
 

Transactions in software components: Container-interposed transactions* 
 

Marek Procházkaa 

Charles University 
František Plášila, b 

Academy of Sciences of the Czech Republic, 
Charles University 

Abstract 

The paper focuses on transaction context propagation in 
component-based software architectures, where every 
component is deployed into a container and client requests 
may be performed in the scope of a container-interposed 
transaction. In the existing commercial architectures such 
as EJB and COM+, the “single attribute approach” is used 
to specify the transaction context propagation. Being 
difficult to comprehend, this specification is also not 
powerful enough to express all the possible transaction 
propagation policies even for the flat transaction model; 
advanced transaction models cannot be employed at all. 
Moreover, the specification takes place as late as at the 
deployment time so that it is hard to reflect a particular 
transaction propagation policy in the component code. As 
a remedy, we propose to specify transaction propagation 
policy as a part of a component interface by means of a 
straightforward double attribute (NT&CT) approach. This 
way, advanced transaction models based on inter-
transaction dependencies, giving permissions, and 
delegation can be also specified. 

Keywords: Transactions, component-based software 
architectures, transaction propagation policy, transaction 
attributes, container-interposed transactions 

1. Introduction 

In  recent years, various component-based software 
architectures have been proposed in both academia ([1], 
[8], [15]) and software industry. In this field, the CORBA 
[20], Component Object Model (COM, [16], [17]), and 
Enterprise JavaBeans (EJB, [25]) technologies, all based 
                                                           
 * The work was partially supported by the Grant Agency of the Czech 
Republic (project number 201/99/0244), and the Grant Agency of the 
Academy of Sciences of the Czech Republic (project number A2030902). 
The results of the project will be also employed in the PEPiTA/ITEA 
project (the Eureka project number 2033). 
a Charles University, Faculty of Mathematics and Physics, Department of 
Software Engineering, Malostranské náměstí 25, 118 00 Prague 1, 
Czech Republic, {prochazka,plasil}@nenya.ms.mff.cuni.cz, 
http://nenya.ms.mff.cuni.cz 
b Academy of Sciences of the Czech Republic, Institute of Computer 
Science, Pod vodárenskou věží 2, 180 00 Prague 8, Czech Republic, 
plasil@cs.cas.cz, http://www.cs.cas.cz 

on object-level, remotely accessible components belong to 
the key software industry players.  

As opposed to the academic projects, in all these 
technologies, components can be involved in distributed 
transactions. The Object Transaction Service (OTS, [21]) 
was accepted as the standard for transaction processing in 
the distributed object environment. This standard adopts 
the basic X/Open XA distributed transaction model [29], 
defines interfaces of distributed transaction participants, 
and specifies some basic scenarios for executing 
transactions, namely the two-phase commit protocol. 
However, the standard does not address the transactions 
interposed/propagated by the environment wrapping a 
component. The key idea behind this concept, introduced 
in the Microsoft Transaction Server [14] (forming together 
with COM the COM+ technology) and later adopted by 
EJB, is that any client request potentially associated with a 
transaction is delegated to the desired component by its 
surrounding environment, which can modify the 
transaction context (e.g., it is able to suspend the client 
transaction and further create a new transaction and 
manage its demarcation). 

In COM+ and EJB, transaction propagation policy is 
defined by the value of a single transaction attribute at the 
time of deploying components to the environment. 
Unfortunately, the attribute encodes several transactional 
factors and, therefore, is not easy to comprehend. As the 
first goal of the paper, we analyze this approach with the 
intention to propose a more flexible way to specify the 
transaction propagation policy (Section 2). 

Moreover, in both COM+ and EJB, the specification of the 
transactional behavior of a component takes place as late 
as at the deployment time of the component. This 
contradicts to the natural requirement that the requested 
transaction propagation policy should be known at the time 
of component implementation since this policy has to be 
reflected in the component’s code (Section 2.2.4). 
Therefore, the second goal of the paper is to research the 
possibility to determine the transaction propagation policy 
as a part of the component interface specification.  

Another weakness of the current component-based 
software architectures/products is that they do not support 
any other transaction model except for the flat transaction 
model; in particular this is true for both COM+ and EJB 



 
(the only exception is OTS supporting nested transaction). 
This is very limiting since today’s applications are often 
long-living and require a higher level of transaction 
cooperation. In [24] we proposed the Bourgogne 
Transaction model that allows employing more advanced 
transaction models in EJB. In addition to the basic 
transaction primitives (begin(), commit(), abort()), 
Bourgogne Transactions provide advanced transaction 
primitives to establish inter-transaction dependencies, give 
permissions to share and to delegate enterprise bean 
instances among transactions. Based on the Bourgogne 
Transactions idea, the third goal of the paper is to propose 
a way to employ advanced transaction models in the 
container-interposed transaction settings and, at the same 
time, to specify the transaction propagation policy at the 
level of component interface (Section 3). 

2. Container-interposed transactions in client-server 
settings 

2.1 Basic concepts 

A model scenario of a component-based application in 
client-server settings is shown in Figure 1 presenting a 
client and a set of components in a server.  

