
Department of Distributed and Dependable Systems
Technical report no. D3S-TR-2015-03
December 1, 2015

Hybrid Analysis of Future Accesses and Heuristics for Fast
Detection of Concurrency Errors

Pavel Parízek

Abstract: Systematic state space traversal is a very popular approach for detecting errors in mul-
tithreaded programs. Nevertheless, it is very expensive because any non-trivial program exhibits a
huge number of possible interleavings, and therefore some combination of guided search and bounded
search is often used to achieve good performance. We present two heuristics that are based on a hybrid
static-dynamic analysis that can identify possible accesses to shared objects. One heuristic changes the
order in which transitions are explored, and the second heuristic prunes selected transitions. Results
of experiments on several Java programs, which we performed using our prototype implementation
in Java Pathfinder, show that the hybrid analysis together with heuristics improves the performance of
error detection quite significantly.

This work was partially supported by the Grant Agency of the Czech Republic project 14-11384S.

D3S, Technical Report no. D3S-TR-2015-03

1 Introduction

Systematic traversal of the program state space is a popular approach for detecting errors in systems
with multiple concurrently-running threads. It is used, for example, in software model checking [26]
and also in concurrency testing [1], where the main goal is to check the program behavior under all
possible thread interleavings. Efficient detection of concurrency errors, such as deadlocks and atom-
icity violations, has become very important especially with the greater proliferation of multithreaded
software that exploits widely available multi-core processors. However, full systematic traversal is very
expensive both in terms of time and memory, because any non-trivial multithreaded program exhibits a
huge number of possible interleavings. Good performance in practice can be achieved through the use
of heuristics and bounded search. Many techniques and optimizations have been already proposed,
including directed search [6, 10], randomization [18, 23], parallel state space traversal [4, 11], bounding
the number of thread preemptions [16, 22], and concolic testing for concurrent systems [7].

Parízek and Lhoták designed a hybrid analysis that identifies possible accesses to shared objects and
used it to optimize partial order reduction in the context of exhaustive verification [19,20]. More specif-
ically, redundant thread scheduling choices in the state space were eliminated based on results of the
hybrid analysis. The analysis combines static analysis with dynamic analysis, symbolic interpretation
of program statements, and usage of information from dynamic program states on-the-fly during the
state space traversal. Here we apply the hybrid analysis in a different context — to accelerate detec-
tion of concurrency errors. We present two new heuristics that guide the search based on the hybrid
analysis. The first heuristic uses analysis results to change the order in which individual transitions are
explored during the state space traversal, and the second heuristic prunes some transitions in each state
that corresponds to a non-deterministic thread scheduling choice. Both heuristics use the analysis re-
sults on-the-fly together with the knowledge of dynamic execution history (i.e., the currently processed
state space path) in order to discover errors faster.

We implemented the heuristics in Java Pathfinder (JPF) [12], and evaluated the hybrid analysis to-
gether with heuristics on several multithreaded Java programs. Results of our experiments show that
(i) the hybrid analysis alone can reduce the time needed to find errors quite significantly and (ii) the
proposed heuristics improve the performance even further in some configurations. A practical benefit
of the proposed approach is more efficient detection of concurrency-related errors that involve objects
fields and array elements. The hybrid analysis and heuristics enable JPF to find errors faster than with
the existing techniques based on state space traversal. We observed big performance improvements
especially for the more complex benchmarks from our set, which have large state spaces.

The rest of this paper is structured as follows. In the next section we describe important background
concepts, including the hybrid analysis, and we also provide a more detailed overview of related work.
Then we present our main contribution: two heuristics for reordering and pruning transitions (Sec-
tion 3), and experimental evaluation of the error detection performance. We provide the empirical data
in Section 4 and discuss general results in Section 5.

2 Background and Related Work

In the first part of this section, we describe the basic procedure for explicit state space traversal. Then
we discuss existing work on heuristics and optimizations, which have the common goal of detecting
errors as fast as possible. We also provide an overview of the hybrid analysis at the end.

2.1 State Space Traversal

Figure 1 shows the basic algorithm for depth-first traversal of a program state space. We assume that the
state space is constructed on-the-fly during traversal and that program statements are interpreted using
dynamic concrete execution. The symbol s represents a program state and the symbol tr represents a
transition. Each state is a snapshot of all variables and threads at some point during the execution of a
program under some thread interleaving. A transition is a sequence of executed instructions, which is
associated with a specific thread and bounded by non-deterministic scheduling choices.

Thread scheduling choices are typically created only at instructions that access the global state visi-
ble by multiple concurrent threads. The main goal is to avoid redundant exploration of thread interleav-
ings, and in this way to mitigate state explosion. Some technique of partial order reduction (POR) [9] is

1

D3S, Technical Report no. D3S-TR-2015-03 2.2 Fast Detection of Concurrency Errors

� �
visited = {}
path = []
explore(s0)

procedure explore(s)
if error(s) then terminate
for tr ∈ order(filter(enabled(s))) do

s′ = execute(s, tr)
if s′ /∈ visited then

visited = visited ∪ s′

push(path, 〈s, tr, s′〉)
explore(s′)
pop(path)

end if
end for

end proc� �
Figure 1: Algorithm for depth-first traversal of a state space

used to determine the set of globally-visible instructions. A lot of work has been done on various ap-
proaches to partial order reduction, including POR based on heap reachability [5] and dynamic POR [8],
but details are out of the scope of this paper.

