesis.

From the previous implications it directly follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v)⇒ (p ∨ I1) ∧ (p ∨ I2)

(T4.7.Inv2) Similarly to the previous case:

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.6)⇒ p ∧ (¬〈p〉�b,v1 ∧B ∧ ¬〈Θ1,Θ2〉�b,v)

(L4.7)⇒

⇒ p ∧ (B ∧ ¬〈p,Θ1〉�b,v1) (IH)⇒
⇒ p ∧ (¬I1)⇔ ¬(p ∨ I1)

π |= p ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.6)⇒ p ∧ (¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v)

(L4.7)⇒

⇒ p ∧ (B ∧ ¬〈p,Θ2〉�b,v2) (IH)⇒
⇒ p ∧ (¬I2)⇔ ¬(p ∨ I2)

The first implication holds since just p is duplicated and then Lemma 4.6 is used. The second impli-
cation is application of Lemma 4.7, the third one comes from the induction hypothesis and the last
one is simply a logical equality.

The same technique as in the Res-a T4.7.Inv1 case is used to prove the second requirement.

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ (p ∨ p) ∧B ∧ ¬〈Θ1,Θ2〉�b,v⇒
⇒ ¬(p ∨ I1) ∨ ¬(p ∨ I2)⇔ ¬((p ∨ I1) ∧ (p ∨ I2))

The first equivalence is a simple logical consequence since p ∨ p ⇔ >, the second implication is a
consequence of the two equations above. The last equivalence just factors out the negation.

(T4.7.Inv3) The only new variable p is added into the interpolant. p is shared, thus the requirements
hold. Moreover, the variable p is not assigned. If it would be assigned it would be labeled d+ in one
of the predecessors, which would lead to the Res-d resolution.

Res-d: This case is the resolution step over an assigned pivot variable. From the locality preserving
labeling constraint D4.3.1 follows that there is exactly one predecessor where the pivot is labeled d+.
Assume that Lab(v1, p) = d+, so it holds π |= p. The case Lab(v2, p) = d+ is symmetric.

(T4.7.Inv1) It follows that:

π |= A ∧ ¬〈Θ1,Θ2〉�a,v⇔ ¬〈p〉�a,v2 ∧A ∧ ¬〈Θ1,Θ2〉�a,v
(L4.7)⇒ A ∧ ¬〈p,Θ2〉�a,v2

(IH)⇒ I2

The first equivalence holds because π |= ¬〈p〉�a,v2 , because the ¬〈p〉�a,v2 is either directly > if the p
literal is not preserved by the filter or it is p if the p literal is preserved by the filter�a,v2 and in this
case p is satisfied from assumptions.

The second implication is application of Lemma 4.7 and the last one comes from the induction
hypothesis.

(T4.7.Inv2) Similarly to the previous case:

π |= B ∧ ¬〈Θ1,Θ2〉�b,v⇔ ¬〈p〉�b,v2 ∧B ∧ ¬〈Θ1,Θ2〉�b,v
(L4.7)⇒ B ∧ ¬〈p,Θ2〉�b,v2

(IH)⇒ ¬I2

(T4.7.Inv3) It holds trivially from the induction hypothesis. (We do not add any new variables into the
partial interpolants.)

9

D3S, Technical Report no. 2013/05 4.2 Strength

Symmetry. The attentive reader may notice that the locality labeling conditions as well as the way
interpolants are computed are symmetric for the Aπ and Bπ sets. It permits us to articulate the strength
theorem in an elegant way. Given a fixed π, the satisfied clauses can be moved freely between Aπ and
Bπ sets and the locality of the labeling function will be preserved as well as the generated interpolants.

4.2 Strength

b

ab = d+

a

⊥

Figure 4: Strength ordering (�)

A LIS allows one to choose the labels of shared variables. The logical
strength of the interpolants generated by two LISs can be compared by
comparing the strength of the corresponding labelings. We generalize
the notion of strength for partial assignment interpolants. It is not
surprising that the strength ordering is similar to the one used in [5].

Definition 4.8 (Strength order). Let � be a pre-order relation defined on
the set of labels S = {⊥, a, b, ab, d+} as: b � ab = d+ � a � ⊥ (Fig. 4).

Let Lab and Lab′ be labeling functions for a refutationR. Lab is stronger
than Lab′, denoted as Lab � Lab′, if for all vertices v ∈ V and for all literals
l ∈ cl(v) it holds that Lab(v, l) � Lab′(v, l)

Note that label ab and d+ are of the same strength and can be exchanged if the locality requirements
permit.

Weakened-labels filter. Let Lab and Lab′ be labeling functions to be compared by strength. For the
proofs in this section it is necessary to introduce a new type of filter, which preserves the literals whose
labels are weaker in the Lab′ labeling. For a vertex v ∈ V , a clause 〈Θ〉, and sets of labels C1, C2 ⊆ L, we
define the label change filter ||Lab,Lab′

v,C1⇒C2
as follows: 〈Θ〉||Lab,Lab′

v,C1⇒C2
= {l ∈ Θ | Lab(v, l) ∈ C1 and Lab′(v, l) ∈

C2}.
For the literal being preserved by the filter, the set C1 specifies permitted literal labels for Lab and the
set C2 specifies permitted labels for the labeling function Lab′.

In the rest of the paper we use a short-cut called weakened-labels filter |�Lab,Lab
v defined as follows

|�Lab,Lab′

v = ||Lab,Lab′

v,{b,ab,d+}⇒{ab,d+,a}, which preserves all the literals whose labels are weaker4 in the primed
labeling function according to the strength ordering �. The vertex and labeling functions are omitted if
clear from the context.

First we show the weaker version of the interpolant strength theorem which assumes that both
labeling functions use the same variable assignment π. Later on we will remove this requirement.

Theorem 4.9 (Interpolant strength (weaker version)). Let R be a (A, B, π)-refutation and Lab � Lab′ be
locality preserving labeling functions. Let I be a partial assignment interpolant for LpaItp(Lab, R) and I ′ be a
partial assignment interpolant for LpaItp(Lab′, R). Then π |= I ⇒ I ′.

Before the theorem 4.9 is proved, auxiliary lemmas are shown. The first lemma about the weakened-
labels filters is similar to the 4.7 one and it has the same usage. The latter one is used to introduce
assignment filters.

Lemma 4.10 (Weakened-labels filters in the predecessor vertices). Let 〈Θ1,Θ2〉 be a clause of an inner
vertex v. Let 〈p,Θ1〉 and 〈p,Θ2〉 be the clauses of the (positive and negative) predecessors of the vertex v (called
v1 and v2). Let Lab and Lab′ be labeling functions for the given proof. Then it holds:

¬〈p〉|�v1 ∧¬〈Θ1,Θ2〉|�v⇒ ¬〈p,Θ1〉|�v1 and
¬〈p〉|�v2 ∧¬〈Θ1,Θ2〉|�v⇒ ¬〈p,Θ2〉|�v2

Proof (Lemma 4.10). First we show that if a literal l ∈ 〈Θ1,Θ2〉 is preserved by the weakened-labels filter
in the predecessor vertex v1 then it is also preserved by the weakened-labels filter in the vertex v where
its label is a result of the t operation (by D4.2.2).

It is easy to see that the sets {b, ab, d+} and {ab, d+, a} (used by the filter |�) are closed under the t
operation. Formally it means that ∀c ∈ L and ∀c′ ∈ {b, ab, d+} it holds c t c′ ∈ {b, ab, d+}

4Note that the weakened-labels filter also preserves some equally strong literals, i.e., those labeled ab or d+ by both labeling
functions.

10

D3S, Technical Report no. 2013/05 4.2 Strength

Let l be preserved by the weakened-labels filter in the vertex v1. It means that the first labeling
function assigns to the literal l a label from the {b, ab, d+} set (formally Lab(v1, l) ∈ {b, ab, d+}) and for
the second labeling function it holds that Lab′(v1, l) ∈ {ab, d+, a}. Because these set are closed under
the t operation, the same holds even in the vertex v (formally Lab(v, l) ∈ {b, ab, d+} and Lab′(v, l) ∈
{ab, d+, a}), thus the literal l is also preserved by the weakened-labels filter in the vertex v.

This gets us that 〈Θ1,Θ2〉|�v1⇒ 〈Θ1,Θ2〉|�v . The implication can be equivalently rewritten into the
contrapositive form ¬〈Θ1,Θ2〉|�v⇒ ¬〈Θ1,Θ2〉|�v1⇒ ¬〈Θ1〉|�v1 .

The final implication ¬〈p〉|�v1 ∧¬〈Θ1,Θ2〉|�v⇒ ¬〈p,Θ1〉|�v1 with the pivot p holds because the same
filter is applied on the pivot (the pivot is either filtered or preserved by both filters).

And symmetrically for the negative child.

Lemma 4.11 (Introducing the assignment filter). Let π be a partial variable assignment and 〈Θ〉 be a clause.
Let the clause is not satisfied by the partial assignment, i.e. π 6|= 〈Θ〉.

Then it holds: π |= 〈Θ〉 ⇔ 〈Θ〉[π].

Proof. It is possible to split the set of literals Θ into two disjoint sets, the set Θ1 of the literals over
the assigned variables (the literals being filtered-out by the assignment filter), and the set Θ2 of the
remaining literals over the not-assigned variables. So 〈Θ〉 ⇔ 〈Θ1〉 ∨ 〈Θ2〉

From the assumption π 6|= 〈Θ〉 it follows that all the literals over assigned variables evaluate to ⊥
under the assignment π, thus it holds π |= 〈Θ1〉 ⇔ ⊥. From the definition of the assignment filter it
directly follows that 〈Θ2〉 ≡ 〈Θ〉[π].

So finally we get π |= 〈Θ〉 ⇔ 〈Θ1〉 ∨ 〈Θ2〉 ⇔ ⊥ ∨ 〈Θ2〉 ⇔ 〈Θ〉[π].

Proof (Interpolant strength). By structural induction we show that for each vertex v of the resolution
proof R the following invariant holds:

π |= Iv ∧ ¬〈Θ〉 |�v⇒ I ′v

where 〈Θ〉 = cl(v) is the vertex clause, Iv and I ′v are the partial interpolants for given vertex as generated
by our interpolation systems LpaItp(Lab, (A,B, π)) and LpaItp(Lab′, (A,B, π)), respectively.

The proof considers all the combinations of rules, that can be used to define partial interpolants Iv
and I ′v .

Base cases. The base cases take place in the leaf vertices of the proof. Neither the A and B sets nor the
assignment π changed so the type of hypotheses is the same in both interpolants. Moreover the literals
labeled d+ are the same in both labeling functions and assignment filter removes the same literals in
both cases.

Hyp-Aπ : 〈Θ〉 ∈ Aπ so I = 〈Θ〉[π]|b. It holds that:

〈Θ〉|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉|b,v,Lab′

because all the literals which are labeled b by the labeling function Lab either lost the label b and then
they are preserved by the weakened-labels filter |�v , or have the label b assigned also by the labeling
function Lab′. Note that in the first case, due to the locality conditions, the labeling Lab′ can assign only
labels a or ab to the literal. So from Lemma 4.11 it follows:

π |= 〈Θ〉[π]|b,v,Lab ∧ ¬〈Θ〉 |�v⇒ 〈Θ〉[π]|b,v,Lab′

The same literals are removed from all the clauses by the assignment filter.

Hyp-Bπ : 〈Θ〉 ∈ Bπ so I = ¬〈Θ〉[π]|a. It holds that:

¬〈Θ〉|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉|a,v,Lab′

All the literals which are labeled a by the labeling function Lab′ either have the label a assigned also by
the labeling function Lab or have a stronger label assigned by Lab in which case the literal is preserved
by the weakened-labels filter |�v . Note that in the second case, due to the locality conditions, the labeling
Lab can assign only labels b or ab to the literal. So from Lemma 4.11 it follows:

π |= ¬〈Θ〉[π]|a,v,Lab ∧ ¬〈Θ〉 |�v⇒ ¬〈Θ〉[π]|a,v,Lab′

11

D3S, Technical Report no. 2013/05 4.2 Strength

Hyp-Aπ , Hyp-Bπ : 〈Θ〉 ∈ Aπ ∪Bπ so I = >. It holds trivially.

π |= > ∧ ¬〈Θ〉 |�v⇒ >

Inductive step.