Figure 1. A Component-based application example 

The components are deployed into a container that 
manages their lifecycle and provides other functionality, 
such as component lookup, security, persistence, and 
transactions. A number of components can be deployed 
into a single container; every component resides within 
exactly one container. A server may incorporate one or 
more containers. The business interface of a component is 
formed by the set of its (business) methods that can be 
invoked upon the client call. Each client call is interposed 
by the container in one of its delegator object (delegator 
for short) which delegates the call to a particular 
component so that it invokes the requested business 
method. A client call can be viewed as the sequence of a 
client request, a business method invocation, and a 
component response. Both the client request and 
component response are interposed by the delegator object. 

To support transaction processing, a transaction manager 
is a part of the component-based application. In principle, 

a client call can be issued in the scope of a client 
transaction tx; technically, the corresponding client 
request implicitly transfers the transaction context which 
determines tx (Figure 2). In a typical 
scenario/implementation, the client first calls the 
transaction manager API and obtains a reference tx to a 
transaction object (representing a transaction). To start the 
transaction, the client calls the begin() method on tx; 
similarly tx.commit() resp. tx.abort() commits resp. 
aborts the transaction. The client can also set and get the 
state information of tx (e.g., set/get the timeout of tx, 
denote tx as rollback-only, etc.). In general, the scope of a 
transaction tx is determined by propagating the transaction 
context of tx via client calls among components. 

Figure 2. Transaction propagation 

As a delegator object interposes every client request and 
component response, it in general modifies the transaction 
context tcontext1 according to the transaction 
propagation policy (specified along with the component 
business interface) to tcontext2 (Figure 2). For example 
the delegator can start a new transaction tx2 (container-
demarcated transaction) so that tcontext1 ≠ tcontext2, 
or it can propagate the client transaction to the business 
method (tcontext1 = tcontext2). In general, the 
delegator can support resource sharing and delegation 
between the transactions determined by tcontext1 and 
tcontext2; similarly, it can establish a dependency 
between these transactions (such as the abort or commit 
dependency [[5]). In principle, a component A can issue a 
call to a business method of another component B. Then A 
plays the role of a client; it can start another client 
transaction txA so that the call will be done in the scope of 
txA. We say that the component A issued a component-
demarcated transaction (Figure 3). In general, a 
transaction scenario, where the transaction context can be 
modified only by the delegator object of a container, we 
call container-interposed transaction scenario. 

 

Client

Container

Component

Request

Response

Business
interface

Component

Business
interface

Server

Delegator
object

Delegator
object A

B

tcontext1

Client

Container
Server

Transaction Manager

tx1 
object

tx2 
object

A

B

tcontext2



 

Figure 3. Container-interposed transaction 

2.2 Simple flat transaction model  

The simple flat transaction model supports two transaction 
context propagation policies: (1) All the business method 
invocations between a client transaction’s begin and end 
are done within the scope of the client transaction – the 
client transaction context is propagated to the component, 
i.e. tcontext1 = tcontext2 in Figure 2 (transitively for 
all nested business methods calls). (2) The client 
transaction is suspended by the container (delegator). 
Naturally, the policy (2) means that the requested business 
method is not invoked in the scope of the client transaction 
and the delegator either creates a container-demarcated 
transaction, not known to the client, or the method is 
executed in the scope of no transaction. In the request, the 
delegator object replaces the transaction context 
tcontext1 by a new tcontext2 which is passed to the 
component, and resumes the client transaction tx1 when 
delegating the component response. In the flat transaction 
model, no resource sharing, resource delegation, nor 
dependences are considered. 

2.2.1 Single attribute (Enterprise JavaBeans) 
approach: The transaction processing in the Sun’s 
Enterprise JavaBeans (EJB, [25]) and Microsoft’s 
Component Object Model (COM+, [14]) technologies is 
based on the simple flat transaction model in client-server 
settings as described in Section 2.2. In both technologies, 
the transaction propagation policy is determined by the 
value of a single transaction attribute associated with the 
invoked method. The transaction attribute is defined apart 
from the business interface specification and the 
component code, as late as in the deployment descriptor of 
the component. This is intended to give a diversity of 
transactional behavior options. An overview of the EJB 
transaction attribute values is provided in Table 1. 

For example, if a method m is associated with the 
RequiresNew transaction attribute, m is always invoked in 
the scope of a newly created container-demarcated 
transaction. If a client invokes m with no transaction 

context, the container automatically starts a new container-
demarcated transaction (referred to as container-managed 
transaction and also declarative transaction in EJB, and 
automatic transaction in COM+) before delegating a 
method call to m. (The EJB specification does not 
explicitly mention a delegator object; a request is simply 
interposed by “container”.) If a client invokes m in the 
scope of a transaction tx, the container suspends tx before 
starting the new transaction txn in which it invokes m. The 
container resumes tx after m and txn have been completed. 
The container automatically enlists all the resource 
managers accessed by m within the newly created 
container-demarcated transaction txn. If m invokes a 
method mm on another bean, the container passes the 
transaction context of txn with the request. The container 
attempts to commit txn when m has completed. 