The state space traversal procedure maintains the set of states that have been already visited (for
the purpose of state matching) and also the current path in the form of a stack of states and transitions.
Program states need to be explicitly saved only at transition boundaries.

The function enabled returns a set of transitions that are enabled in a given state and must be ex-
plored. Each thread that is runnable in state s is associated with one transition in the set enabled(s). If
there are multiple threads runnable in s, then the state space traversal procedure has to make a non-
deterministic choice among all of them. We say that all threads runnable in state s are enabled in the
choice ch that is associated with s. The function filter can be used to prune some transitions leading
from s, and the function order determines the sequence in which the transitions are explored (i.e., the
search order). Most heuristics and optimizations described in the next subsection are based on custom
implementations of these two functions.

Many popular tools, including Java Pathfinder [12], implement the approach described here.

2.2 Fast Detection of Concurrency Errors

A very popular approach to fast error detection via state space traversal is guided search [6]. The
basic idea is to navigate the search towards error states with the help of various heuristics [10], so that
fragments of the state space more likely to contain errors are explored first during the traversal. In each
state, transitions are explored in the order determined by some heuristic function.

Closely related to the topic of this paper are the concepts of useless transitions and interference con-
texts proposed by Wehrle et al. [28, 29]. Authors introduce a heuristic function that gives preference
to transitions that interfere with some of the previous transitions on the current state space path. Two
transitions interfere if they access the same variables and one of the accesses is a write. However, the
heuristic was applied only to checking models of finite software systems defined as multiple automata,
and the respective publications do not discuss approaches to obtain the information about which tran-
sitions may interfere.

Kim et al. [15] proposed an approach for detecting race conditions that is also based on heuristics and
information about interfering accesses to shared variables. In this case, the heuristic functions consider
only the execution trace prefix from the initial state to the current dynamic state, and completely neglect
possible future behavior.

Randomized search is also quite effective according to recent studies [18,23], especially in combina-
tion with parallel traversal of different state space fragments [4, 11]. The results of a random number
choice can be used, for example, to determine the search order over individual transitions and com-
plete execution paths [3], to identify state space fragments that will be pruned [18], and it can be also
combined with the guided search [23].

Many techniques that improve the performance of systematic concurrency testing and model check-

2

D3S, Technical Report no. D3S-TR-2015-03 2.3 Hybrid Analysis

ing use some kind of bounded search. This includes, for example, bounding the number of thread
preemptions on each state space path [16, 22] and bounding the depth of state space traversal [25]. A
set returned by the customized function enabled does not contain any transition that would exceed
the given bound. The motivation behind all these approaches is that many errors can be found with
very few thread preemptions [16] and in small depths. Therefore, the search for errors is restricted to a
corresponding region of the program state space, and other fragments are pruned because exhaustive
traversal is not tractable due to state explosion. A recent experimental study by Thomson et al. [24]
provides a comprehensive overview of techniques in this category and their comparison.

2.3 Hybrid Analysis

The hybrid analysis identifies object fields and array elements that may be accessed by multiple threads
during execution of the program from a particular state. It provides over-approximate description of
the possible future behavior of program threads, and therefore complements information that can be
retrieved from the current dynamic state and the current state space path (execution history). The
analysis was defined just for accesses to fields of heap objects in the original publication [19], and only
recently we extended it to support also accesses to individual elements of shared array objects [21].
Here we provide a high-level overview of the main aspects of its design.

An input to the hybrid analysis is a program that contains multiple concurrent threads. For each
program point p in each thread T , the analysis computes the set of fields and array elements possibly
accessed by thread T after the point p on any execution path. It has two phases: static and dynamic.

The static phase gives only partial results that cover the behavior of a thread T only between the
point p and return from the method containing p (including nested method calls transitively). For
this purpose, we use a backward flow-sensitive context-insensitive static data flow analysis that is per-
formed over the full inter-procedural control flow graph of each thread. Exhaustive flow-insensitive
and context-insensitive pointer analysis identifies abstract heap objects and possibly aliased variables.

Complete results of the hybrid analysis are computed on demand at dynamic analysis time, i.e. on-
the-fly during the state space traversal. The analysis uses information taken from the dynamic program
states, in particular the call stacks of all threads and values of specific variables. Let pci be the current
program counter of thread Ti (in the top stack frame). In order to get the full result for pci, it is sufficient
to take the current locations in all the stack frames of Ti and merge partial results of the static phase for
the corresponding program points.

Considering the dynamic state s, where pc1, . . . , pcn are the current locations of threads T1, . . . , Tn,
respectively, results for the program points pc1, . . . , pcn capture all possible future accesses that may
happen during the program execution from the state s. Results of the hybrid analysis are fully context-
sensitive, and therefore very precise, because they reflect the dynamic calling context of each pci. On the
other hand, the results are always valid only for the given (current) dynamic program state. Note also
that, in practice, the analysis considers read and write accesses separately in order to enable detection
of read-write conflicts between different threads.