Naming conventions. The inductive step takes place in the inner vertices of the proof where resolu-
tions are applied. Due to the label changes, the type/label of the resolution can be different for each
interpolant. We will decorate the label in the same way as the labeling function is decorated so label
b refers to labeling by the function Lab while ab′ refers to the labeling by the function Lab′. Moreover
we use this notation in the names of resolution to denote the type of the resolution when computing
the first and second interpolant. E.g. Res-b-a′ means that in the first interpolant (where Lab is used) the
resolution is Res-b, and in the second interpolant (where Lab′ is used) the resolution is Res-a.

Invalid combinations. First we show which combinations of the resolutions cannot occur due to the
assumption Lab � Lab′.

There cannot occur Res-a-d′+ because in the Res-a case the labels of the pivot in both predecessors
has to be a (formally Lab(v1, p) = a and Lab(v2, p) = a), while in the second Res-d′+ case exactly one
pivot literal has to be labeled d′+ (formally Lab′(v1, p) = d+ or Lab′(v2, p) = d+). Note that second fact
follows from the structure of the lattice L, because t results into d+ if and only if one of its parameters
is d+. Using the facts above it follows that one of the pivots changes the label from a into d′+ thus
contradicting the fact Lab � Lab′.

Similar arguments hold for the Res-a-ab′ and Res-a-b′ cases. In the first case from the Res-ab′ it
follows that there is a (at least one) pivot labeled either ab′ or b′. In the second Res-b′ case it holds an
even stronger fact – that both pivots are labeled b′. Using the facts above it follows that at least one of
the pivots changes the label from a into the stronger label ab′ or b′, which contradicts the assumption
Lab � Lab′.

Let us consider the Res-ab-b′ case. In Res-ab there is at least one pivot labeled either a or ab In the
Res-b′ both pivots have to be labeled b′. Using the facts above it follows that one of the pivots changes
the label from a or ab into the stronger label b′ which contradicts the assumption Lab � Lab′.

Let us consider the Res-d+-b′ case. In the Res-d+ case exactly one pivot is labeled d+. In Res-b′ both
pivots have to be labeled b′. Using the facts above it follows that one of the pivots has changed the label
from d+ into the stronger label b′ which contradicts the fact that Lab � Lab′.

Now we use the assumption that the same assignment is used to compute both interpolants. This
blocks Res-ab-d′+ and Res-d+-ab′ resolutions.

It follows directly from the following two facts:

(1) both labeling functions are locality preserving so from the requirement D4.3.1 it follows that the d+

labeled literals are the same in both labeling functions, and

(2) the t operator results into d+ if and only if one of its parameters is d+ so the Res-d+ resolutions are
the same in both proofs.

From the facts above it follows that only the Res-d+-d′+ case is possible, however, we use the fact only
to deny the Res-ab-d′+ and Res-d+-ab′ resolutions, since the other resolutions involving the label d+ are
denied also due to the strength requirement.

Induction hypothesis. Be v1 the positive predecessor of the inner vertex v and v2 its negative prede-
cessor. Let p be the pivot variable. From the induction hypothesis we know that for the predecessor
vertices the invariants hold:

π |= I1 ∧ ¬〈p,Θ1〉|�v1⇒ I ′1 and π |= I2 ∧ ¬〈p,Θ2〉|�v2⇒ I ′2 (IH)

For the rest of permitted resolutions, the induction invariants are established for the vertex v using the
induction hypothesis.

12

D3S, Technical Report no. 2013/05 4.2 Strength

Res-a-a′: Lab(v1, p) t Lab(v2, p) = a and Lab′(v1, p) t Lab′(v2, p) = a′

The label of the pivot in both predecessors is a so it is not preserved by the weakened-labels filters
|�v1 and |�v2 . (Note that the filters require that the first labeling function assigns a label from the set
{b, ab, d+} to the pivot.) Thus ¬〈p〉|�v1 equals >.

In this case the following auxiliary implications are needed:

π |= I1 ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v1 ∧I1 ∧ ¬〈Θ1,Θ2〉|�v
L4.10⇒ I1 ∧ ¬〈p,Θ1〉|�v1

IH⇒ I ′1

π |= I2 ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v2 ∧I2 ∧ ¬〈Θ1,Θ2〉|�v
L4.10⇒ I2 ∧ ¬〈p,Θ2〉|�v2

IH⇒ I ′2

The first equivalence is shown above, the following implication is application of Lemma 4.10 and the
last one is the induction hypothesis.

From the previous implications it directly follows that:

π |= (I1 ∨ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (I ′1 ∨ I ′2)

Res-b-b′: Lab(v1, p) t Lab(v2, p) = b and Lab′(v1, p) t Lab′(v2, p) = b
The label in both predecessors is b so the pivot is not preserved by the weakened-labels filters |�v1

and |�v2 . (Note that the filters require that the second labeling function Lab′ assigns a label from the set
{ab, d+, a} to the pivot.) Thus ¬〈p〉|�v1 equals >.

Thus the same auxiliary implications as in the previous Res-a-a′ case hold:

π |= I1 ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v1 ∧I1 ∧ ¬〈Θ1,Θ2〉|�v
L4.10⇒ I1 ∧ ¬〈p,Θ1〉|�v1

IH⇒ I ′1

π |= I2 ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v2 ∧I2 ∧ ¬〈Θ1,Θ2〉|�v
L4.10⇒ I2 ∧ ¬〈p,Θ2〉|�v2

IH⇒ I ′2

The first equivalence is shown above, the following implication is application of Lemma 4.10 and the
last one is the induction hypothesis.

From the previous implications it directly follows that:

π |= (I1 ∧ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (I ′1 ∧ I ′2)

Res-ab-ab′, Res-ab-a′:
Note that in this case the proof does not depend on the labels of the pivot variables, so it can be

safely used to show other cases such as Res-ab-a′, Res-b-ab′, and Res-b-a′. Moreover the case Res-ab-ab′

directly implies the Res-ab-a′ case.
We have to show that:

π |= (p ∨ I1) ∧ (p ∨ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)

To show it, the following auxiliary implications are used:

π |= I1 ∧ ¬〈Θ1,Θ2〉|�v⇒ p ∨ (p ∧ I1 ∧ ¬〈Θ1,Θ2〉|�v)⇒

⇒ p ∨ (¬〈p〉|�v1 ∧I1 ∧ ¬〈Θ1,Θ2〉|�v)
L4.10⇒

⇒ p ∨ (I1 ∧ ¬〈p,Θ1〉|�v1) IH⇒ p ∨ I ′1
π |= I2 ∧ ¬〈Θ1,Θ2〉|�v⇒ p ∨ (p ∧ I2 ∧ ¬〈Θ1,Θ2〉|�v)⇒

⇒ p ∨ (¬〈p〉|�v1 ∧I2 ∧ ¬〈Θ1,Θ2〉|�v)
L4.10⇒

⇒ p ∨ (I2 ∧ ¬〈p,Θ1〉|�v2) IH⇒ p ∨ I ′2

The first implication comes from the fact that p ∨ p ⇔ >. The second implication holds because
either the literal p is preserved by the filter |�v1 and then it holds that ¬〈p〉|�v1⇔ p, or the literal p is not
preserved by the weakened-labels filter and then it holds that ¬〈p〉|�v1⇔ >. The third implication is
application of Lemma 4.10 and the last one comes from the induction hypothesis.

Now the proof is split into three cases. It holds that:

(p ∨ I1) ∧ (p ∨ I2)⇔ (p ∧ I2) ∨ (p ∧ I1) ∨ (I1 ∧ I2)

13

D3S, Technical Report no. 2013/05 4.2 Strength

Using the above auxiliary implications, we proof that each case leads to the formula (p∨I ′1)∧(p∨I ′2).

π |= (p ∧ I1) ∧ ¬〈Θ1,Θ2〉|�v ⇒ p ∧ (p ∨ I ′1) ⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)
π |= (p ∧ I2) ∧ ¬〈Θ1,Θ2〉|�v ⇒ p ∧ (p ∨ I ′2) ⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)
π |= (I1 ∧ I2) ∧ ¬〈Θ1,Θ2〉|�v ⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)

The first implication is application of the above auxiliary implication. The second implication (if
present) is a simple logical consequence.

Getting everything together we have showed that:

π |= (p ∨ I1) ∧ (p ∨ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)

Res-b-ab′, Res-b-a′:
The Res-b-ab′ holds because I1 ∧ I2 ⇒ (p ∨ I1) ∧ (p ∨ I2) so the Res-ab-ab′ case can be directly used.

Moreover the case Res-b-ab′ directly implies the Res-b-a′ case.

Res-d+-d′+:
Assume that Lab(v1, p) = d+ thus it holds that π |= p. The case Lab(v2, p) = d+ is symmetric.
It holds that π |= ¬〈p〉|�v2 . ¬〈p〉|�v2 is either > (if the literal p is filtered out by the weaken filter) or p

(if the literal is not filtered out). In the latter case the assumption π |= p is used.
Using the fact above it follows that:

π |= I2 ∧ ¬〈Θ1,Θ2〉|�v⇔ ¬〈p〉|�v2 ∧I2 ∧ ¬〈Θ1,Θ2〉|�v
L4.10⇒ I2 ∧ ¬〈p,Θ2〉|�v2

IH⇒ I ′2

The first equivalence is explained above, the second implication follows from Lemma 4.10 and the last
one is the induction hypothesis.

Also note that only the Res-d+-d′+ case and the hypothesis (via Lemma 4.11) use the partial variable
assignment assumption (the fact that π |= p).

Moreover the notion of strength can be extended to different partial assignments when preserving
the A and B sets as stated in the following theorem.

Theorem 4.12 (Interpolant strength). Let Lab be a locality preserving labeling function for the (A, B, π)-
refutation R, and Lab′ be a locality preserving labeling function for (A, B, π′)-refutation R. Let I be a partial
variable assignment interpolant for LpaItp(Lab, R) and I ′ be a PVAI for LpaItp(Lab′, R).

If Lab � Lab′ then π, π′ |= I ⇒ I ′.

Note that when π and π′ are empty assignments, we obtain exactly the theorem on interpolant
strength from [5]. Also note that the theorem permits different variable assignments for the interpolants.
Thus it relates the interpolants even between different sub-problems (e.g., interpolants considering dif-
ferent possible paths to a given program location). Since both π and π′ are in assumptions of the formula
I ⇒ I ′, the theorem applies to cases common to both sub-problems (e.g., to the shared paths). Proof.
We will extend the previous proof to cover new cases arisen from partial assignment changes. We use
structural induction and also (nearly) the same invariant.

For each vertex v of the resolution proof R the following invariant holds:

π, π′ |= Iv ∧ ¬〈Θ〉|�v⇒ I ′v

where 〈Θ〉 = cl(v) is the vertex clause, Iv and I ′v are the partial interpolants for the given vertex as
generated by our interpolation systems LpaItp(Lab, R) and LpaItp(Lab′, R), respectively.

Base cases. The sets A and B are the same for both interpolants I and I ′. So a clause from A can only
move between the satisfied clause set Aπ and the unsatisfied Aπ . The same holds for the Bπ and Bπ
sets.

The Hyp-Aπ-Aπ′ , Hyp-Aπ-Aπ′ , Hyp-Bπ-Bπ′ and Hyp-Bπ-Bπ′ cases have been shown in the previ-
ous proof, hence the idea is applied here as well.

14

D3S, Technical Report no. 2013/05 4.2 Strength

Hyp-Aπ-Aπ′ : 〈Θ〉 ∈ Aπ, 〈Θ〉 ∈ Aπ′ , Iv = 〈Θ〉[π]|b,v,Lab and I ′v = 〈Θ〉[π′]|b,v,Lab′

From the previous proof we know that:

〈Θ〉|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉|b,v,Lab′

Using Lemma 4.11 the invariant is derived:

π, π′ |= 〈Θ〉[π]|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉[π′]|b,v,Lab′

Hyp-Bπ-Bπ′ : 〈Θ〉 ∈ Bπ, 〈Θ〉 ∈ Bπ′ , Iv = ¬〈Θ〉[π]|a,v,Lab and I ′v = ¬〈Θ〉[π′]|a,v,Lab′

From the previous proof we know that:

¬〈Θ〉|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉|a,v,Lab′

Using Lemma 4.11 the invariant is derived:

¬〈Θ〉[π]|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉[π′]|a,v,Lab′

Hyp-Aπ-Aπ′ , Hyp-Bπ-Bπ′ : Iv = >. The proof does not depend on the I ′v .
We show that the assumption of the invariant π, π′ |= Iv ∧ ¬〈Θ〉| �v cannot be satisfied, thus the

invariant holds. The clause 〈Θ〉 is in theAπ orBπ set so there exists a literal l ∈ 〈Θ〉 such that π |= l. From
the locality of the labeling function (D4.3.1) it follows that Lab(v, l) = d+. Moreover, from Lab � Lab′ it
follows that in the second interpolant the literal l can have only a weaker label so Lab′v,l ∈ {d+, ab, a}.
Thus the literal l is preserved be the |�v filter. Formally it holds that l⇒ 〈Θ〉|�v and so ¬〈Θ〉|�v⇒ ¬l.