 
Transaction 

attribute 

 
Client’s 

transaction 

Transaction  
associated with  

business method 

Transaction  
associated with  

resource managers 
None None None NotSupported 

T1 None None 
None T2 T2 Required T1 T1 T1 
None None None Supports T1 T1 T1 
None T2 T2 RequiresNew T1 T2 T2 
None Error N/A Mandatory T1 T1 T1 
None None None Never T1 Error N/A 

Table 1. EJB Transaction attribute values 

A very similar single attribute model is used in the 
Microsoft Transaction Server [14]. 

2.2.2 Analyzing the EJB approach: In EJB, the set of 
transaction attribute values is fixed and relatively small as 
the flat transaction model is very simple. If more advanced 
transaction models were to be supported, the set of 
transaction attribute values would have to be substantially 
enhanced. However, even for the current flat model, the 
semantics of a particular transaction attribute value is not 
easy to comprehend; the reason for it is that an attribute 
value encodes a combination of several transactional 
factors into one value - as the following analysis reveals:  

(1) Client transaction context handling: It is necessary to 
determine how a client transaction is propagated to a 
component: whether an invoked business method is 
executed in the scope of the client transaction or not. 
The following alternatives are to be considered: 
Propagated: The delegator propagates the transaction 
context to the component. The requested business 
method is executed in the scope of the client 
transaction. 
Suspended: The transaction tx in which the client 
request was executed is suspended by the delegator. 

(2) A new (container-demarcated) transaction invocation: 
It is to be specified whether a new transaction is 
created and started by the delegator. The alternatives 

tcontext1'Client

Container
Server

Transaction Manager

tcontext1

tx1 
object

tx2 
object

A

B

tx1' 
object

tx2' 
object

tcontext1 tcontext2

tcontext2'



 
to be considered are: 
NotCreated: No container-demarcated transaction is 
created by the delegator. 
Created: A new transaction txn is created by the 
delegator. The requested business method m will be 
executed in the context of txn. The transaction txn 
will be committed if m is successfully executed, or 
aborted if the execution of m fails for some reason. 

(3) Exception throwing: It is necessary to determine 
whether an exception should be thrown by the 
delegator with respect to transaction handling. The 
alternatives to be considered are: 
IfClientTx: An exception is thrown by the delegator 
if the client request is associated with a client 
transaction context. 
IfNotClientTx: An exception is thrown by the 
delegator if the client request is not associated with a 
client transaction context. 
Never: In any case, no exception is thrown at the time 
of the client request delegation by the delegator. 

(4) Relation between client and container-demarcated 
transactions: This factor is to be considered if 
advanced transaction models (i.e., more advanced than 
the flat transaction model) are employed. A specified 
relation between the client transaction and the newly 
created container-demarcated transaction may have to 
be determined to reflect a particular transaction model. 
An option is to employ the primitives defined in the 
Bourgogne Transactions model proposed in [24]. This 
issue is discussed in Section 3 in a more detail. 

By combining all the alternatives of the transactional 
factors 1, 2, and 3 above, we obtain all alternatives of 
transaction context propagation for the flat transaction 
model in client server settings. This is done in Table 2 
which also indicates how the EJB transaction attribute 
values correspond to a particular combination.  

  
Client 
tx 

 
Client tx 
handling 

Container-
demarcated 
tx 

 
Exception 
throwing 

EJB 2.0 
transaction 
attribute value 

Two-attribute 
values  
approach 

1 No N/A NotCreated IfClientTx Never 2, 1 
2 No N/A NotCreated IfNotClientTx Mandatory 1, 3 
3 No N/A NotCreated Never NotSupported, 

Supports 2, 3 
4 No N/A Created IfClientTx not considered 3, 1 
5 No N/A Created IfNotClientTx N/A N/A 
6 No N/A Created Never Required, 

RequiresNew 3, 3 
7 Yes Propagated NotCreated IfClientTx N/A N/A 
8 Yes Propagated NotCreated IfNotClientTx not considered 1, 4 
9 Yes Propagated NotCreated Never Supports, 

Required 2, 3 
10 Yes Propagated Created IfClient N/A N/A 
11 Yes Propagated Created IfNotClientTx not considered 1, 5 
12 Yes Propagated Created Never not considered 3, 5 
13 Yes Suspended NotCreated IfClientTx N/A N/A 
14 Yes Suspended NotCreated IfNotClientTx not considered 1, 2 
15 Yes Suspended NotCreated Never NotSupported 2, 2 
16 Yes Suspended Created IfClientTx N/A N/A 
17 Yes Suspended Created IfNotClientTx not considered 1, 4 
18 Yes Suspended Created Never RequiresNew 3, 4 

Table 2. 

Rows 5, 7, 10, 13, and 16 contain combinations that do not 
make sense. It is worth noticing that some of the 
combinations are not currently supported by EJB, even 
though they are meaningful in the flat transaction model 

(and, of course, in more advanced transaction models). For 
example, the rows 11 and 12 reflect a “multilevel” 
transaction model (not supported in EJB). 