3 Heuristics

The main idea behind our approach is to use the results of hybrid analysis in three ways: (1) to elimi-
nate redundant non-deterministic thread choices during the state space traversal, (2) to determine the
order in which individual transitions from a given state are explored, and (3) to prune transitions that
likely do not lead to an error state. A method for eliminating redundant thread choices has been already
proposed in [19], so here in this paper we focus on the second and third item in the list. More specifi-
cally, we propose one heuristic for reordering transitions (Section 3.1) and one heuristic that identifies
transitions to be pruned (Section 3.2). Both heuristics are encoded in custom implementations of the
functions order and filter (Figure 1).

When designing the heuristics, we have built upon the concepts of useless transitions and interfer-
ence contexts proposed by Wehrle et al. [28, 29]. Our procedure for identification of useless transitions
and possibly interfering transitions combines the hybrid analysis with knowledge of the current dy-
namic state and execution history. Contrary to the prior work by Wehrle et al., our procedure is appli-
cable to programs written in mainstream object-oriented languages (such as Java), and it can be used
when the program state space is created on-the-fly (i.e., when it is not available up front). The heuristics

3

D3S, Technical Report no. D3S-TR-2015-03 3.1 Reordering Transitions

drive the state space traversal using this procedure. We also introduce several parameters that influence
their behavior.

3.1 Reordering Transitions

This heuristic changes the order of transitions at each non-deterministic thread choice based on two
pieces of information: (1) a list of accesses to fields and array elements that were performed on the
current state space path from the initial state to the given choice, and (2) the results of the hybrid
analysis that specify accesses that may occur during the rest of the program execution. In other words,
the heuristic combines knowledge of the past accesses with information about possible future events.
Our main rationale is to prioritize threads that are more likely to trigger errors caused by race conditions
over fields and array elements.

Upon reaching a state that is associated with a non-deterministic thread choice, the state space
traversal procedure augmented with this heuristic identifies threads that may in the future perform
actions possibly interfering with some of the past accesses. The procedure maintains an up-to-date list
of fields and array elements that were accessed on the current state space path. Let s be the currently
processed state at some point during the traversal, ch be the thread choice associated with s, and L be
the list of past accesses on the current path up to s. For each thread Ti runnable in s, the procedure
queries the results of the hybrid analysis for the current program counter pci of Ti in order to retrieve a
set Fi of possible future accesses, and then it computes the intersection of L and Fi. The set of interfering
threads contains every Ti for which the intersection is not empty. All outgoing transitions enabled in
state s, which are associated with interfering threads, are then moved to the front of the list (order) at
the choice ch, and therefore future actions of threads possibly interfering with some past actions are
explored in precedence during the state space traversal. Note, however, that we do not enforce any
particular order of exploration within the group of interfering threads, and we also preserve the default
order for the other threads (transitions).

We have also designed this heuristics as parameterized and configurable by the user. One parame-
ter is the percentage of the length of the current path that is considered for identification of interfering
threads. It determines the fragment of the current path from which the past accesses are collected into
the set L. A value lower than 100 means that the heuristic takes into account only a subset of past ac-
cesses, and purposedly ignores accesses that were performed close to the beginning of the current path.
Our motivation behind this parameter is that, in general, usage of a small value might enable faster
detection of errors in cases when the possibly racy accesses from concurrent threads are performed
close to each other on an execution path. Note that usage of values less than 100 is sound because all
transitions and program behaviors are explored eventually — this heuristic influences only the order of
exploration of individual transitions.

Another parameter is a flag that says whether the heuristic has to distinguish read and write ac-
cesses. If this feature is disabled then all accesses to a particular field or array element are consid-
ered as potentially interfering, while in the other case only the read-write pairs are marked as such.
Distinguishing between read and write accesses makes the heuristic more precise, but possibly more
expensive in terms of running time.

A configuration of the reordering heuristic is a pair (RW,P), where the variable RW represents the
boolean flag (values on and off) that says whether read and write accesses should be distinguished, and
the value of P is the percentage of the current path that is analyzed in order to collect past accesses into
the set L at each choice (state). We use this notation for configurations in the rest of the paper.

3.2 Pruning Transitions

The second heuristic works in a similar way to the first one, and it has exactly the same parameters.
Just instead of reordering, at each state it prunes all enabled transitions that are not associated with
interfering threads. Our rationale behind this heuristic is to neglect threads that are not likely to trigger
errors caused by race conditions at fields and array elements.

An exception to the general rule applies in the case of states with only a single enabled transition
(i.e., with a single runnable thread), where the respective transition is not pruned. Similarly, if all
transitions enabled in a given state would be pruned then one of them is preserved. We designed these
two exceptions in order to ensure that at least some execution paths (thread interleavings) are fully
explored. However, we would also like to emphasize that pruning a transition associated with a thread
T at a particular state s does not mean that future actions of T are never explored. There must exist an

4

D3S, Technical Report no. D3S-TR-2015-03 3.3 Implementation

execution path starting in the state s such that (i) either T will belong to the set of interfering threads
at some point on the path or (ii) it will be a single runnable thread at some point — unless there is a
deadlock that would be reported anyway.