The literal ¬l must hold to satisfy the assumptions of the invariant. However in any model ¬l
evaluates to ⊥ (since π |= l). Thus the invariant holds since its assumptions cannot be satisfied.

Hyp-Aπ-Aπ′ , Hyp-Bπ-Bπ′ : I ′v = >. The proof does not depend on the Iv .
The cases hold trivially since anything implies >.

Inductive step. Since all the resolution steps in the previous proof except the Res-d+-d+ does not
depend on the partial assignment π, they can be reused in this proof immediately. Moreover since
our composed assumptions π, π′ are more restricting than the one in the previous proof, even the case
Res-d+-d+ holds directly and can be reused.

In this case, we do not have the requirement on the same partial assignment, so we cannot use the
arguments to block the Res-ab-d′+ and the Res-d+-ab′ resolutions, which are shown bellow.

Res-ab-d′+: Lab(v1, p) t Lab′(v2, p) = ab and Lab(v1, p) t Lab′(v2, p) = d′+

Assume that Lab′v1,p = d+ thus π′ |= p. The situation is symmetric in Lab′v2,p = d+. In this case we
need to show that:

π, π′ |= (p ∨ I1) ∧ (p ∨ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ I ′2

From the proof of the Res-ab-ab′ case (which can be shown without any additional assumption on
the labels of the pivot) it holds:

π, π′ |= (p ∨ I1) ∧ (p ∨ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)

Due to the fact that π′ |= p it holds:

π, π′ |= (p ∨ I ′1) ∧ (p ∨ I ′2)⇔ I ′2

The two implications above if connected yield the result as needed.

15

D3S, Technical Report no. 2013/05 5 Path interpolation property

Res-d+-ab′: Lab(v1, p) t Lab′(v2, p) = d+ and Lab(v1, p) t Lab′(v2, p) = ab
Assume that Lab(v1, p) = d+ thus π |= p. The situation is symmetric in Labv2,p = d+. The proof

is similar to the previous case Res-ab-d′+. First, the assumption π |= p is used to introduce the partial
ab-interpolant and then the Res-ab-ab′ case is reused. In this case we need to show that:

π, π′ |= I2 ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)

Due to the fact that π′ |= p it holds:

π, π′ |= I2 ⇔ (p ∨ I1) ∧ (p ∨ I2)

From the proof of the Res-ab-ab′ case (which can be shown without any additional assumption on
the labels of the pivot) it holds:

π, π′ |= (p ∨ I1) ∧ (p ∨ I2) ∧ ¬〈Θ1,Θ2〉|�v⇒ (p ∨ I ′1) ∧ (p ∨ I ′2)

The two implications above if connected yield the result as needed.

5 Path interpolation property

Many verification approaches such as [2, 8, 12] depend on the path interpolation property (PI). In [11] the
authors show that LISs can be employed to generate an interpolation sequence by providing a sequence
of labeling functions that are non strictly decreasing in terms of strength. First, the PI property is shown
to hold if the same partial assignment along the sequence is used to compute the interpolants (i.e., solv-
ing the same sub-problem). Later on, the result is generalized to permit different partial assignments
for particular interpolants.

5.1 Fixed partial assignment.

To show the interpolation sequence property, it is enough to prove that I∧S ⇒ I ′ (inductive step), where
I is an interpolant for (A,S ∪B, π), I ′ is an interpolant for (A ∪ S,B, π), and S is a set of clauses.

For LISs, Rollini et al. [11] define the labeling constraints on the labeling functions used to compute
the interpolants I and I ′. If the labeling constraints are satisfied, the interpolants satisfy the PI property.
Due to the complexity of labeling constraints for PVAI, we describe it in a different way. Given a labeling
function used to compute the interpolant I , we define the strongest labeling function which can be used
to compute the successor interpolant I ′.

Definition 5.1 (Strongest successor labeling). Let Lab be a labeling function for the (A,S ∪B, π)-refutation
R. The strongest successor labeling LabS (induced by the set S) is defined as follows: ∀v ∈ V and ∀l ∈ cl(v)

LabS(v, l) =

 a if Var(l) ∈ Var(Sπ) ∧ Var(l) 6∈ Var(Bπ)∧
∧Var(l) 6∈ Var(π) (D5.1.1)

Lab(v, l) otherwise (D5.1.2)

Note that Def. 5.1 defines a partial function (in the undefined points – the cases if a literal l is not
present in the vertex clause – LabS(v, l) = ⊥). The labeling LabS can be used to compute the interpolant
for (A ∪ S,B, π). The first alternative (D5.1.1) forces the label a for all literals which are (Aπ ∪ Sπ)-local
due to the shift of the clauses in S to the A part.

First we show that a valid labeling function is defined. The requirement D4.2.1 is trivial (no label
is defined if l 6∈ cl(v)). To show the requirement D4.2.2, we make a simple observation. The first alter-
native (D5.1.1) does not depend on the vertex being considered. Thus a given variable is consistently
labeled in all the vertices either by the first alternative or by the second one. The requirement holds
trivially for the first alternative since (a t a) = (a t ⊥) = (⊥ t a) = a. In the latter case the requirement
D4.2.2 holds, because Lab is a valid labeling function.

Now we show that LabS preserves the locality property. The fact that LabS is locality preserving is
important since only the locality labeling functions are used to compute interpolants.

Lemma 5.2 (Locality of strongest successor labeling). Let Lab be a locality preserving labeling function for
(A, S ∪B, π)-refutation R. Let LabS be the strongest successor labeling function induced by S.

Then LabS is a locality preserving labeling for (A ∪ S, B, π)-refutation R.

16

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Proof. We show that all the locality requirements are satisfied.

Satisfied literals – the requirement D4.3.1.
Let π |= l then we know that the second alternative is used so LabS(v, l) = Lab(v, l). Moreover

locality of Lab gives us that LabS(v, l) = Lab(v, l) = d+. On the other hand if π 6|= l then if the first
alternative (D5.1.1) is used then the label a is assigned and the requirement D4.3.1 holds; if the second
alternative (D5.1.2) is used then, again, locality of Lab directly implies that the label d+ is not assigned.

(Aπ ∪ Sπ)-locality – the requirement D4.3.2.
We want to show that if the variable is (Aπ ∪Sπ)-local then the label a is assigned to it. Formally we

want to show that:

Var(l) 6∈ Var(π) ∧ Var(l) ∈ Var(Aπ ∪ Sπ) ∧ Var(l) 6∈ Var(Bπ)⇒
⇒ LabS(v, l) = a (1)

If the first alternative (D5.1.1) applies then the requirement is satisfied trivially, since it sets the label a
as required. If the second alternative (D5.1.2) is used then either the variable is Aπ-local and then from
locality of Lab it follows that label a is assigned or the variable was not Aπ-local. In the latter case the
variable cannot be (Aπ ∪ Sπ)-local so this requirement does not impose any restriction on the label.

Now we formally show that if a variable is (Aπ ∪ Sπ)-local and the second alternative is used then
the labeling function Lab assigns the label a. Since the first alternative (D5.1.1) is not used then one of
the assumption must be violated; it is either:

(L5.2.Inv1) Var(l) 6∈ Var(Sπ), or

(L5.2.Inv2) Var(l) ∈ Var(Bπ), or

(L5.2.Inv3) Var(l) 6∈ Var(π)

In the first case (L5.2.Inv1), it holds:

Var(l) ∈ Var(Aπ ∪ Sπ) (L5.2.Inv1)⇒ Var(l) ∈ Var(Aπ)

Var(l) 6∈ Var(Bπ) (L5.2.Inv1)⇒ Var(l) 6∈ Var(Sπ ∪Bπ)

So the variable is Aπ-local and due to locality of the labeling function Lab it assigns the label a to that
variable.

In the second case (L5.2.Inv2) the condition Var(l) ∈ Var(Bπ) directly contradicts the assumptions of
the equation (1), and thus there is no requirement to assign the label a (since the variable is not (Aπ∪Sπ)-
local) in this case. In the third case (L5.2.Inv3) as in the previous case, the condition Var(l) 6∈ Var(π)
directly contradicts the assumptions of the equation (1), so again there is no requirement to assign the
label a (since the variable is assigned and thus it cannot be (Aπ ∪ Sπ)-local) in this case.

Bπ-locality – the requirement D4.3.3.
We want to show that if the variable is Bπ-local then the label b is assigned. Formally we want to

show that:

Var(l) 6∈ Var(π) ∧ Var(l) ∈ Var(Bπ) ∧ Var(l) 6∈ Var(Aπ ∪ Sπ)⇒
⇒ LabS(v, l) = b (2)

Informally, if the first alternative (D5.1.1) is used, the variable is not Bπ-local, thus this requirement
does not apply in this case. Moreover for the second alternative the Bπ-local variables are also the
(Bπ ∪Sπ)-local variables, so the locality of the labeling function Lab gives us that the assigned label is b.

Formally, from the assumptions of the first alternative (D5.1.1) we know that Var(l) 6∈ Var(Bπ) which
directly contradicts the assumptions of this case so there is no requirement on the label in this case. Let
the second alternative (D5.1.2) is used set the label; without any additional assumptions it holds:

Var(l) ∈ Var(Bπ) ⇒ Var(l) ∈ Var(Sπ ∪Bπ)
Var(l) 6∈ Var(Aπ ∪ Sπ) ⇒ Var(l) 6∈ Var(Aπ)

So the variable is also (Bπ ∪ Sπ)-local and locality of the labeling function Lab gives us that Lab assigns
the label b to the variable as needed.

17

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Satisfied clauses – the requirement D4.3.4.
We want to show that the (Aπ ∪ Sπ)Bπ-clean variables (π-local variables) have the label a or b as-

signed consistently. Formally we want to show that:

if Var(l) 6∈ Var(π) ∧ Var(l) 6∈ Var(Aπ ∪ Sπ) ∧ Var(l) 6∈ Var(Bπ)
then ∀v′ ∈ V,∀l′ ∈ cl(v′) : Var(l) = Var(l′)⇒

⇒ LabS(v, l) = LabS(v′, l′) ∈ {a, b}

If the first alternative (D5.1.1) is used then the variable is not (Aπ ∪ Sπ)Bπ-clean (π-local), because
Var(l) ∈ Var(Sπ) so Var(l) ∈ Var(Aπ ∪ Sπ). So this requirement does not apply in this case. Let the
second alternative (D5.1.2) is used. Informally, since the same assignment is used for both functions
LabS and Lab, the π-local variables are the same. Thus the consistent assignment of the permitted label
comes from the locality of the labeling function Lab. Formally, since the first alternative is not used then
one of the assumptions L5.2.Inv1-3 must be violated. In the second (L5.2.Inv2) and third (L5.2.Inv3)
cases the variable is not (Aπ ∪ Sπ)Bπ-clean, thus the requirement does not apply in these cases. In the
first case (L5.2.Inv1) it holds that:

Var(l) 6∈ Var(Aπ ∪ Sπ) ⇒ Var(l) 6∈ Var(Aπ)

Var(l) 6∈ Var(Bπ) (L5.2.Inv1)⇒ Var(l) 6∈ Var(Sπ ∪Bπ)

So the variable is Aπ(Sπ ∪ Bπ)-clean and locality of the labeling function Lab gives us that Lab assigns
the label a or b consistently. Moreover the first (D5.1.1) or second (D5.1.1) alternative is used consistently
for the variable across the whole proof. (This follows from the condition of the first alternative which is
independent of the proof vertex where the label is assigned). Thus even LabS assigns the label a or b to
the variable consistently as needed.

Looking at Def. 5.1, we can see that Lab � LabS , because the labels are either equal or the weakest
label a is used in the labeling LabS .

The following lemma states the PI property for the strongest successor labeling.