2.2.3 NT&CT approach: We claim that the EJB 
transaction attribute values are not easy to comprehend, 
because they specify several factors that are orthogonal to 
each other (transaction context handling, new transaction 
invocation, exception throwing), including the fact 
whether a client transaction is or is not present, by 
encoding their combination into a single attribute value. To 
address this problem, we propose the NT&CT approach, 
based on specifying delegator behavior separately in two 
situations: (1) the client request is not associated with a 
transaction, and (2) the client request is associated with a 
transaction. To do so, we introduce two transaction 
attributes, NoClientTransaction (NT) and 
ClientTransaction (CT); the possible values of these 
attributes are listed in Table 3 and Table 4. 

NT 
Specified behavior EJB 2.0 attribute settings 

1 ThrowException Mandatory 
2 DoNothing Supports, NotSupported 
3 CreateNew Required, RequiresNew 

Table 3. 

CT 
Specified behavior EJB 2.0 attribute settings 

1 ThrowException Never 
2 Suspend NotSupported 
3 Propagate Supports, Required, Mandatory
4 SuspendAndCreateNew RequiresNew 
5 Advanced not considered 

Table 4. 

The last columns of both tables indicate which EJB 
transaction attribute values correspond to the particular 
NT, resp. CT, value. Note that, in the NT&CT approach, it 
is possible to specify a delegator behavior which is not 
supported by EJB. For example, by specifying NT =

CreateNew and CT = ThrowException we specify the 
combination 4 in Table 2.  

2.2.4 Transactional behavior - when to be specified: 
In EJB, every component is coded without any knowledge 
as to which transaction propagation policy will be used, 
because this policy is defined at the time of the component 
deployment. As a consequence, a client of the component 
is not able to determine the transaction propagation policy 
from the component interface. Similar approach is taken in 
COM+. 

We believe that the transactional behavior of a component 
should not be defined as late as at its deployment time, but 
it should be determined at the time of the component’s 
interface specification. This view can be justified as 
follows: The author of the component is responsible for its 



 
functionality and thus he/she has to reflect the desired 
transaction propagation policy in the code of each 
component method. Also, a client of the component should 
determine from its interface what transaction propagation 
policy will be applied when calling a particular method on 
the interface. Should revealing of the transactional policy 
be a security issue, we can imagine same kind of 
filtering/hiding of the NT and/or CT attributes to the client. 
Using the NT&CT approach, the transaction propagation 
policy could be included in the component interface 
specification in the way illustrated below: 

interface BankAccount {

int getBalance( ) {

NT: DoNothing;

CT: SuspendAndCreateNew;

}

int getHighestBalance( ) {

NT: DoNothing;

CT: Suspend;

}

void withdraw(int iAmount) {

NT: CreateNew;

CT: Propagate;

}

void deposit(int iAmount) {

NT: CreateNew;

CT: Propagate;

}

}

Here, the transaction propagation policy is specified at the 
method granularity – for each method, a value of both the 
NT and CT attribute is specified. For example, if the 
getBalance()method is invoked in the scope of no client 
transaction, the delegator does not create any container-
demarcated transaction and the getBalance() method is 
executed in the scope of no transaction. If getBalance()
is invoked in a client transaction scope, the client 
transaction is suspended, a new container-demarcated 
transaction is created and getBalance() is executed in the 
newly created transaction scope. If no failure occurs during 
the getBalance()execution, the new transaction is 
committed and the client transaction is resumed. Similarly, 
if withdraw() or deposit() is invoked in the scope of no 
transaction, the delegator creates a new container-
demarcated transaction and the method is invoked in the 
scope of the newly created transaction. If withdraw() or 
deposit() is invoked in the scope of a client transaction, 
the transaction is propagated, i.e., the respective method is 
executed in the scope of the client transaction. 

3. Supporting advanced transaction models 

Consider again the container-interposed transaction 
scenario from Figure 3. In EJB, tx1 and tx2 are always 
independent of each other (row 4 in Table 4.). To employ 

advanced transaction models in the same scenario, more 
specific relations between tx1 and tx2 should be 
specified. For example, tx2 could be a child of tx1 in the 
Nested Transaction model [9].  

ACTA [5], a widely accepted formal framework for 
specifying transaction models, considers the abstraction 
views listed below to be the key building blocks of a 
transaction model (we provide their brief, mostly informal 
characteristics). Central to ACTA is also the notion of 
history of object events and significant event invocations 
by transactions. In principle, an object event is an 
invocation of an operation upon a data object (elsewhere 
also called a resource). A significant event is an invocation 
of a transaction processing primitive (such as transaction 
begin, commit and abort). Given a set TS of transactions, 
the history of TS is the partially ordered set of all the 
events associated with the transactions in TS. The partial 
ordering reflects the required temporal order of events. 

(1) Inter-transaction dependencies. A dependency 
between two transactions ti and tj is a flow control 
obligation between the significant events of ti and 
tj; e.g., tj may be abort-dependent on ti which 
means that if ti aborts then tj also aborts.  

(2) Conflict relations between operations. Two operations 
are said to be conflicting if their joint effect on the 
data they operate upon depends on the order in which 
they are executed. Typically, conflict relations are 
addressed by locking. 