Still, this heuristic is not sound. It may prune transitions that are important, because they represent
actions that are not considered by the hybrid analysis (e.g., starting of a new thread or releasing blocked
threads) but could trigger possibly errorneous thread interleavings anyway. The state space traversal
procedure may miss some errors, when this heuristic is used.

3.3 Implementation

We implemented the hybrid analysis and proposed heuristics using Java Pathfinder (JPF) [12], which
is a framework for state space traversal of multithreaded Java programs, and the WALA library for
static analysis [27]. In order to support reordering and pruning of enabled transitions at thread choices,
we created several custom modules for JPF: listeners that record every access performed by the pro-
gram during its execution, a custom scheduler factory that produces a list of transitions for each thread
choice, and a non-standard interpreter of Java bytecode instructions for accesses to object fields and ar-
ray elements. JPF API operations were used to retrieve information about the dynamic program state.

During our work on the extension of the hybrid analysis towards array elements, we also imple-
mented several optimizations that improve the analysis precision in practice. For example, the static
inter-procedural control flow graph (ICFG) of a given program contains edges that, for every call of
Thread.start(), connect the call with the run method of every thread class defined in the program source
code — and because of that the static analysis is not very precise. The hybrid analysis with our opti-
mizations takes into account the Java class (type) of the dynamic receiver object when it processes a call
of Thread.start(), and in this way avoids some infeasible executions paths that are modeled by the ICFG.

The complete implementation, together with the experimental setup and benchmark programs de-
scribed in the next section, is publicly available at http://d3s.mff.cuni.cz/projects/formal_
methods/jpf-static/musepat16.html.

4 Experiments

The main goal of our experimental evaluation was to find how much the hybrid analysis and proposed
heuristics improve the error detection performance of existing techniques based on state space traversal.
In addition, we wanted to check whether our results confirm the benefits of similar heuristics designed
by Wehrle et al. [28, 29].

We measured the performance of hybrid analysis and both heuristics on 9 multithreaded Java pro-
grams: the Daisy file system, the Elevator benchmark from the pjbench suite [17], a plain Java version of
the jPapaBench benchmark [13], a plain Java version of the CDx benchmark [14], four benchmarks from
the CTC repository [2] (Alarm Clock, Linked List, Producer-Consumer, and Replicated Workers), and
a Java version of QSortMT from the Inspect benchmark suite [30]. jPapabench, with 4500 lines of code
and 7 concurrently running threads, is the most complex benchmark that we use. Some of the bench-
mark programs already contained errors in the form of possible atomicity violations that are caused by
incorrect or missing synchronization of accesses to fields and array elements from multiple threads. For
the purpose of experiments, we manually injected similar errors into the other benchmarks. Note that
JPF can detect race conditions that trigger such atomicity violations.

Here we provide tables with data for all experiments that we performed. We discuss the main results
in the next section.

Table 1 shows the effects of hybrid analysis on the error detection performance. It contains data for
these configurations of JPF:

• partial order reduction (POR) based on heap reachability [5] with the default search order in JPF
(table column with the label "heap reach POR"),

• POR based on heap reachability with the hybrid analysis that is used only to eliminate redundant
thread choices (column "HR + hybrid"),

• our implementation of the dynamic POR algorithm by Flanagan and Godefroid [8] combined with
state matching (column "dynamic POR"),

5

D3S, Technical Report no. D3S-TR-2015-03

heap reach POR HR + hybrid dynamic POR DPOR + hybrid
benchmark states time states time states time states time

Daisy 493645 139 s 297523 95 s - - 266291 91 s
Elevator 61465 14 s 16574 7 s 1671602 511 s 485070 143 s
jPapaBench 457139 144 s 94567 41 s - - - -
CDx 383568 2870 s 48069 456 s - - - -
Alarm Clock 950 1 s 313 3 s 786 1 s 165 3 s
Linked List 2119 1 s 345 3 s 970 1 s 830 3 s
Prod-Cons 35351 16 s 7535 6 s 5596 3 s 4005 4 s
Rep Workers 12951140 6113 s 441253 178 s 14303 5 s 3909 4 s
QSortMT 4883 2 s 2564 2 s - - - -

random search random + hybrid
benchmark time time

Daisy 86 ± 57 s 59 ± 38 s
Elevator 4 ± 4 s 3 ± 2 s
jPapaBench 1 ± 0 s 3 ± 0 s
CDx 162 ± 115 s 63 ± 46 s
Alarm Clock 1 ± 0 s 3 ± 0 s
Linked List 1 ± 0 s 3 ± 0 s
Prod-Cons 1 ± 0 s 3 ± 0 s
Rep Workers 2761 ± 2996 s 3 ± 0 s
QSortMT 1 ± 0 s 2 ± 0 s

Table 1: Experiments: performance improvement over existing techniques

• dynamic POR with state matching and hybrid analysis that is used only to eliminate redundant
thread choices (column "DPOR + hybrid"),

• random search order with POR based on heap reachability (column "random search"), and

• random search order combined with the hybrid analysis (the column labeled "random + hybrid").