Lemma 5.3. Let Lab be a locality preserving labeling function for a (A, S∪B, π)-refutationR and let LpaItp(Lab, R) =
I . Let LabS be the strongest successor labeling of Lab induced by S and LpaItp(LabS , (A ∪ S,B, π)) = I ′.

Then π |= I ∧ S ⇒ I ′.

Proof. By structural induction over the resolution proof we show that for each vertex v ∈ V of the
refutation proof the following invariant holds:

π |= I ∧ S ∧ ¬〈Θ〉|�v⇒ I ′

where 〈Θ〉 = cl(v) is the vertex clause, Iv and I ′v are the partial interpolants for the vertex v as generated
by our interpolation system using the labeling functions Lab and LabS , respectively.

Bases cases. The base cases take place in the leaf vertices of the proof where the hypotheses opera-
tions are applied. Because the partial variable assignment π is the same for both interpolants, the only
possible shifts are between (un)satisfied clause sets. It is not possible to shift the unsatisfied clause from
Bπ into the satisfied set Bπ .

Hyp-Aπ-(Aπ ∪ Sπ): 〈Θ〉 ∈ Aπ , so Iv = 〈Θ〉[π]|b,v,Lab and I ′v = 〈Θ〉[π]|b,v,LabS .
At first we will show that:

〈Θ〉|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉|b,v,LabS

Let a literal be labeled b by the labeling Lab and let it loose the label b (LabS assigns a different label to
it). So the literal is removed by the match|b,v,LabS filter. Such a literal has assigned the label a (using the
first alternative (D5.1.1) in the definition of LabS), thus the literal is preserved by the weakened-labels
filter |�v (which is negated in the formula above and so guarantees that the literal does not satisfy the
clause 〈Θ〉|b,v,LabS).

18

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

The assignment filter [π] is applied to reduce the set of literals being considered. It holds that:

〈Θ〉[π]|b,v,Lab ∧ ¬〈Θ〉|�v⇒ 〈Θ〉[π]|b,v,LabS

This follows from the fact that the assignment filter [π] removes the same literals from both partial
interpolants. The implication above is even stronger than the invariant, since it does not require S in
the assumptions of the implication.

Hyp-(Sπ ∪Bπ)-Bπ : 〈Θ〉 ∈ Bπ so I = ¬〈Θ〉[π]|a,v,Lab and I ′ = ¬〈Θ〉[π]|a,v,LabS .
This case is similar to the previous one. First we show that:

¬〈Θ〉|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉|a,v,LabS

Let the literal be labeled a by the labeling LabS (so it is preserved by the match filter|a,v,LabS). The literal
is either labeled a by the labeling Lab or not (in which case its label can be b or ab). In the former case the
literal is preserved by the match filter|a,v,Lab . In the latter case the literal is preserved by the weakened-
labels filter |�v . To sum it up, all the literals in the conjunction after the implication occur even in the
conjunction(s) before the implication thus the implication holds.

The assignment filter [π] is applied to reduce the set of literals being considered. It holds that:

¬〈Θ〉[π]|a,v,Lab ∧ ¬〈Θ〉|�v⇒ ¬〈Θ〉[π]|a,v,LabS

This again follows from the fact that the assignment filter [π] removes the same literals from both partial
interpolants. The implication above is even stronger than the invariant, since it does not require S in
the assumptions of the implication.

Hyp-(Sπ ∪Bπ)-(Aπ ∪ Sπ): 〈Θ〉 ∈ Sπ so I = ¬〈Θ〉[π]|a,v,Lab and I ′ = 〈Θ〉[π]|b,v,LabS .
First we show that in this case it holds that:

〈Θ〉 ⇔ 〈Θ〉|a,v,Lab ∨ 〈Θ〉|b,v,LabS ∨ 〈Θ〉|�v
The⇐ implication is trivial, since filters only remove literals, so if the right-hand side of the equivalence
holds, the unfiltered clauses 〈Θ〉 must also hold. The⇒ implication is shown bellow. We consider all
the combinations of labels the literal can get by the labeling functions Lab and LabS . The literal in the
clause 〈Θ〉 is either preserved by:

• the match filter |a,v,Lab if the label is a in both labeling functions, or

• the match filter |b,v,LabS if the label is b in both labeling functions, or

• the weakened-label filter | �v if the first alternative (D5.1.1) is used and the weaker label a or
alternatively the labels ab or d+ are set by both labeling functions.

Note that the remaining label changes not covered above (which increase the strength – a⇒ {b′, ab′, d′+}
and {ab, d+} ⇒ b′) are not possible (since we have shown that Lab � LabS).

Moreover from Lemma 4.11 it follows that:

π |= 〈Θ〉 ⇔ 〈Θ〉[π]|a,v,Lab ∨ 〈Θ〉[π]|b,v,LabS ∨ 〈Θ〉|�v
The literal removed by the assignment filter [π] evaluates to ⊥ given the partial variable assignment π
since the clause 〈Θ〉 ∈ Sπ cannot contain any satisfied literal.

The invariant is show bellow.

π |= I ∧ S ∧ ¬〈Θ〉|�v≡
≡ ¬〈Θ〉[π]|a,v,Lab∧ S ∧ ¬〈Θ〉|�v⇒
⇒¬〈Θ〉[π]|a,v,Lab∧ 〈Θ〉 ∧ ¬〈Θ〉|�v⇔
⇔¬〈Θ〉[π]|a,v,Lab∧ (〈Θ〉[π]|a,v,Lab∨〈Θ〉[π]|b,v,LabS ∨〈Θ〉|�v) ∧ ¬〈Θ〉|�v⇔
⇔¬〈Θ〉[π]|a,v,Lab∧ 〈Θ〉[π]|b,v,LabS ∧ ¬〈Θ〉|�v⇒

⇒〈Θ〉[π]|b,v,LabS ≡ I ′

The first implication follows from the fact that 〈Θ〉 ∈ S and S is a conjunction (a set) of clauses so
S ⇒ 〈Θ〉. The second equivalence is shown above. The third equivalence is a logical consequence. The
following pattern is used twice: ¬A∧(A∨B)⇔ (¬A∧A)∨(¬A∧B)⇔ ¬A∧B, whereA ≡ ¬〈Θ〉[π]|a,v,Lab
and A ≡ ¬〈Θ〉|�v , respectively. The last implication is a trivial logical consequence.

19

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Hyp-Aπ-(Aπ ∪ Sπ), Hyp-(Sπ ∪Bπ)-Bπ , Hyp-(Sπ ∪Bπ)-(Aπ ∪ Sπ): All the cases with satisfied clauses.
In these cases I ′ = > so the invariant holds trivially.

Induction hypothesis. Now the invariant is shown for the inner vertices of the proof where the reso-
lution operation is applied.

First, we focus on the types of resolutions which may occur. From the fact that Lab � LabS it directly
follows that labels of the pivots are the same or weaker in the computation of the interpolant I ′ than in
the interpolant I . Thus the types of the resolution are the same or equal in the case of I ′ interpolant.
Moreover since in both cases we use the same partial variable assignment π, the d+ labels and thus
Res-d+ are used at the same time in both interpolants.

Our induction hypothesis is stronger than (and thus implies) the induction hypothesis from the
proof of the interpolant-strength Theorem 4.9 so it is possible to directly use the resolutions from there.

The proofs for all the weakening resolutions (Res-b-{b′, ab′, a′}, Res-ab-{ab′, a′}, Res-a-a′ and Res-d+-
d′+) are in Theorem 4.9. Note that proofs for the resolutions in the theorem are independent of A and B
sets – only the labels are considered by the proof. Also note that all the other resolutions have either a
stronger resolution in the computation of the I ′ interpolant (Res-a-{b′, ab′} and Res-ab-b′) or the Res-d+

resolutions change in the I ′ computation (Res-{a, ab, b}-d′+ and Res-d+-{a′, ab′, b′}) so they violates the
observation shown above.

Now we formally explain the meaning of the strongest adjective from the definition. To generalize
Lemma 5.3 for other labeling functions, the following lemma is introduced.

Lemma 5.4. Let Lab be a locality preserving labeling function for (A,S ∪ B, π)-refutation R. Let Lab′ be a
locality preserving labeling for (A ∪ S,B, π)-refutation R.

If Lab � Lab′ then also LabS � Lab′.

Proof. We show the lemma by contradiction. For contradiction, assume that Lab � Lab′ and LabS 6� Lab′.
That means there exists a vertex v ∈ V and a literal l ∈ cl(v) such that LabS(v, l) 6� Lab′(v, l).

The label LabS(v, l) is assigned either by the first (D5.1.1) or second (D5.1.2) alternative. In the former
case, the literal l is (Aπ ∪ Sπ)-local so it must have the label a. But the Lab′(v, l) is strictly greater than
a which contradicts locality of the function Lab′. Stated formally, because the first alternative is used
we know that Var(l) 6∈ Var(π) and Var(l) ∈ Var(Sπ) ⊆ Var(Aπ ∪ Sπ) and Var(l) 6∈ Var(Bπ) so all the
requirements for locality preserving rule D4.3.2 are preserved. Thus if Lab′(v, l) 6= a as required in this
case, Lab′ is not locality preserving labeling function for (A ∪ S, B, π).

The situation is simple in the latter case if the label is set by the second alternative. Then, Lab′

violates the assumptions because Lab(v, l) = LabS(v, l) 6� Lab′(v, l); it shows that Lab′ is not weaker
than Lab (formally Lab 6� Lab′).

The following theorem states the main result for cases of a fixed partial assignment.

Theorem 5.5 (Inductive step). Let Lab and Lab′ be locality preserving labeling functions for the (A, S ∪ B,
π)-refutation R and (A∪S, B, π)-refutation R, respectively. Let LpaItp(Lab, R) = I and LpaItp(Lab′, R) = I ′.

If Lab � Lab′ then π |= I ∧ S ⇒ I ′.

Proof. Let IS be the partial variable interpolant for the strongest successor labeling function LabS . From
Lemma 5.3 it holds that π |= I ∧ S ⇒ IS . From Lemma 5.4 we know that LabS � Lab′ and from
Theorem 4.12 it follows that π |= IS ⇒ I ′.

5.1.1 Multiple partial assignments.

Now we generalize Theorem 5.5 to cases where different partial assignments π and π′ are used for
computation of interpolants I and I ′, respectively. Then, the desired result is π, π′ |= I ∧ S ⇒ I ′.

Assignments. Having two (different) PVA π and π′, the expression (π, π′) represents the PVA formed
by the union of the π and π′ assignments. We say that PVA σ is an extension of PVA π, if σ ⇒ π (if
the PVAs are viewed as conjunctions of literals). In other words, σ can be created from π by assigning
additional variables. In the case of conflicting π and π′ (assigning one > and the other ⊥ to a particular
variable), the inductive-step formula above holds trivially and therefore the case can be omitted from
now on.

20

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Definition 5.6. We say that the variable is assignable if it is McMillan-labeled and not Aπ-local.

The idea of our approach is to split the problem into the following three simpler steps:

(1) (A,S ∪B, π)→ (A,S ∪B, (π, π′)) Add assignment π′

(2) (A,S ∪B, (π, π′))→ (A ∪ S,B, (π, π′)) PI for fixed assignment
(3) (A ∪ S,B, (π, π′))→ (A ∪ S,B, π′) Remove assignment π

In the first and the last step Theorem 4.12 is used to relate particular interpolants with each other via
implications, while in the second step Theorem 5.5 is utilized. To be able to apply this scheme, we have
to prove that the hypotheses of the theorems hold – the existence of the locality preserving labeling
functions of decreasing strength. The approach taken is similar to the one used for a fixed variable
assignment; we define the extended-assignment labeling for the first step and the restricted-assignment
labeling for the third step.