(3) View of a transaction. In principle, the view of a 
transaction at a particular time point determines the 
level of the mutual isolation of all transactions in 
terms of the visibility of the effects on data caused by 
them. 

(4) Conflict set of a transaction is the set of such 
operations which effects have not been committed or 
aborted yet and that are conflicting with the operations 
involved in the transaction. 

(5) Delegation of some operations from a transaction tx1 
to tx2 means that all the object events having been 
exhibited by tx1 will be considered as if they had 
been exhibited by tx2. As a consequence, the 
responsibility for committing, resp. aborting, these 
operations is transferred to tx2.  

In the container–interposed transaction settings, such as 
EJB, one usually assumes the following: (a) The methods 
on a business interface are mutually excluded for any two 
threads, i.e. a component cannot be visited by more than 
one thread at a time. (b) A component once visited by a 
transaction tx is locked for other transactions until tx is 
finished. (c) ACTA object events are the invocations of 
business methods on component interfaces.  

These assumptions very much predetermine the ACTA 



 
building blocks: ad (2) all operations (methods) on a 
business interface are conflicting if executed by separate 
threads; ad (3) the views of any two transactions are 
separated (because of (b)); ad (4) all the operations 
(methods) on the business interface of every component 
already visited by a transaction in progress are in the 
conflict set of the transaction. 

Aiming at enhancing the EJB transactional functionality, 
we proposed in Bourgogne Transactions [24] several 
advanced transaction primitives to address inter-
transaction dependencies, delegation, and resource sharing 
(to partially handle conflict relations between operations in 
the view of a transaction). 

Below, we propose the Bourgogne Transaction advanced 
transaction primitives to be applied by the delegator to the 
transactions tx1 and tx2 in order to let these transactions 
cooperate in compliance with a desired transaction model 
assuming (a), (c) holds and (b) is eased in the sense that 
some methods can be exempt from the component lock. 
We will show that the required transactional action of the 
delegator (calls of the Bourgogne Transaction advanced 
transaction primitives implying new signification events) 
can be derived from the transactional attributes associated 
with the methods of a component interface.  

Technically, we enhance the notation for specifying 
transaction attributes proposed in Section 2.2.3: The CT
attribute set to Advanced (row 5 in Table 4) indicates that 
an advanced transaction model is employed. The required 
transaction model is specified by a 6-tuple of CT 
subattributes: ClientDependency, ClientPermissions, 
ClientDelegate, CdtDependency, CdtPermissions, and 
CdtDelegate. Here “Client” refers to the required action 
for a client transaction tx1 and “Cdt” refers to the 
required action for a container-demarcated transaction 
tx2.  

CT subattribute Value 

ClientDependency 

CdtDependency 

None 
CommitDependency,  
StrongCommitDependency,  
AbortDependency,  
WeakAbortDependency,  
TerminationDependency,  
ExclusionDependency, 
ForceCommitOnAbortDependency,  
BeginDependency,  
SerialDependency,  
BeginOnCommitDependency,  
BeginOnAbortDependency,  
WeakBeginOnAbortDependency 

ClientPermissions None, 
All 

CdtPermissions None, 
A set of methods of the same interface 

ClientDelegate None, 
All 

CdtDelegate 
None, 
Always, 
BeforeCommit, 
BeforeAbort 

Table 5. 

Table 5 summarizes all these attributes and their possible 
values.  

Consider an example where a client transaction tx1 
invokes Account.withdraw() of the Account component. 
In the definition of the Account interface, the withdraw() 
method is associated with the Advanced CT attribute. The 
delegator object creates a new container-demarcated 
transaction tx2, which would behave like a child 
transaction in the Nested Transaction model (tx1 is 
commit-dependent on tx2, tx2 is weak-abort-dependent on 
tx1, tx2 delegates to tx1 all the operations tx2 executed 
on the accessed components before commit, and tx1 grants 
tx2 the permission to access all the components that it has 
locked); moreover, tx2 allows tx1 to execute the 
getBalance() method of the invoked component. The 
advanced subattributes are defined as follows: 

ClientDependency = CommitDependency;

CdtDependency = WeakAbortDependency;

ClientPermissions = All;

CdtPermissions = getBalance;

ClientDelegate = All;

CdtDelegate = BeforeCommit;

The corresponding delegator code fragment is shown 
below: 

tx2 = getBourgogneTransaction( );

tx1.addDependency(tx2, CommitDependency);

tx2.addDependency(tx1, WeakAbortDependency);

tx1.addPermission(tx2, Account);

tx2.addPermission(tx1, Account, getBalance);

tx.begin();

try {

Account.withdraw();

}

catch (Exception e) {

tx2.abort();

...

}

tx2.delegate(tx1);

tx2.commit();

In Table 6 below, all the possible CT subattribute values 
are shown; for each of them, the corresponding Bourgogne 
Transaction primitive call is indicated. 