Note that Table 1 has two vertically-placed parts in order to accommodate all the configurations. We
report the total number of states processed during the traversal before JPF detects an error, and the
total running time of JPF (including all phases of the hybrid analysis, where applicable). The number
of states is equivalent to the number of thread choices, because JPF explicitly saves program states only
at transition boundaries. In the case of random search, we run each experiment 10 times, and report
values in the form A ± D, where A stands for the average and D is the standard deviation. Note that
we do not report the number of states for random search in order to save space. We set the time limit of
2 hours for all configurations. The symbol "-" in a table cell represents the situation where JPF run out
of the time limit or did not find an error for a given configuration and a benchmark program.

Tables 2 and 3 provide data for selected configurations of both heuristics, when used together with
the POR based on heap reachability and with the hybrid analysis. Results for the hybrid analysis alone
represent the baseline in this case. For the configuration variable P , which determines the fragment
(percentage) of the current path that is analyzed for the purpose of collecting past accesses, we picked
the values {10, 25, 50, 75, 90, 100} in order to cover the whole interval evenly. Data for the whole
path (i.e., the value P = 100) are always shown in the leftmost respective column. We combine every
supported value of the variable P with both values of the configuration variable RW . To avoid very
large tables, we report the total running time only for configurations that distinguish between read and
write accesses ("RW: on"), as it is sufficient to show the general dependency of the running time on the
value of the variable P . Trends are very similar for the other configurations.

For the benchmarks Daisy and CDx, in which case the standalone random search needs a relatively
long time to find errors, we also combined random search with the hybrid analysis and selected con-
figurations of our heuristics. Table 4 contains results of these experiments. We performed each of the
experiments 10 times, and in each iteration we run 4 parallel instances of JPF. Our motivation for the
usage of parallelism was to exploit multiple cores also to achieve faster detection of concurrency errors
in the case of Daisy and CDx. We report the minimal observed time needed to reach an error state, the
maximum observed time, average over all iterations, and standard deviation. The second column (with

6

D3S, Technical Report no. D3S-TR-2015-03

benchmark HR + hybrid HR + hybrid + reordering heuristic
P: 100 % 10 % 25 % 50 % 75 % 90 %

Daisy states: 297523
time: 95 s

RW: on states 297523 297523 297523 297523 297523 297523
time 175 s 124 s 129 s 136 s 148 s 150 s

RW: off states 297523 297523 297523 297523 297523 297523

Elevator states: 16574
time: 7 s

RW: on states 16574 16574 439 439 439 439
time 8 s 8 s 3 s 3 s 3 s 3 s

RW: off states 16574 16574 16574 16574 16574 16574

jPapaBench states: 94567
time: 41 s

RW: on states 94567 94567 94567 94567 94567 94567
time 88 s 53 s 57 s 66 s 75 s 80 s

RW: off states 94567 94567 94567 94567 94567 94567

CDx states: 48069
time: 456 s

RW: on states 48069 29531 48069 48069 48069 48069
time 580 s 329 s 553 s 554 s 573 s 562 s

RW: off states 48069 48069 48069 48069 48069 48069

Alarm Clock states: 313
time: 3 s

RW: on states 313 313 313 149 10 10
time 3 s 3 s 3 s 3 s 3 s 3 s

RW: off states 313 313 313 10 10 10

Linked List states: 345
time: 3 s

RW: on states 345 345 345 345 345 345
time 4 s 4 s 4 s 4 s 4 s 4 s

RW: off states 345 345 345 345 345 345

Prod-Cons states: 7535
time: 6 s

RW: on states 7535 5084 7538 7538 7538 7535
time 7 s 6 s 7 s 7 s 7 s 7 s

RW: off states 7535 7535 7535 7535 7535 7535

Rep Workers states: 441253
time: 178 s

RW: on states 441253 114 441253 441253 441253 441253
time 238 s 3 s 209 s 222 s 226 s 226 s

RW: off states 441253 441253 441253 441253 441253 441253

QSortMT states: 2564
time: 2 s

RW: on states 2564 2455 101 2565 2564 2564
time 4 s 4 s 3 s 4 s 4 s 4 s

RW: off states 2564 2564 2564 2564 2564 2564

Table 2: Experiments: different configurations of the reordering heuristic

7

D3S, Technical Report no. D3S-TR-2015-03

benchmark HR + hybrid HR + hybrid + pruning heuristic
P: 100 % 10 % 25 % 50 % 75 % 90 %

Daisy states: 297523
time: 95 s

RW: on states 297523 - 296782 296789 296789 296789
time 170 s - 125 s 139 s 142 s 151 s

RW: off states 297523 - 296789 296789 296789 296789

Elevator states: 16574
time: 7 s

RW: on states 16574 16574 - - - -
time 8 s 8 s - - - -

RW: off states 16574 16574 16574 16574 16574 16574

jPapaBench states: 94567
time: 41 s

RW: on states 94567 94567 94567 94567 94567 94567
time 88 s 53 s 58 s 66 s 75 s 81 s

RW: off states 94567 94567 94567 94567 94567 94567

CDx states: 48069
time: 456 s

RW: on states 48069 26183 39942 39942 39942 39942
time 606 s 290 s 457 s 464 s 466 s 479 s