Definition 5.7 (Extended-assignment labeling). Let Lab be a labeling function for a (A, B, π)-refutation R
and a partial variable assignment σ be an extension of π. The extended-assignment labeling Lab+

π→σ is defined
as follows: ∀v ∈ V and ∀l ∈ cl(v): Lab+

π→σ(v, l) =

=



d+ if π 6|= l ∧ σ |= l (D5.7.1)
a if Var(l) is unassigned by σ and Aσ-local (D5.7.2)
b if Var(l) is unassigned by σ, Bσ-local and not Bπ-local (D5.7.3)
a if Var(l) is unassigned by σ, AσBσ-clean and

∃ vertex v′ where literal l or ¬l has label a or ab (D5.7.4)
Lab(v, l) otherwise (D5.7.5)

Formally: 

d+ if π 6|= l ∧ σ |= l (D5.7.1)
a if Var(l) 6∈ Var(σ) ∧ Var(l) ∈ Var(Aσ) ∧ Var(l) 6∈ Var(Bσ) (D5.7.2)
b if Var(l) 6∈ Var(σ) ∧ Var(l) ∈ Var(Bσ) ∧ Var(l) 6∈ Var(Aσ)∧

∧Var(l) ∈ Var(Aπ) (D5.7.3)
a if Var(l) 6∈ Var(σ) ∧ Var(l) 6∈ Var(Aσ) ∧ Var(l) 6∈ Var(Bσ)∧

∃v′ ∈ V, l′ ∈ cl(v′) such that
Var(l) = Var(l′) ∧ Lab(v′, l′) ∈ {a, ab} (D5.7.4)

Lab(v, l) otherwise (D5.7.5)

In a similar way as in the strongest successor labeling, if a literal l is not present in the vertex clause,
then Lab+

π→σ(v, l) = ⊥. The idea behind the definition is to create a locality preserving labeling for
(A,B, σ)-refutation. Each of the first four alternatives satisfies the corresponding locality preserving
constraint (D4.3.1-D4.3.4) for newly-occurring cases due to assignment extension.

The first alternative (D5.7.1) covers the newly satisfied literals. The second alternative (D5.7.2) cov-
ers the new Aσ-local (as well as the old Aπ-local) variables, while the third alternative (D5.7.3) covers
the new Bσ-local variables. The fourth alternative (D5.7.4) covers the case when due to the new assign-
ment the variable becomes AσBσ-clean and the label a must be assigned (because the variable is not
consistently labeled b).

First we show that we have defined a valid labeling function. The D4.2.1 rule is trivial (no label is
defined if l 6∈ cl(v)). As for D4.2.2, in all the alternatives their conditions do not depend on the vertex
being considered, so the rule is used consistently for the given literal in the whole proof. For all but the
last alternative the assigned labels are constant. For any label c it holds that c t c = ⊥ t c = c so the
property D4.2.2 holds trivially. For the last alternative the property D4.2.2 holds, because Lab is a valid
labeling function.

Lemma 5.8 (Locality of extended-assignment labeling). Let Lab be a locality preserving labeling function
for a (A,B, π)-refutation R and let a partial variable assignment σ be an extension of π.

Then the extended-assignment labeling Lab+
π→σ is a locality preserving labeling for the (A,B, σ)-refutation

R.

Proof. Due to the newly assigned variables in σ, the clauses from the unsatisfied clauses set can be
removed (formally Aσ ⊆ Aπ and Bσ ⊆ Bπ). We show that all the locality requirements are satisfied.

Satisfied literals – the requirement D4.3.1.

21

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Let σ |= l; we need to show that Lab+
π→σ(v, l) = d+. It either holds π 6|= l (a newly assigned variable)

or π |= l. In the former case the first alternative (D5.7.1) is applied and the label d+ is assigned as
needed. In the latter case the last alternative (D5.7.5) is applied and the label d+ is assigned due to the
locality of the Lab function.

Let σ 6|= l; we need to show that Lab+
π→σ(v, l) 6= d+. In such a case the first alternative (D5.7.1) cannot

be applied. The second, third and fourth alternatives satisfy it trivially since different labels a or b are
assigned. Let the last alternative is used. It holds that π 6|= l since σ is an extension of π. So the locality
of Lab gives us that the label is not d+ as required.

Aσ-locality – the requirement D4.3.2.
Let the variable Var(l) is Aσ-local so the labeling function Lab+

π→σ must assign the label a to it. In
such a case exactly the second alternative (D5.7.2) applies.

Bσ-locality – the requirement D4.3.3.
Let the variable Var(l) is Bσ-local so the labeling function must assign the label b to it. It can be

either even Bπ-local (in which case Var(l) 6∈ Var(Aπ)) or it is not a Bπ-local variable and then Var(l) ∈
Var(Aπ). In the former case the last alternative (D5.7.5) applies and the locality of the function Lab
guaranties that the label b is assigned. Note that the first alternative (D5.7.1) cannot be applied sinceBσ-
local implies Var(l) 6∈ Var(π) ⊆ Var(σ). The second (D5.7.2) and fourth (D5.7.4) alternatives cannot be
applied because Var(l) ∈ Var(Bσ). And finally the third alternative cannot be applied since Bπ-locality
is assumed in this case. In the latter case when the variable is newly Bσ-local the third alternative
(D5.7.3) applies and the assigned label is b.

Satisfied clauses – the requirement D4.3.4.
Let the variable Var(l) is AσBσ-clean. In such a case it must be labeled a or b consistently across

the whole proof. If the variable is AσBσ-clean then either fourth (D5.7.4) or the last (D5.7.5) alternative
applies The fact that Var(l) 6∈ Var(σ) (which comes from D4.3.4) denies the first alternative (D5.7.1).
Var(l) 6∈ Var(Aσ) blocks the second (D5.7.2) alternative and symmetrically Var(l) 6∈ Var(Bσ) blocks the
third (D5.7.3) alternative.

Moreover from the condition Var(l) 6∈ Var(σ) it follows that the label d+ is not assigned in any vertex
clause to (positive and negative literal over) the variable Var(l). Let the variable has the label b assigned
by Lab to all the its occurrences (i.e., consistently). In such a case the last alternative applies and the
requirement is satisfied. In all the other cases the fourth alternative applies and the label is consistently
set to a in all the vertex clauses containing the variable Var(l) and the requirement is satisfied again.

A similar property as for the strongest successor labeling holds for the extended-assignment labeling.

Lemma 5.9. Let Lab and Lab′ be locality preserving labeling functions for a (A,B, π)-refutation R and a
(A,B, σ)-refutation R, respectively. Let a partial variable assignment σ be an extension of π.

If Lab � Lab′ then also Lab+
π→σ � Lab′.

Proof. We show the lemma by contradiction. For contradiction assume that Lab � Lab′ and Lab+
π→σ 6�

Lab′. That means there exists a vertex v ∈ V and a literal l ∈ cl(v) such that Lab+
π→σ(v, l) 6� Lab′(v, l). It

especially means that Lab+
π→σ(v, l) 6= Lab′(v, l).

Let the label Lab+
π→σ(v, l) is set by the first alternative (D5.7.1) so Lab+

π→σ(v, l) = d+. In such a case it
holds Lab′(v, l) 6= d+ and Lab′ is not locality preserving since it directly violates the rule D4.3.1. Let the
label is set by the second alternative (D5.7.2) so Lab+

π→σ(v, l) = a. In such a case it holds Lab′(v, l) 6= a
and Lab′ is not locality preserving since it directly violates the rule D4.3.2. Let the label is set by the
third alternative (D5.7.3) so Lab+

π→σ(v, l) = b. In such a case holds Lab′(v, l) 6= b and Lab′ is not locality
preserving since violates the rule D4.3.3.

Let the label is set by the fourth (D5.7.4) alternative so Lab+
π→σ(v, l) = a. Be a vertex v′ and a literal

l′ witness from the alternative definition such that Lab(v′, l′) ∈ {a, ab}.
The assumption of the alternative (D5.7.4) directly satisfies the assumption of the rule D4.3.4 so even

locality labeling function Lab′(v, l) must return either a or b. The first case cannot occur since v and l are
chosen so that a = Lab′(v, l) 6= Lab+

π→σ(v, l) = a. The latter case, so let Lab′(v, l) = b, must apply. It either
holds that Lab′(v′, l′) = b or not. Let Lab′(v′, l′) = b holds, then {a, ab} 3 Lab(v′, l′) 6� Lab′(v′, l′) = b so it
holds Lab 6� Lab′ and the assumptions of the lemma are violated. In the latter case if Lab′(v′, l′) 6= b then
the v′, l′ parameters are the witnesses that Lab′ is not locality preserving since it violates the locality
rule D4.3.4.

Let the label is set by the last alternative (D5.7.5) so Lab+
π→σ(v, l) = Lab(v, l). In such a case the vertex

v and the literal l also show that Lab 6� Lab′ so the assumptions of the lemma are violated.

22

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

The strongest successor labeling is weaker than the original labeling function. However, this might not
be the case of the extended-assignment labeling where the alternatives D5.7.1 and D5.7.3 may increase
the strength. Thus additional requirements are introduced to ensure this property.

Lemma 5.10. Let Lab be a locality preserving labeling function for (A,B, π)-refutation R. Let a partial variable
assignment σ be an extension of π. If the clause sets Aπ and Aσ are equal and all newly σ-assigned variables (not
assigned by π) are assignable in Lab then:

Lab � Lab+
π→σ

The requirements of Lemma 5.10 can be still relaxed; we decided to articulate them in this way, since
they do not limit the applicability of the lemma yet they are simple enough.

Proof sketch. From the requirement Aπ = Aσ it follows that Bσ-local variables are also Bπ-local, so
the D5.7.3 alternative cannot be used. The newly σ-assigned variables (to which the first alternative
(D5.7.1) applies) are not Aπ-local and for all the other possible cases (Bπ-local, AπBπ-shared, or AπBπ-
clean) the locality and the McMillan labeling property imply that they are consistently labeled b in the
original labeling Lab. Thus, the (D5.7.1) alternative assigns a weaker label d+ in Lab+

π→σ . All remaining
alternatives cannot increase the strength of the label thus Lab � Lab+

π→σ .

Proof. To proof that Lab � Lab+
π→σ it is necessary to show that ∀v ∈ V and ∀l ∈ cl(v) it holds that

Lab(v, l) � Lab+
π→σ(v, l). The label Lab+

π→σ(v, l) must be defined by one of the alternatives (D5.7.1-5)
from the definition of the extended-assignment labeling.

Let the first alternative (D5.7.1) is used to define the label so Lab+
π→σ(v, l) = d+. In the following

we show that Lab(v, l) = b and Lab+
π→σ(v, l) assigns a weaker label as needed. First, the variable Var(l)

is not assigned by π. For contradiction, if Var(l) were assigned by π, it would hold that π |= ¬l. The
other polarity π |= l violates the assumptions of the D5.7.1 alternative. Because σ is an extension of π, it
would hold σ |= ¬l. However the assumption of the D5.7.1 alternative requires σ |= l. In such a case it
would hold that the partial variable assignment σ assigns to the variable Var(l) both > and ⊥ which is
not possible. So the variable Var(l) is assigned by σ and not by π; it is newly-assigned and thus Var(l) is
assignable.

The proof of the D5.7.1 alternative splits into four cases according to the type of the unassigned
variable Var(l), which can be Aπ-local, Bπ-local, AπBπ-shared or AπBπ-clean. Let Var(l) is:

(L5.10.1-1) Aπ-local, so Var(l) ∈ Var(Aπ) and Var(l) 6∈ Var(Bπ).
This case cannot occur, because Var(l) is assignable and thus not Aπ-local.

(L5.10.1-2) Bπ-local, so Var(l) 6∈ Var(Aπ) and Var(l) ∈ Var(Bπ).
From the locality requirement D4.3.3 it follows that Lab(v, l) = b as we need.

(L5.10.1-3) AπBπ-shared, so Var(l) ∈ Var(Aπ) and Var(l) ∈ Var(Bπ).
Because the variable Var(l) is assignable and thus McMillan-labeled, it follows that Lab(v, l) = b as
we need.

(L5.10.1-4) AπBπ-clean, so Var(l) 6∈ Var(Aπ) and Var(l) 6∈ Var(Bπ).
Because the variable Var(l) is assignable and thus McMillan-labeled, it follows that Lab(v, l) = b as
we need.

Let the second alternative (D5.7.2) is used so Lab+
π→σ(v, l) = a. The requirement holds trivially in

this case, since the label a is the weakest one according to the strength ordering �. (The label ⊥ is not
possible since l ∈ cl(v).)

The third alternative (D5.7.3) cannot be used. We show that all Bσ-local variables are also Bπ-
local. Let the variable Var(l) is Bσ-local, formally Var(l) 6∈ Var(Aσ) and Var(l) ∈ Var(Bσ). From the
assumption Aσ = Aπ it follows that Var(Aσ) = Var(Aπ). Because σ is an extension of π it follows
that Bσ ⊆ Bπ so Var(Bσ) ⊆ Var(Bπ). The above inclusions show the Bπ-locality of the variable Var(l)
(formally Var(l) 6∈ Var(Aσ) = Var(Aπ) and Var(l) ∈ Var(Bσ) ⊆ Var(Bπ)).