CT subattributes Bourgogne Transaction primitive 
ClientDependency = dep tx1.addDependency(tx2, dep) 
CdtDependency = dep tx2.addDependency(tx1, dep)
ClientPermissions = All tx1.addPermission(tx2)

CdtPermissions = (m1, m2)
tx2.addPermission(tx1, I, m1)
tx2.addPermission(tx1, I, m2) 

ClientDelegate = All tx1.delegate(tx2)
CdtDelegate = BeforeCommit
CdtDelegate = AfterCommit
CdtDelegate = Always

tx2.delegate(tx1)

Table 6. 

Note that I stands for the interface in the definition of 



 
which the subattributes are specified, tx1 is a client 
transaction, and tx2 is a container-demarcated transaction 
created by the delegator. For the CdtDelegate subattribute, 
the delegate() method is invoked at the time before 
commit or abort for BeforeCommit and BeforeAbort 
values respectively, or it is invoked always before the 
container-demarcated transaction completion, no matter 
whether it is committed or aborted. 

Below we describe the semantics of CT subattributes in 
more detail and illustrate a way they can be specified in 
component interfaces. 

Dependencies. A dependency between two transactions ti 
and tj is a conditional flow control binding between the 
significant events of ti and tj; e.g., tj may be weak-
abort-dependent on ti which means that if ti aborts than 
tj also aborts if it has not been committed yet. In the 
container–interposed transaction scenario, dependencies 
are specified via the ClientDependency and 
CdtDependency subattributes; their possible values in 
Table 5 reflect the basic twelve dependencies introduced in 
ACTA [5].  

For example, in the definition of the BankAccount 
interface, the CT attribute of withdraw() method could be 
specified as SuspendAndCreateNew. Suppose a container-
demarcated transaction tx2 started by the delegator before 
the withdraw() execution should act as a nested 
transaction of a client transaction tx1, the weak-abort and 
commit dependencies of the withdraw() method have to 
be set as follows: 

void withdraw(int iAmount) {

NT: CreateNew;

CT: SuspendAndCreateNew {

ClientDependency = CommitDependency;

CdtDependency = WeakAbortDependency;

}

}

Resource sharing. In general, a transaction tx1 can grant 
to another transaction tx2 the permission for an access to a 
resource associated with tx1 (locked by tx1). In the 
container-interposed transaction scenario (Figure 3), a 
client transaction tx1 can give permissions to the 
container-demarcated transaction tx2 to access the 
components (i.e. the resources) that tx1 has locked; 
similarly, tx2 can give to tx1 the permission to access the 
called component via a subset of its business methods. 
Consider again the withdraw() method:  

void withdraw(int iAmount) {

NT: CreateNew;

CT: SuspendAndCreateNew {

ClientDependency = CommitDependency;

CdtDependency = WeakAbortDependency;

ClientPermissions = All;

CdtPermissions =

{getBalance, getHighestBalance};

}

}

Here, by setting ClientPermissions = All any client 
transaction tx1 gives the corresponding container-
demarcated transaction tx2 the permissions to access 
components that tx1 has locked (none would indicate no 
such permission). Similarly, the CdtPermissions 
subattribute indicates that tx1 can access the component 
via the getBalance(), getHighestBalance() methods 
even though the component is locked by tx2. Note that this 
can be employed only if the client transaction is 
multithreaded. As an aside, the semantics of this resource 
sharing can be easily explained via its implementation 
scenario – any method listed in a CdtPermissions 
subattribute is associated with a list of the transactions 
allowed to execute it. 

Delegation. The delegation of operations as mentioned in 
the ACTA building block (5) can be advantageously 
expressed at the granularity of whole data 
objects/resources. Thus, a transaction tx1 can delegate 
some of the resources associated with it to another 
transaction tx2, so that tx2 becomes responsible for 
commit or abort of all the operations executed in tx1 
before the delegation took place. In the container-
interposed transaction scenario (Figure 3), the 
ClientDelegate attribute specifies the delegation from a 
client transaction tx1 to the corresponding container-
demarcated transaction tx2. The values of 
ClientDelegate can be either None indicating that no 
component instance is delegated to the container-
demarcated transaction by the client transaction, or All 
indicating that all component instances acquired by the 
client transaction are delegated to the container-
demarcated transaction, which is after the delegation 
responsible for committing or aborting modifications of 
the instances. The CdtDelegate attribute specifies 
delegation from the container-demarcated transaction to 
the client transaction. The values of CdtDelegate can be 
None indicating that nothing is delegated by the container-
demarcated transaction, BeforeCommit or BeforeAbort 
indicating that all component instances acquired by the 
container-demarcated transaction are delegated to the 
client transaction before the transaction commit if the 
transaction is committed or before the transaction abort if 
the transaction is aborted; the value Always indicates 
delegation before the completion of the transaction, no 
matter whether it commits or aborts. For illustration, 
consider again the withdraw() method with the following 
delegation subattributes: 

void withdraw(int iAmount) {

NT: CreateNew;

CT: SuspendAndCreateNew {

ClientDependency = CommitDependency;



 
CdtDependency = WeakAbortDependency;

ClientPermissions = All;

CdtPermissions = None;

ClientDelegate = None;

CdtDelegate = BeforeCommit;

}

}

Here we specify tx2 to be a nested transaction of the client 
transaction tx1 since (a) there are mutual commit and 
weak-abort dependencies between these transactions, (b) 
tx1 shares all of its resources with tx2, (c) before 
committing, tx2 delegates all its resources to tx1. In a 
similar way, at the level of a component interface, 
behavior of the container-interposed transactions reflecting 
other advanced transaction models can be specified (e.g., 
Open Nested Transactions [10], Sagas [7], Split and Joint 
Transactions [26]). 