RW: off states 48069 41517 47892 48069 48069 48069

Alarm Clock states: 313
time: 3 s

RW: on states 313 274 285 149 10 10
time 4 s 4 s 4 s 4 s 4 s 4 s

RW: off states 313 307 313 10 10 10

Linked List states: 345
time: 3 s

RW: on states 345 337 345 345 345 345
time 4 s 4 s 4 s 4 s 4 s 4 s

RW: off states 345 345 345 345 345 345

Prod-Cons states: 7535
time: 6 s

RW: on states 7535 5084 7538 7538 7538 7535
time 7 s 6 s 7 s 7 s 7 s 7 s

RW: off states 7535 7535 7535 7535 7535 7535

Rep Workers states: 441253
time: 178 s

RW: on states 441253 114 441253 441253 441253 441253
time 235 s 4 s 212 s 229 s 236 s 230 s

RW: off states 441253 441253 441253 441253 441253 441253

QSortMT states: 2564
time: 2 s

RW: on states 2564 2450 101 2560 2559 2559
time 4 s 4 s 3 s 4 s 4 s 4 s

RW: off states 2564 2564 2564 2564 2564 2564

Table 3: Experiments: different configurations of the pruning heuristic

8

D3S, Technical Report no. D3S-TR-2015-03

benchmark hybrid reordering (RW: on) pruning (RW: on)
P: 10% 25% 50% 10% 25% 50%

Daisy 59 ± 38 s

min 6 s 7 s 7 s - 7 s 7 s
max 262 s 262 s 282 s - 128 s 128 s
avg 86 s 66 s 69 s - 81 s 57 s
dev 70 s 73 s 71 s - 52 s 50 s

CDx 63 ± 46 s

min 44 s 45 s 44 s 46 s 48 s 46 s
max 182 s 195 s 208 s 189 s 198 s 188 s
avg 93 s 102 s 89 s 97 s 93 s 85 s
dev 38 s 44 s 41 s 41 s 42 s 40 s

Table 4: Experiments: parallel random search with heuristics

the label "hybrid") contains data for random search just with the hybrid analysis — they represent the
baseline for this set of experiments.

Finally, Table 5 contains additional data for those benchmarks that are parameterizable by the max-
imal number of concurrently-running threads. We picked only some configurations of JPF with heuris-
tics, and a specific range of the number of concurrent threads for each benchmark. The third group
of columns, with the label "best heuristic", shows data for the configuration of proposed heuristics that
achieves the best result for the given benchmark program. The lowest number of threads considered for
a particular benchmark is the default one, which was used for experiments reported in the other tables.

5 Discussion

The results of experiments show how much the performance of existing approaches is improved by
usage of the hybrid analysis and heuristics during the state space traversal. Our main observations,
based on data in tables 1-3, are provided in the following list.

• Compared to all the existing approaches that we considered in our evaluation, the corresponding
configurations with hybrid analysis and proposed heuristics need to explore much less states to
find an error in the case of 8 benchmark programs (out of 9), and they reduce the overall running
time by a great margin for 5 benchmarks.

• For the remaining benchmarks, our approach still has a good performance that is comparable with
the existing techniques in terms of running time.

• Just the hybrid analysis, when it is used to eliminate redundant thread choices, improves the
speed of error detection by up to 35 times (for Rep Workers) over JPF with POR based on heap
reachability, and by a factor of 3.6 (for Elevator) with respect to dynamic POR.

• The proposed heuristics achieve even better performance in the case of specific configurations
and benchmark programs; for example, improving the speed with respect to POR based on heap
reachability by the factor of 1400 for Rep Workers and by the factor of 21 for CDx.

A practical benefit of the hybrid analysis and heuristics is apparent especially in case of the more com-
plex benchmarks from our set, such as CDx, Daisy, jPapaBench, and Rep Workers, which have large
state spaces and for which the time needed to find errors was reduced by the biggest factor.

Surprisingly, dynamic POR is much slower than POR based on heap reachability for Elevator (with
or without the hybrid analysis and our heuristics), and for 3 benchmarks it even did not find an error
before the time limit.

The performance of random search is improved quite significantly by usage of the hybrid analysis
in the case of 4 benchmark programs — Daisy, Elevator, CDx, and Rep Workers. For the other 5 bench-
marks, results with and without the hybrid analysis are comparable, and the running times are very
low in general (just few seconds).

In the rest of this section, we discuss results for specific configurations of both heuristics and for
individual benchmark programs, and we also highlight some additional conclusions.

Results that we obtained for the heuristic based on reordering transitions (Table 2) are not very
positive compared to the baseline, i.e. the heuristic does not help to reach error states faster in many
cases, and therefore it seems that its usage does not have benefits in the case of programs written in