Let the fourth (D5.7.4) alternative is used so Lab+
π→σ(v, l) = a. The requirement holds trivially in

this case, since the label a is the weakest one according to the strength ordering �. (The label ⊥ is not
possible since l ∈ cl(v).)

Let the last alternative (D5.7.5) is used then the requirement holds trivially. (It holds that Lab+
π→σ(v, l) =

Lab(v, l) and for any label c holds c � c.)

Now we consider the case when assignment of some variables is removed.

23

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Definition 5.11 (Restricted-assignment labeling). Let Lab be a labeling function for a (A, B, π)-refutation
R. Let σ be a partial variable assignment such that π is an extension of σ. The restricted-assignment labeling
Lab−π→σ is defined as follows:∀v ∈ V and ∀l ∈ cl(v): Lab−π→σ(v, l) =

=



ab if π |= l and Var(l) is unassigned by σ and AσBσ-shared (D5.11.1)
a if Var(l) is assigned by π, unassigned by σ, AσBσ-clean and

∃ vertex v′ where literal l or ¬l has label a, ab or d+ (D5.11.2)
a if Var(l) is unassigned by σ and Aσ-local (D5.11.3)
b if Var(l) is unassigned by σ and Bσ-local (D5.11.4)
Lab(v, l) otherwise (D5.11.5)

Formally:

=



ab if π |= l ∧ Var(l) 6∈ Var(σ)∧
∧Var(l) ∈ Var(Aσ) ∧ Var(l) ∈ Var(Bσ) (D5.11.1)

a if Var(l) ∈ Var(π) ∧ Var(l) 6∈ Var(σ)∧
∧Var(l) 6∈ Var(Aσ) ∧ Var(l) 6∈ Var(Bσ)
∧∃v′ ∈ V, l′ ∈ cl(v′) such that

Var(l) = Var(l′) ∧ Lab(v′, l′) ∈ {a, ab, d+} (D5.11.2)
a if Var(l) 6∈ Var(σ) ∧ Var(l) 6∈ Var(Bσ) ∧ Var(l) ∈ Var(Aσ) (D5.11.3)
b if Var(l) 6∈ Var(σ) ∧ Var(l) 6∈ Var(Aσ) ∧ Var(l) ∈ Var(Bσ) (D5.11.4)
Lab(v, l) otherwise (D5.11.5)

In a similar way as in the extended-assignment labeling, if a literal l is not present in the vertex
clause, then Lab−π→σ(v, l) = ⊥. The idea behind the definition is to create a locality preserving labeling
for an (A,B, σ)-refutation.

The first two alternatives (D5.11.1-2) assign labels to the variables whose assignment is removed.
The third and fourth rules cover new Aσ-local and Bσ-local variables.

First we show that we have defined a valid labeling function. The D4.2.1 rule is trivial (no label is
defined if l 6∈ cl(v)). As forD4.2.2 rule, in all previous cases the alternative used to set the label does not
depend on the vertex being considered. For all but the last alternative the assigned labels are constant.
For a label c it holds that ct c = ⊥t c = c so the rule holds trivially. For the last alternative the property
holds, because Lab is a valid labeling function.

Lemma 5.12 (Locality of restricted-assignment labeling). Let Lab be a locality preserving labeling function
for a (A,B, π)-refutation R and π be an extension of a partial variable assignment σ.

Then the restricted-assignment labeling Lab−π→σ is a locality preserving labeling for the (A,B, σ)-refutation
R.

Proof. Due to removal of variables from the assignment, some satisfied clauses can become unsatisfied
(formally Aπ ⊆ Aσ and Bπ ⊆ Bσ). We show that all the locality requirements are satisfied.

Satisfied literals – the requirement D4.3.1.
Assume that σ |= l. Then only the last alternative (D5.11.5) can be used since Var(l) is assigned by σ.

Moreover since the assignment π is an extension of σ, it holds that π |= l. So the locality of Lab gives us
that Lab−π→σ(v, l) = Lab(v, l) = d+ as needed.

Let σ 6|= l then it we need to show that Lab−π→σ(v, l) 6= d+. It either holds that σ |= ¬l (i.e. the literal
l is falsified) or Var(l) is unassigned by σ. In the former case the last alternative (D5.11.5) is used, since
all other alternatives require Var(l) to be unassigned by σ. Because σ is restriction of π, from the fact
that σ |= ¬l it follows that π |= ¬l, thus π 6|= l (partial variable assignment assigns to Var(l) only a single
value – > or ⊥). From the locality of Lab we know that it returns d+ if and only if π |= l so in this case
Lab−π→σ(v, l) 6= d+.

Now focus on the latter case, i.e. Var(l) is unassigned by σ. The proof splits into four cases according
to the type of the unassigned variable Var(l). Let Var(l) is:

(L5.12.1-1) Aσ-local, so Var(l) ∈ Var(Aσ) and Var(l) 6∈ Var(Bσ).
In this case the D5.11.3 alternative is used so a label different from d+ is assigned as needed.

(L5.12.1-2) Bσ-local, so Var(l) 6∈ Var(Aσ) and Var(l) ∈ Var(Bσ).
In this case the D5.11.4 alternative is used so a label different from d+ is assigned as needed.

24

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

(L5.12.1-3) AσBσ-shared, so Var(l) ∈ Var(Aσ) and Var(l) ∈ Var(Bσ).
In this case it either holds that π |= l or π 6|= l. In the former case the first alternative (D5.11.1) is
used and the label ab is assigned. In the latter case the last alternative (D5.11.5) is used. From the
locality of the Lab and the fact that π 6|= l it follows that Lab(v, l) 6= d+ as needed.

(L5.12.1-4) AσBσ-clean, so Var(l) 6∈ Var(Aσ) and Var(l) 6∈ Var(Bσ).
In this case either the second alternative (D5.11.2) or the last alternative (D5.11.5) is used. In the
former case a label different from d+ is assigned as needed. In the latter case the alternative D5.11.5
is used to set the label. Since the second alternative is not used it either holds that Var(l) is unas-
signed by π (Var(l) 6∈ Var(π)) or all instances of the variable Var(l) are labeled consistently by b
(∀v′ ∈ V, l′ ∈ cl(v′) such that Var(l) = Var(l′) ∧ Lab(v′, l′) 6∈ {a, ab, d+}). Let Var(l) is unassigned by
π (Var(l) 6∈ Var(π)), it follows that π 6|= l so the locality of Lab gives us that Lab(v, l) 6= d+ as needed.
In the latter case, if the variable Var(l) is labeled b consistently by Lab, the property holds trivially.

Aσ-locality – the requirement D4.3.2.
Assume that the variable l is Aσ-local. The locality preserving labeling function must assign the

label a here. In such a case the third alternative (D5.11.3) applies.

Bσ-locality – the requirement D4.3.3.
Assume that the variable l is Bσ-local-local. The locality preserving labeling function must assign

the label b. In such a case the fourth alternative (D5.11.4) applies.

Satisfied clauses – the requirement D4.3.4.
Assume that the variable Var(l) isAσBσ-clean. The locality preserving labeling function must consis-

tently assign the label a or b to Var(l). If the variable is AσBσ-clean, None of the first (D5.11.1), the third
(D5.11.3), and the fourth (D5.11.4) alternative can be used to set its label. Formally, if the first (D5.11.1)
or the third (D5.11.3) alternative is used, the variable Var(l) is not AσBσ-clean because Var(l) ∈ Aσ . If
the fourth (D5.11.4) alternative is used, the variable Var(l) is not AσBσ-clean because Var(l) ∈ Bσ .

Assume that the second alternative (D5.11.2) is used to set the label of the variable Var(l). Then the
requirement is satisfied since the permitted label a is assigned and the alternative is used for all the
occurrences of the variable in the proof.

Assume that the last alternative (D5.11.5) is used to set the label. The variable Var(l) is either unas-
signed by π or assigned by π. In the former case the variable is also AπBπ-clean, because Aπ ⊆ Aσ and
Bπ ⊆ Bσ . So the locality of the labeling function Lab gives us that the variable Var(l) is consistently
labeled by a or b as needed. In the latter case where Var(l) is assigned by π, it follows that all the occur-
rences of the variable Var(l) are labeled b because the second alternative (D5.11.2) is not used. So even
in this case the label b is assigned consistently as needed and the requirement D4.3.4 is satisfied.

A similar property as for the strongest successor labeling and the extended-assignment labeling holds
also for the restricted-assignment labeling.

Lemma 5.13. Let Lab and Lab′ be locality preserving labeling functions for a (A, B, π)-refutation R and a (A,
B, σ)-refutation R, respectively. Let π be an extension of a partial variable assignment σ.

If Lab � Lab′ then also Lab−π→σ � Lab′.

Proof. We show the lemma by contradiction. For contradiction assume that Lab−π→σ 6� Lab′. Then there
exists a vertex v and a literal l such that Lab−π→σ(v, l) 6� Lab′(v, l). It especially means that Lab−π→σ(v, l) 6=
Lab′(v, l).

Let the label be set by the first alternative (D5.11.1). Then it holds that Lab+
π→σ(v, l) = ab. In such a

case it must hold that Lab′(v, l) = b (since only b is stronger than ab). The assumption of the alternative
gives us that π |= l, so from locality of Lab it follows that Lab(v, l) = d+. The parameters v and l show
that Lab 6� Lab′ – violation of the assumptions of the lemma.

Let the label be set by the second alternative (D5.11.2). Then it holds that Lab+
π→σ(v, l) = a. In such

a case it must hold that Lab′(v, l) 6= a. The variable Var(l) is AσBσ-clean so from the requirement D4.3.4
it follows that any locality preserving function for (A,B, σ) must consistently assign either the label a
or label b to the variable Var(l). Since Lab′ is locality preserving, the only option is that Lab′(v, l) = b.
However, the assumption of the second alternative (D5.11.2) gives us that there exists a vertex v′ and
a literal l′ (v′ ∈ V, l′ ∈ cl(v′)) such that Var(l) = Var(l′) and Lab(v′, l′) ∈ {a, ab, d+}. It either holds
that Lab′(v′, l′) = b or Lab′(v′, l′) 6= b. In the former case the parameters v′ and l′ are the witnesses
that Lab 6� Lab′. In the latter case the parameters v′ and l′ are the witnesses that Lab′ is not a locality

25

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

preserving labeling, since it violates the locality rule D4.3.4, because the AσBσ-clean variable Var(l) is
not labeled consistently by Lab′.

Let the label be set by the third alternative (D5.11.3) so Lab−π→σ(v, l) = a. In such a case it holds that
Lab′(v, l) 6= a and Lab′ is not locality preserving since it directly violates the rule D4.3.2.

Let the label be set by the fourth alternative (D5.11.4) so Lab−π→σ(v, l) = b. And since b is the strongest
label (according �), Lab′(v, l) cannot be stronger so it cannot violate the assumption. Note that it must
even hold that Lab′(v, l) = b otherwise Lab′ is not locality preserving since the rule D4.3.3 is violated.

Let the label be set by the last alternative (D5.11.5) so Lab−π→σ(v, l) = Lab(v, l). In such a case the
vertex v and the literal l also show that Lab 6� Lab′ so the assumptions of the lemma are violated.

The restricted-assignment labeling might be stronger than the original labeling function; this is
caused only by the D5.11.4 alternative. Additional requirements must ensure that the alternative is
used only if the original label is b.

Lemma 5.14. Let Lab be a locality preserving labeling function for (A,B, π)-refutationR. Let π be an extension
of a partial variable assignment σ. If the clause sets Bπ and Bσ are equal and all newly σ-unassigned variables
(assigned by π and not by σ) are not Bσ-local then:

Lab � Lab−π→σ
Similarly to Lemma 5.10, the requirements of Lemma 5.14 are not the most general ones.

Proof sketch. Let the variable Var(l) is Bσ-local. We show that it is also Bπ-local and so the locality
constraint D4.3.3 guarantees that Var(l) is labeled b by Lab.

If the variable Var(l) were assigned by π, it would violate the requirement that the newly unassigned
variables are not Bσ-local. Thus the variable Var(l) is unassigned by π. From the assumption Bπ = Bσ
and the fact that π is an extension of σ it follows that Bσ-local variable Var(l) is also Bπ-local.