4. Discussion 

4.1 Evaluation 

In this paper, we propose to specify the transaction 
propagation policy not as late as at the component 
deployment time, but at the time of defining the 
component interface since the author of the component has 
to design its code according to the propagation policy 
specified. Also a client of the component can determine 
from the interface how the component would participate in 
the client’s transactions. Should revealing of the 
transactional policy be a security issue, we can imagine 
same kind of filtering/hiding of the transaction propagation 
policy to the client. As for the transaction propagation 
policy, we found the EJB/COM+ single attribute approach 
inappropriately complicated. We propose the NT&CT 
approach, where the transaction propagation policy is 
specified via distinguishing whether the component 
method is invoked (1) in the scope of no client transaction 
and (2) in the scope of a client transaction. In our view, 
this is more flexible/readable then the single attribute 
approach. In addition, the NT&CT attributes allow 
specifying additional policies, not covered by the 
EJB/COM+ transaction attributes.  

To employ advanced transaction models, we apply the 
Bourgogne Transaction advanced transaction primitives in 
the delegator in order to let container-interposed 
transactions cooperate in compliance with a desired 
transaction model. We show that the required transactional 
action of the delegator (calls of the Bourgogne Transaction 
advanced transaction primitives) can be derived from the 
transactional attributes associated with methods of a 
component interface.  

Specifying the transaction propagation policy in the 
component interface is quite different from specifying it in 

the component deployment descriptor. If the policy is 
defined as late as in deployment descriptor like in EJB, the 
author of the component code is not aware of the way in 
which transactions will be propagated to the component. 
This is one of the reasons why the EJB container always 
suspends the client transaction if a component-demarcated 
transaction is started in response for the client call. If the 
code of the component is written taking the interface and 
the transaction propagation policy into account (as in our 
approach), the delegator object does not always have to 
suspend the client transaction. In the proposed NT&CT 
approach, the value of the ClientDependency and 
CdtDependency subattributes can express one of the twelve 
predefined dependencies. Although they include those 
used most frequently, it might be desirable to specify 
additional dependencies (see Section 4.3).  

4.2 Related Work 

The impact of object-oriented technology on transaction 
processing is discussed in [6]. The author indicates new 
aspects of transaction processing applied to the 
environment of distributed objects and argues for 
extending object brokers (ORBs) by transaction processing 
monitors (TP monitors) scheduling functionality to form 
an object TP monitor. The paper, concentrating rather on 
the distributed object-based than the real component-based 
technology, does not address container-demarcated 
transactions, transaction propagation policy of a container, 
etc. As an extension to the OMG OTS, the authors of [12] 
address support of long-lived transactional computations. 

In the framework of [22], researchers from the University 
of Valenciennes propose to extend the transaction service 
of the JOnAS application server based on EJB. The 
extension supports the Nested and Open Nested 
Transaction models in EJB. Adopting the EJB concept of 
specifying the transaction propagation policy, the authors 
extend the set of transaction attributes by 
RequiresNewSub, MandatoryNewSub for nested 
transactions and RequiresNewOpenSub, 
MandatoryNewOpenSub for open nested transactions (thus 
following the original EJB single attribute approach – as 
opposed to our NT&CT approach). A support for other 
transaction models is not discussed. 

In [18], the authors discuss the implementation of 
transactional business processes using components and 
indicate general requirements for so called transactional 
business process servers. A component-managed access to 
resources combined with declarative transactions is 
mentioned as a special case, but it is considered unnatural 
and potentially problematic to use, as “such facilities are 
not part of the programming or process modeling 
language”. We believe NT&CT approach in the interface 
specification should be, at least, a partial remedy. As for 
distributed transactions for web services, a consortium of 
key software technology vendors proposed the Business 



 
Transaction Protocol (BTP) language for managing 
complex, business-to-business (B2B) transactions over the 
Internet [19]. At this point, there are several proposals ([3], 
[11]) and the BTP final proposal is still in the phase of 
preparation.  

4.3 Future work 

We have already finished a prototype implementation of a 
transactional manager employing the Bourgogne 
Transaction advanced primitives to transactions in the 
JOnAS application server based on EJB (in the framework 
of the PEPiTA/ITEA project [22]). Also, we intend to 
investigate the option of user-defined extension of the 
delegator subattributes. As a next step, we plan to research 
the option of employing the proposed transactional 
behavior specification in a more general component model 
with multiple provides and requires interfaces of 
potentially hierarchical components. In our opinion, a 
component exhibiting multiple provides interfaces, should 
be potentially shared among multiple transactions. As a 
proof of the concept, we intend to implement a transaction 
service for our SOFA/DCUP architecture [23], based on a 
hierarchical component model. 