9

D3S, Technical Report no. D3S-TR-2015-03

HR + hybrid best heuristic reordering pruning
benchmark - #threads (RW: on, P=100%) (RW: on, P=100%)

states time states time states time states time
Daisy - 2 297523 95 s 297523 124 s 297523 175 s 297523 170 s
Daisy - 3 - - - - - - - -
Alarm Clock - 3 313 3 s 10 3 s 313 3 s 313 4 s
Alarm Clock - 4 2363 3 s 12 3 s 2363 4 s 2363 4 s
Alarm Clock - 5 17667 8 s 14 3 s 17667 10 s 17667 10 s
Linked List - 2 345 3 s 337 4 s 345 4 s 345 4 s
Linked List - 3 460 3 s 460 4 s 460 4 s 460 4 s
Linked List - 4 481 3 s 481 4 s 481 4 s 481 4 s
Prod-Cons - 7 7535 6 s 5084 6 s 7535 7 s 7535 7 s
Prod-Cons - 9 41142 22 s 41145 23 s 41142 25 s 41142 25 s
Prod-Cons - 12 39130 25 s 39133 27 s 39130 32 s 39130 31 s
Rep Workers - 5 441253 178 s 114 3 s 441253 238 s 441253 235 s
Rep Workers - 6 2114522 983 s 129 3 s 2114522 1248 s 2114522 1285 s
Rep Workers - 8 - - 162 3 s - - - -

Table 5: Experiments: scalability with respect to the maximal number of concurrent threads

mainstream languages, although the results published in [29] are quite good. The reordering heuristic
achieved better performance in the case of four benchmarks (CDx, Elevator, QSortMT, Rep Workers),
but only using specific configurations, where the variable RW has the value on and P is either 10 %
or 25 %. In general, the reordering heuristic does not improve performance especially for benchmark
programs in which (all) threads have the same code, or when multiple threads access the same field in a
racy manner, because then either all threads or none of them are interfering and the order of exploration
of individual transitions from a thread choice is not actually changed. Such results can be observed for
the benchmark Prod-Cons. Reordering is not very useful also when all interfering threads correspond
to transitions that are already at the beginning of the default (original) search order. This happens, for
example, in the case of benchmarks Daisy and jPapaBench. When inspecting the results for Linked List,
we found that transitions moved back in the order very frequently correspond to threads waiting, e.g.,
in the body of Thread.join, and then reordering has no practical effect. There may be other situations
where the reordering heuristic does not improve performance, but those described above are most
prevalent in the set of benchmark programs that we used.

On the other hand, results for the heuristic based on pruning transitions (Table 3) show that it im-
proves the error detection performance quite significantly in some configurations and for some bench-
marks, but it may also miss some errors. Good performance is achieved, in general, for configurations
where only 10 % of the current path is analyzed in every state by the procedure that determines possi-
bly interfering threads. More specifically, data in Table 3 show that the configuration where P = 10 %
yields the best performance for 4 benchmarks (CDx, Linked List, Prod-Cons, and Rep Workers). The
configuration with P equal to 25 % achieves the best performance for QSortMT.

A notable exception to the patterns described above in the two previous paragraphs are the results
for Alarm Clock. In that case, the best performance was achieved by configurations where the value of P
is in the range 50 % – 90 %, and there is a large variability between results for individual configurations.

Usage of heuristics together with the random search and hybrid analysis does not improve the
performance on average, according to running times reported in Table 4. In fact, heuristics slightly
increase the running time for most configurations that we considered.

Data in Table 5 show that, for the purpose of detecting errors, JPF with hybrid analysis and heuristics
scales quite well to programs with many concurrently running threads. The increase of the total running
time as a function of the number of threads is low for Alarm Clock, Linked List, and Prod-Cons. JPF
runs out of the time limit in all configurations only for Daisy with 3 threads.

The cost of the hybrid analysis is very low in general. However, it may be responsible for a slight
increase of the total running time when JPF has to explore only a small number of states before detecting
an error — see, for example, the data for benchmarks Alarm Clock and Linked List in Table 1. The cost
of both heuristics in terms of the running time depends especially on the value of P , i.e. on the fragment
of the current path that is analyzed in order to retrieve past accesses. Results of our experiments show
that it is more efficient to use small values of P (e.g., 10 % and 25 %), because then JPF spends less time

10

D3S, Technical Report no. D3S-TR-2015-03

processing the current path at each state.

We have also made some observations based on manual inspection of the execution logs, which we
discuss in the next paragraphs.

For benchmark programs such as jPapaBench, where specific fields and array elements are accessed
very often throughout the program execution, the same set of interfering threads would be typically
identified at a given state for any value of P — independently of whether past accesses are collected
just from last 10 % of the current path or from the whole path. All configurations that differ only in
the value of P would yield the same numbers of states explored before reaching an error, but different
running times. In such cases, better performance can be in general achieved with rather small values of
P (10 % or 25 %).

Behavior of the heuristics also really depends on whether read and write accesses are distinguished
or not. We found that, in the latter case when the configuration variable RW has the value off , more
threads are typically identified as possibly interfering, and therefore more transitions are reordered or
pruned at individual states when JPF uses the respective configurations.

Majority of the benchmark programs have the property that all configurations of JPF and heuristics,
when applied to a program from this group, find the same error state (location). However, there are
few exceptions. For example, JPF with the dynamic POR finds a different error state in Prod-Cons than
all the configurations involving POR based on heap reachability, and JPF with the hybrid analysis finds
a different error state in Daisy than plain JPF.

To summarize, the hybrid analysis and selected configurations of heuristics improve the error detec-
tion performance of existing approaches (POR based on heap reachability, dynamic POR, and random
search) to a great extent. We recommend to use the following two configurations based on our results:

1. JPF with random search and the hybrid analysis used only to eliminate redundant thread choices
(i.e., without any of the heuristics), and

2. hybrid analysis together with the heuristic based on pruning in the configuration (RW: on, P: 10
%), where read and write accesses are distinguished and only 10 % of the current path will be
analyzed in each state.