Note that the first alternative D5.11.1 cannot increase the strength because of the fact that π |= l
implies that Lab assigns label d+.

Proof. We want to show that ∀v ∈ V and ∀l ∈ cl(v) it holds Lab(v, l) � Lab−π→σ(v, l). The label
Lab−π→σ(v, l) must be defined by one of the alternatives (D5.11.1-5) from the definition of the restricted-
assignment labeling.

Let the first alternative (D5.11.1) be used so Lab−π→σ(v, l) = ab. From the assumption π |= l of the
alternative and the locality requirement D4.3.1 it follows that locality preserving Lab(v, l) = d+. It holds
that Lab(v, l) = d+ � ab = Lab−π→σ(v, l) as it is needed to show the goal.

Let the second (D5.11.2) or the third (D5.11.3) alternative be used so Lab−π→σ(v, l) = a. The require-
ment holds trivially in this case, since the label a is the weakest one according to the strength ordering
�. Note that the label ⊥ is not applicable because l ∈ cl(v).

Let the fourth alternative (D5.11.4) be used so Lab−π→σ(v, l) = b. We show that Lab(v, l) = b so the
goal is satisfied. The variable Var(l) can be either assigned or unassigned by π. If the variable Var(l)
were assigned by π, it would violate the requirement of the lemma that the newly unassigned variables
are not Bσ-local. Let the variable Var(l) be unassigned by π. We know that the variable Var(l) is Bσ-
local, formally Var(l) ∈ Var(Bσ) and Var(l) 6∈ Var(Aσ). From the fact that Bπ = Bσ it follows that
Var(l) ∈ Var(Bπ) = Var(Bσ). From the fact that π is extension of σ it follows that Var(Aπ) ⊆ Var(Aσ),
so Var(l) 6∈ Var(Aπ) ⊆ Var(Aσ) and the variable Var(l) is also Bπ-local. Thus the locality preserving
function Lab assigns the label b to the variable as it is required.

Let the last alternative (D5.11.5) be used then the requirement holds trivially. (It holds that Lab−π→σ(v, l) =
Lab(v, l) and for any label c it holds that c � c.)

Now, all the labeling functions are connected together to get from (A,S ∪B, π) to (A∪S,B, π′). The
following lemma states the prerequisites and properties of the labeling function chain.

Lemma 5.15 (Chaining). Let Lab and Lab′ be locality preserving labeling functions for an (A,S ∪ B, π)-refu-
tation R and an (A∪ S,B, π′)-refutation R, respectively. Let assume a partial variable assignment (π, π′) exists
and let Bπ′ ⊆ Bπ . Let Aπ ⊆ Aπ′ and all the variables assigned by π′ but not by π be assignable in Lab. Let the
variables assigned by π′ and not by π be not Bπ′ -local.

Let Lab+
π→(π,π′) be an extended-assignment labeling for Lab. Let LabS(π,π′) be the strongest successor labeling for

Lab+
π→(π,π′) induced by S. Let Lab−(π,π′)→π′ be a restricted-assignment labeling for LabS(π,π′).

If Lab � Lab′ then the following holds:

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′ � Lab′

26

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

The most important result of the lemma is that the chain of the labeling functions is always in be-
tween Lab and Lab′ according to the strength ordering. This allows to apply the theorems about the
interpolants strength.

Proof sketch. First, we show that the defined labeling functions form a strength-decreasing chain
Lab � Lab+

π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′ using Lemmas 5.10, 5.14. Later, the chain is extended
by Lab′. For contradiction, let us assume Lab−(π,π′)→π′ 6� Lab′; then going backwards along the chain,
we show that either Lab′ is not locality preserving or Lab 6� Lab′. The proof exploits the fact that all the
alternatives in extended/restricted-assignment and the strongest labeling are introduced to satisfy the
locality constraints and assigns the strongest label possible.

Proof. First, the assumptions of Lemma 5.10 and 5.14 are shown.

Assumptions of Lemma 5.10: From the fact that (π, π′) is an extension of π, it follows that A(π,π′) ⊆
Aπ . Formally a clause c ∈ A(π,π′) is satisfied by neither π nor π′; thus it holds that c ∈ Aπ . Now we
show thatAπ ⊆ A(π,π′). Let c ∈ Aπ (i.e. c is unsatisfied by π). Then because of the assumptionAπ ⊆ Aπ′

of Lemma 5.15 it holds that c ∈ Aπ′ (i.e. c is unsatisfied by π′). So we have shown that c is unsatisfied
by both π and π′ thus c ∈ A(π,π′). We have proved that A(π,π′) = Aπ .

The second assumption about the assignability of the newly assigned variables follows from the fact
that the newly (π, π′)-assigned variables (i.e. variables in Var((π, π′)) \ Var(π)) are exactly the newly
π′-assigned variables (variables in Var(π′) \ Var(π)). Formally it holds:

Var((π, π′)) = Var(π) ∪ Var(π′)

Var((π, π′)) \ Var(π) =
= (Var(π) \ Var(π)) ∪ (Var(π′) \ Var(π)) =

= ∅ ∪ (Var(π′) \ Var(π))

Assumptions of Lemma 5.14: The proof is symmetric to the previous paragraph. From the fact that
(π, π′) is an extension of π′, it follows that B(π,π′) ⊆ Bπ′ . (Formally a clause c ∈ B(π,π′) is satisfied
by neither π nor π′. So the clause c is not satisfied by π′ thus it holds c ∈ Bπ′ .) Now we show that
Bπ′ ⊆ B(π,π′). Assume a clause c ∈ Bπ′ (i.e. c is unsatisfied by π′) then because of the assumption
Bπ′ ⊆ Bπ of Lemma 5.15, it holds that c ∈ Bπ (i.e. c is unsatisfied by π). So we have shown that
c is unsatisfied by both π and π′ thus c ∈ B(π,π′). We have proved that B(π,π′) = Bπ′ The second
assumption about the unassigned variables follows from the fact that the newly (π, π′)-unassigned
variables (i.e. variables in Var((π, π′))\Var(π′)) are exactly the newly π′-unassigned variables (variables
in Var(π) \ Var(π′)). Formally it holds:

Var((π, π′)) = Var(π) ∪ Var(π′)

Var((π, π′)) \ Var(π′) =(Var(π) \ Var(π′)) ∪ (Var(π′) \ Var(π′)) =
=(Var(π) \ Var(π′)) ∪ ∅

So Lemma 5.10 and 5.14 can be used to create a strength-decreasing chain of labeling functions:

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′

Now in the second part of the proof, we extend the chain with Lab′. The proof is done by contra-
diction – we assume that Lab−(π,π′)→π′ 6� Lab′. In the following we push the contradiction backwards
along the chain. In each backward step, all the alternatives from the definition of the labeling function
are considered. The following cases (contradictions of the assumptions of Lemma 5.15 may occur:

(L5.15.1) shows that Lab′ is not weaker than Lab, or

(L5.15.2) shows that Lab′ is not locality preserving, or

(L5.15.3) shows that Bπ 6⊆ Bπ′ , or

(L5.15.4) pushes the contradiction back (using the last “otherwise” alternative)

Also note that the only assumption used in this part of the proof is that Bπ ⊆ Bπ′ .

27

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Initial step. It either holds that Lab−(π,π′)→π′ � Lab′ and we are done or the opposite holds. Assume it
holds that Lab−(π,π′)→π′ 6� Lab′. It means that there exists a vertex v ∈ V and a literal l ∈ cl(v) such that
Lab−(π,π′)→π′(v, l) 6� Lab′(v, l). It especially means that Lab−(π,π′)→π′(v, l) 6= Lab′(v, l).

The label Lab−(π,π′)→π′(v, l) must be defined by one of the D5.11.1-5 alternatives.

(L5.15-D5.11.1) Let the first alternative (D5.11.1) is used to define the label so it holds that Lab−(π,π′)→π′(v, l) =
ab. It must hold that Lab′(v, l) = b, since only the label b is strictly stronger than the label ab. The al-
ternative assumptions (π, π′ |= l and Var(l) is unassigned by π′) imply that π |= l thus for the locality
preserving Lab it must hold that Lab(v, l) = d+. So we have shown that Lab 6� Lab′ (contradiction
type L5.15.1).

(L5.15-D5.11.2) Let the second alternative (D5.11.2) is used to define the label so it holds that Lab−(π,π′)→π′(v, l) =
a. It holds that Lab′(v, l) 6= a. Since the variable is AB-clean in (A ∪ S,B, π′), it must hold that
Lab′(v, l) = b, otherwise Lab′ is not locality preserving (contradiction type L5.15.2). The assumptions
of the alternative give us that there exist v′ and l′ such that LabS(π,π′)(v′, l′) ∈ {a, ab, d+}. Moreover it
also holds that Lab′(v′, l′) = b (since it consistently assigns the same label b to Var(l) = Var(l′)). The
assumptions of the alternative (Var(l) = Var(l′) is assigned by (π, π′) and unassigned by π′) also
imply that Var(l′) is assigned by π.

Now we focus on the Lab(v′, l′). It either holds that π |= l′ or π |= ¬l′. In the former case it must
hold that Lab(v′, l′) = d+ (since Lab is locality preserving) so we have shown that Lab 6� Lab′ (a
contradiction type L5.15.1), since:

Lab(v′, l′) = d+ 6� b = Lab′(v, l)

In the latter case it holds that Lab(v′, l′) = Lab+
π→(π,π′)(v′, l′) = LabS(π,π′)(v′, l′). Since Var(l′) is

assigned by π, the alternatives D5.7.2, D5.7.3, D5.7.4 and D5.1.1 cannot apply; also the alternative
D5.7.1 cannot apply (if π |= ¬l then because (π, π′) is PVA it cannot hold π, π′ |= l′). Thus the only
remaining alternatives are D5.7.5 and D5.1.2, which guarantee the equality above. And again as in
the former case, we have shown contradiction (type L5.15.1) since:

Lab(v′, l′) = Lab+
π→(π,π′)(v

′, l′) = LabS(π,π′)(v′, l′) ∈ {a, ab, d+} 6� Lab′(v′, l′) = b

(L5.15-D5.11.3) Let the third alternative (D5.11.3) is used to define the label so it holds that Lab−(π,π′)→π′(v, l) =
a. It must hold that Lab′(v, l) 6= a. However the variable Var(l) is A-local in (A ∪ S,B, π′) thus we
have shown a contradicting fact that Lab′ is not locality preserving (L5.15.2).

(L5.15-D5.11.4) Let the fourth alternative (D5.11.4) is used to define the label so it holds that Lab−(π,π′)→π′(v, l) =
b. It must hold that Lab′(v, l) 6= b. However the variable Var(l) is B-local in (A ∪ S,B, π′) thus we
have shown contradicting the fact that Lab′ is not locality preserving (L5.15.2).

(L5.15-D5.11.5) Let the last alternative (D5.11.5) is used to define the label so it holds that Lab−(π,π′)→π′(v, l) =
LabS(π,π′)(v, l). In this case we push the contradiction backwards (L5.15.4) and we show that LabS(π,π′)(v, l) 6�
Lab′(v, l).

Second step. To sum up the situation, the last alternative (D5.11.5) in the definition of the restricted-
assignment labeling is used which yields:

LabS(π,π′)(v, l) = Lab−(π,π′)→π′(v, l) 6� Lab′(v, l)

The label LabS(π,π′)(v, l) must be defined by one of the D5.1.1-2 alternatives.

(L5.15-D5.1.1) Let the first alternative (D5.1.1) is used to define the label so the following holds: LabS(π,π′)(v, l) =
Lab−(π,π′)→π′(v, l) = a. The assumptions of the alternative give us that the variable Var(l) is A-local
in (A ∪ S,B, (π, π′)), formally:

Var(l) ∈ Var(A(π,π′) ∪ S(π,π′)) Var(l) 6∈ Var(B(π,π′))

28

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

Since the alternative D5.11.5 in the restricted-assignment labeling is used (and not D5.11.3) the Var(l)
is not A-local in (A ∪ S,B, π′), formally it cannot hold:

Var(l) ∈ Var(Aπ′ ∪ Sπ′) Var(l) 6∈ Var(Bπ′)

Bellow, we show that if it were Bπ ⊆ Bπ′ then the variable Var(l) would be A-local in (A ∪ S,B, π′)
(so the alternative D5.11.5 would not be used). Thus, to use the D5.11.5 alternative in the restricted-
assignment labeling, it must hold Bπ 6⊆ Bπ′ (L5.15.3) which is a contradiction of the assumptions of
the chaining lemma.