Both these configurations should be run in parallel to minimize the time needed to find errors.
We would also like to emphasize that, although we implemented and evaluated the proposed ap-

proach only in the context of JPF and Java programs, we believe that similar results could be achieved
also for multithreaded programs written in other mainstream object-oriented languages, such as C++,
C#, and Scala.

11

D3S, Technical Report no. D3S-TR-2015-03 REFERENCES

References

[1] T. Ball, S. Burckhardt, P. de Halleux, M. Musuvathi, and S. Qadeer. Predictable and Progressive
Testing of Multithreaded Code. IEEE Software, 28(3), 2011.

[2] Concurrency Tool Comparison (CTC) repository,

[3] K.E. Coons, S. Burckhardt, and M. Musuvathi. GAMBIT: Effective Unit Testing for Concurrency
Libraries. Proceedings of PPoPP 2010, ACM.

[4] M.B. Dwyer, S.G. Elbaum, S. Person, and R. Purandare. Parallel Randomized State-Space Search.
Proceedings of ICSE 2007, IEEE.

[5] M. Dwyer, J. Hatcliff, Robby, and V. Ranganath. Exploiting Object Escape and Locking Information
in Partial-Order Reductions for Concurrent Object-Oriented Programs. Formal Methods in System
Design, 25, 2004.

[6] S. Edelkamp, V. Schuppan, D. Bosnacki, A. Wijs, A. Fehnker, and H. Aljazzar. Survey on Directed
Model Checking. Proceedings of MoChArt 2008, LNCS, vol. 5348.

[7] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic Testing. Proceedings of ESEC/FSE 2013,
ACM.

[8] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Checking Software.
Proceedings of POPL 2005, ACM.

[9] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032,
1996.

[10] A. Groce and W. Visser. Heuristics for Model Checking Java Programs. International Journal on
Software Tools for Technology Transfer, 6(4), 2004.

[11] G. Holzmann, R. Joshi, and A. Groce. Swarm Verification. Proceedings of ASE 2008, IEEE.

[12] Java Pathfinder: verification platform for Java programs,

[13] jPapaBench: A Java version of the PapaBench benchmark,

[14] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek. CDx: A Family of Real-Time Java
Benchmarks. Proceedings of JTRES 2009, ACM.

[15] K. Kim, T. Yavuz-Kahveci, and B.A. Sanders. Precise Data Race Detection in a Relaxed Memory
Model Using Heuristic-Based Model Checking. Proceedings of ASE 2009, IEEE.

[16] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic Testing of Multithreaded
Programs. Proceedings of PLDI 2007, ACM.

[17] Parallel Java Benchmarks (pjbench suite),

[18] P. Parízek and O. Lhoták. Randomized Backtracking in State Space Traversal. Proc. of SPIN 2011,
LNCS, vol. 6823.

[19] P. Parízek and O. Lhoták. Identifying Future Field Accesses in Exhaustive State Space Traversal.
Proceedings of ASE 2011, IEEE.

[20] P. Parízek and O. Lhoták. Model Checking of Concurrent Programs with Static Analysis of Field
Accesses. Science of Computer Programming, 98, 2015.

[21] P. Parízek. Hybrid Analysis for Partial Order Reduction of Programs with Arrays. Proceedings of
VMCAI 2016, to appear.

[22] S. Qadeer and J. Rehof. Context-Bounded Model Checking of Concurrent Software. Proceedings of
TACAS 2005, LNCS, vol. 3440.

[23] N. Rungta and E. Mercer. Generating Counter-Examples Through Randomized Guided Search.
Proceedings of SPIN 2007, LNCS, vol. 4595.

12

D3S, Technical Report no. D3S-TR-2015-03 REFERENCES

[24] P. Thomson, A. Donaldson, and A. Betts. Concurrency Testing Using Schedule Bounding: An Em-
pirical Study. Proceedings of PPoPP 2014, ACM.

[25] A. Udupa, A. Desai, and S.K. Rajamani. Depth Bounded Explicit-State Model Checking. Proceed-
ings of SPIN 2011, LNCS, vol. 6823.

[26] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs. Automated
Software Engineering, 10(2), 2003.

[27] WALA: T.J. Watson Libraries for Analysis,

[28] M. Wehrle, S. Kupferschmid, and A. Podelski. Transition-Based Directed Model Checking. Pro-
ceedings of TACAS 2009, LNCS, vol. 5505.

[29] M. Wehrle and S. Kupferschmid. Context-Enhanced Directed Model Checking. Proceedings of
SPIN 2010, LNCS, vol. 6349.

[30] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A Runtime Model Checker for Multithreaded
C Programs. Technical Report UUCS-08-004, University of Utah, 2008.

13

	1 Introduction
	2 Background and Related Work
	2.1 State Space Traversal
	2.2 Fast Detection of Concurrency Errors
	2.3 Hybrid Analysis

	3 Heuristics
	3.1 Reordering Transitions
	3.2 Pruning Transitions
	3.3 Implementation

	4 Experiments
	5 Discussion
	References