(Due to removal of variables) it holds that Var(A(π,π′)) ⊆ Var(Aπ′), for any set of clauses A. Thus it
holds:

Var(l) ∈ Var(A(π,π′) ∪ S(π,π′))⇒ Var(l) ∈ Var(Aπ′ ∪ Sπ′)

As we have shown above (assumptions of Lemma 5.14), if it holds that Bπ ⊆ Bπ′ then B(π,π′) = Bπ′

so Var(B(π,π′)) = Var(Bπ′). This gives us:

Var(l) 6∈ Var(B(π,π′))⇒ Var(l) 6∈ Var(Bπ′) (3)

We have shown (the contradicting fact) that the variable Var(l) is (even) A-local in (A∪ S,B, π′). To
be able to use the alternative D5.11.5 in the following restricted-assignment labeling, it must hold
that Bπ 6⊆ Bπ′ (L5.15.3) which is a contradiction of the assumptions of the chaining lemma.

(L5.15-D5.1.2) Let the second alternative (D5.1.2) is used to define the label so the following holds:
LabS(π,π′)(v, l) = Lab+

π→(π,π′)(v, l). In this case we push the contradiction backwards (L5.15.4) and
we show that Lab+

π→(π,π′)(v, l) 6� Lab′(v, l).

Third step. To sum up the situation, the last alternative in the definition of the strongest-successor
and restricted-assignment labeling is used:

Lab+
π→(π,π′)(v, l) = LabS(π,π′)(v, l) = Lab−(π,π′)→π′(v, l) 6� Lab′(v, l)

The label Lab+
π→(π,π′)(v, l) must be defined by one of the D5.7.1-5 alternatives.

(L5.15-D5.7.1) Let the first alternative (D5.7.1) is used to define the label so it holds that Lab+
π→(π,π′)(v, l) =

d+. It must hold that Lab′(v, l) = b, since only the label b is strictly stronger than the label d+. The
assumptions of the alternative (π 6|= l and π, π′ |= l) imply that π′ |= l. Thus we have shown the
contradicting fact that Lab′ is not locality preserving (L5.15.2), since the locality constrain D4.3.1
requires that Lab′(v, l) = d+.

(L5.15-D5.7.2) Let the second alternative (D5.7.2) is used to define the label so it holds that Lab+
π→(π,π′)(v, l) =

a and the variable Var(l) is A-local in (A ∪ S,B, (π, π′)). Here, exactly the same reasoning about A-
local variables as in the L5.15-D5.1.1 case is applied.

If it were Bπ ⊆ Bπ′ then the variable Var(l) would be A-local in (A ∪ S,B, π′) (so the alterna-
tive D5.11.5 would not be used). Thus, to use the D5.11.5 alternative in the following restricted-
assignment labeling, it must hold that Bπ 6⊆ Bπ′ (L5.15.3) which is a contradiction of the assump-
tions of the chaining lemma.

(L5.15-D5.7.3) Let the third alternative (D5.7.3) is used to define the label so it holds that Lab+
π→(π,π′)(v, l) =

b. The strongest possible label is assigned so the labeling function Lab′(v, l) cannot have any (strictly)
stronger label.

(L5.15-D5.7.4) Let the fourth alternative (D5.7.4) is used to define the label so it holds that Lab+
π→(π,π′)(v, l) =

a, the variable Var(l) is unassigned by π and π′, the variable is AB-clean in (A ∪ S,B, (π, π′)). For-
mally, it holds:

Var(l) 6∈ Var(A(π,π′) ∪ S(π,π′)) Var(l) 6∈ Var(B(π,π′))

29

D3S, Technical Report no. 2013/05 5.1 Fixed partial assignment.

The variable Var(l) unassigned by π′ can be either: A-local, B-local, AB-shared or AB-clean in
(A∪S,B, π′). Since the alternative D5.11.5 in the restricted-assignment labeling is used, the variable
cannot be A-local, B-local (otherwise the alternatives D5.11.3 or D5.11.4 would have been used). If
the variable Var(l) were AB-clean even in (A ∪ S,B, π′), then the alternative D5.11.2 would have
been used. (In the strongest-successor labeling the second alternative is used and the label a is
preserved and the v, l satisfy the assumptions of the alternative D5.11.2). The only remaining case
is that the variable Var(l) is AB-shared in (A ∪ S,B, π′), formally it must hold:

Var(l) ∈ Var(Aπ′ ∪ Sπ′) Var(l) ∈ Var(Bπ′)

We show that if it holds Bπ ⊆ Bπ′ then the variable Var(l) is AB-shared in (A ∪ S,B, π′) (so the
alternative D5.11.5 is not used). Thus, to use the D5.11.5 alternative in the restricted-assignment
labeling, it must hold that Bπ 6⊆ Bπ′ (L5.15.3) which is a contradiction of the assumptions of the
chaining lemma. Assume it holds that Bπ ⊆ Bπ′ . Then (as it is shown above in the assumptions of
Lemma 5.14) B(π,π′) = Bπ′ and Var(B(π,π′)) = Var(Bπ′). So as we have shown in the equation 3, it
cannot be Var(l) ∈ Var(Bπ′) so the variable cannot be AB-shared.

(L5.15-D5.7.5) Let the last alternative (D5.7.5) is used to define the label so it holds that Lab+
π→(π,π′)(v, l) =

Lab(v, l). In this case we push the contradiction backwards enough to show that Lab 6� Lab′ (L5.15.1)
which violates the assumptions of the chaining lemma. It holds:

Lab(v, l) = Lab+
π→(π,π′)(v, l) = LabS(π,π′)(v, l) = Lab−(π,π′)→π′(v, l) 6� Lab′(v, l)

So we have analysed all the cases and have shown that if the assumptions L5.15.1-3 hold, then
Lab−(π,π′)→π′ � Lab′ and the lemma is proved.

The following theorem states the main result for the general inductive step, where different PVAs
are used.

Theorem 5.16 (Inductive step). Let Lab be a locality preserving labeling function for (A,S ∪B, π)-refutation
R and let the partial variable assignment interpolant I = LpaItp(Lab, (A,S ∪ B, π)). Let Lab′ be a locality
preserving labeling function for (A∪S,B, π′)-refutation R and let the PVAI interpolant I ′ = LpaItp(Lab′, (A∪
S,B, π′)). Let Aπ ⊆ Aπ′ , Bπ′ ⊆ Bπ and let the variables assigned by π′ and not by π are assignable in Lab and
the variables assigned by π and not by π′ are not Bπ′ -local.

If Lab � Lab′ then it holds π, π′ |= I ∧ S ⇒ I ′.

In terms of our motivation example, the theorem relates interpolants for subsequent nodes in the ab-
stract reachability graph. The theorem provides us with the main result required for well-labeledness [2,
8]. Assume we have interpolants I2 for the node 2 and I3 for the node 3. This means I2∧µ2 ⇒ I3. Having
this for all nodes, a path interpolant for any path in ARG can be formed. Note that all the assumptions
of the theorem except for the assignability and relation if labeling functions are automatically fulfilled
by the used Cond encoding.

Proof. The expression (π, π′) either represents a valid assignment or not (in the case of a conflict). In the
latter case the assignments π and π′ are conflicting, i.e., there exists a literal l being assigned > by π and
⊥ by π′, or vice versa. Then, (π, π′) contains a contradiction, thus π, π′ |= I ∧ S ⇒ I ′ holds trivially.

For the former case, assume that (π, π′) is a valid assignment. Using Lemma 5.15 we obtain:

Lab � Lab+
π→(π,π′) � LabS(π,π′) � Lab−(π,π′)→π′ � Lab′

Moreover Lab+
π→(π,π′) is locality preserving for (A,S ∪ B, (π, π′)) (lemma 5.8), LabS(π,π′) is locality

preserving for (A ∪ S,B, (π, π′)) (lemma 5.2) and Lab−(π,π′)→π′ is locality preserving for (A ∪ S,B, π′)
(lemma 5.12).

First, Theorem 4.12 is applied using the labeling function Lab+
π→(π,π′) to obtain the interpolant I1 for

(A,S ∪ B, (π, π′)) such that π, π′ |= I ⇒ I1. Then, Theorem 5.5 is applied using the strongest successor
labeling LabS(π,π′) to get the interpolant I2 for (A ∪ S,B, (π, π′)) such that π, π′ |= I1 ∧ S ⇒ I2. Then,
Theorem 4.12 is applied again, using Lab−(π,π′)→π′ to obtain the interpolant I3 for (A∪S,B, π′) such that
π, π′ |= I2 ⇒ I3. Finally, Theorem 4.12 with a fixed assignment π′ and Lab′ is applied to weaken the
interpolant I3 to form I ′ for (A ∪ S,B, π′), so it holds that π, π′ |= I3 ⇒ I ′.

30

D3S, Technical Report no. 2013/05 References

To sum it up, we have proved that:

π, π′ |= I ∧ S T4.12⇒ I1 ∧ S
T5.5⇒ I2

T4.12⇒ I3
T4.12⇒ I ′

6 Conclusion

In this paper, we introduced Partial Variable Assignment Interpolants, which (in contrast to Craig In-
terpolants) permit to specialize the interpolants to sub-problems specified in the form of variable as-
signments. We showed how the concept of PVAIs finds application in abstract reachability graphs and
DAG interpolation. We also developed the new framework of Labeled Partial Assignment Interpolation
Systems, which can be used to compute PVAI’s for propositional logic, and showed its properties.

To the best of our knowledge, the only strongly related work in this area is [2], based on the lin-
earization of a DAG into a single path. The authors implemented the proposed technique inside the
UFO tool for linear integer arithmetic; the computed interpolants are quantified formulas in general.

PVAIs do not yield DAG interpolants directly, but only simple post-processing steps are required. In
the future, we will show how quantifier-free DAG interpolants can be derived from PVAIs, in contrast
to the method presented in [2]. Further, we plan to extend the ideas of LPAIS and to introduce a PVAI
interpolation system for linear integer arithmetic, a theory particularly relevant to program verification.

Acknowledgment. Special thanks go to Ondřej Šerý for his valuable contribution.

References

[1] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Craig Interpretation. In SAS ’12, volume
7460 of LNCS, pages 300–316, 2012.

[2] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. From Under-Approximations to Over-
Approximations and Back. In TACAS ’12, volume 7214 of LNCS, pages 157–172, 2012.

[3] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A Framework for Abstraction-
and Interpolation-Based Software Verification. In CAV ’12, volume 7358 of LNCS, pages 672–678,
2012.

[4] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
J. of Symbolic Logic, pages 269–285, 1957.

[5] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant strength.
In VMCAI’10, volume 5944 of LNCS, pages 129–145, 2010.

[6] Arie Gurfinkel, Simone Fulvio Rollini, and Natasha Sharygina. Interpolation Properties and SAT-
Based Model Checking. In ATVA ’13, volume 8172 of LNCS, pages 255–271, 2013.

[7] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In CAV ’03, volume 2725 of
LNCS, pages 1–13, 2003.

[8] Kenneth L. McMillan. Lazy Abstraction with Interpolants. In CAV ’06, volume 4144 of LNCS,
pages 123–136, 2006.

[9] Pavel Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computa-
tions. Journal of Symbolic Logic, 62(3):981–998, 1997.

[10] S.F. Rollini, L. Alt, G. Fedyukovich, A. Hyv ärinen, and N. Sharygina. PeRIPLO: A Framework for
Producing Effective Interpolants in SAT-Based Software Verification. In LPAR, 2013.

[11] Simone Fulvio Rollini, Ondrej Sery, and Natasha Sharygina. Leveraging Interpolant Strength in
Model Checking. In CAV ’12, volume 7358 of LNCS, pages 193–209, 2012.

[12] Yakir Vizel and Orna Grumberg. Interpolation-sequence based Model Checking. In FMCAD ’09,
pages 1–8. IEEE, 2009.

31

	1 Introduction
	2 Motivation
	3 Preliminaries
	4 Partial Variable Assignment Interpolants
	4.1 Labeled Partial Assignment Interpolation System
	4.2 Strength

	5 Path interpolation property
	5.1 Fixed partial assignment.
	5.1.1 Multiple partial assignments.

	6 Conclusion