5. Conclusion 

The paper is focused on container-interposed transactions. 
We analyzed the EJB-like single attribute approach for 
specifying the transaction propagation policy, found it hard 
to comprehend, and proposed the NT&CT approach based 
on specifying transactional behavior separately in two 
situations: (1) the client request is not associated with a 
transaction, and (2) the client request is associated with a 
transaction. We argue for specifying the transaction 
propagation policy not at the time of deploying a 
component, but as a part of the component interface.  

To employ advanced transaction models in container-
interposed transactions, we use the Bourgogne Transaction 
approach, which extends the classical transactional API for 
managing transaction demarcation by advanced primitives 
allowing establishing inter-transaction dependencies, 
component sharing, and delegation. We show how the 
delegator object derives calls of the Bourgogne 
Transaction advanced transaction primitives from the 
transactional attributes associated with the methods of a 
component interface. 

References 

[1] R. J. Allen, “A Formal Approach to Software Architecture”, 
Ph.D. Thesis, 1997. 
[2] B. R. Badrinath, and K. Ramamrithan, “Semantics-Based 
Concurrency Control: Beyond Commutativity”, ACM Trans. on 
Database Systems, vol. 17, no. 1, 1992, pp. 163-199. 
[3] BEA Systems, Inc.: Proposal for Business Transaction 

Protocol, Version 1.0, 2001. 
[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman, 
“Concurrency Control and Recovery in Database Systems”, 
Addison-Wesley, 1987. 
[5] P. K. Chrysanthis, “ACTA, A Framework for Modeling and 
Reasoning about Extended Transactions Models”, Ph.D. Thesis, 
Sep. 1991. 
[6] E. E. Cobb, “The Impact of Object Technology on 
Commercial Transaction Processing”, The VLDB Journal, vol. 6, 
no. 3, 1997, pp. 173-190. 
[7] H. Garcia-Molina, and K. Salem: Sagas. In Proc. ACM 
SIGMOD Conference, San Francisco, CA, May 1987, pp. 249-
257. 
[8] D. Giannakopoulou, “Model Checking for Concurrent 
Software Architectures”, Doctoral Dissertation, Imperial College, 
University of London, January 1999. 
[9] J. Gray, and A. Reuter, “Transaction Processing, Concepts 
and Techniques”, Morgan Kaufman, 1993. 
[10] A. K. Elmagarmid, “Database Transaction Models For 
Advanced Applications”, Morgan Kaufmann, 1992. 
[11] Hewlett Packard Arjuna Labs: A framework for 
implementing business transactions on the Web, 2001. 
[12] IBM, IONA, Vertel/Expersoft, Alcatel (supported by 
University of Newcastle upon Tyne, Bank of America, INRIA, 
and Bull): “Revised joint proposal for Additional Structuring for 
OTS”, document orbos/00-04-02, May, 2000. 
[13] S. Jajodia, and L. Kerchsberg, “Advanced Transaction 
Models and Architectures”, Kluwer Publishing, 1997. 
[14] S. Gray, R. Lievano, and R. Jennings, “Microsoft 
Transaction Server 2.0”, Sams Publishing, 1997. 
[15] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. 
Bryan, and W. Mann: Specification and Analysis of System 
Architecture Using Rapide, IEEE Transactions on Software 
Engineering, vol. 21, no. 4, Apr. 1995, pp. 336-355. 
[16] Microsoft Corporation, “Component Object Model (COM) 
Specification 0.9”, Oct. 1995. 
[17] Microsoft Corporation, “Distributed Component Object 
Model Protocol - DCOM/1.0”, Jan. 1998. 
[18] T. Mikalsen, I. Rouvellou, S. Sutton Jr., S. Tai, M. Chessell, 
C. Griffen, and D. Vines, “Transactional Business Process 
Servers: Definition and Requirements”, in Proc. OOPSLA, 
Minneapolis, MN, Oct. 2000. 
[19] OASIS Business Transactions Technical Committee: Scope 
And Requirements, Actors & Terminology (incorporating Model 
Overview), May 2001. 
[20] Object Management Group, “The Common Object Request 
Broker: Architecture and Specification”, version 2.4.2, OMG 
document formal/01-02-33, Feb. 2001. 
[21] Object Management Group, “The Transaction Service 
Specification”, version 1.1, OMG document formal/2000-06-28, 
May 2000. 
[22] The PEPiTA/ITEA Project, “The PEPiTA Platform 
Architecture (Deliverable D1.1)”, version 1.0, Aug. 2000, 
http://www.objectweb.org/pepita/. 
[23] F. Plášil, S. Višňovský, and M. Bešta, “Bounding 
Component Behavior via Protocols”, in Proc. IEEE TOOLS 30, 
Aug. 1999, pp. 387-398. 



 
[24] M. Procházka, “Advanced Transactions in Enterprise 
JavaBeans”, in Proc. EDO 2000 Workshop, Davis, CA, Nov. 
2000, pp. 208-223. 
[25] M. Procházka, “Advanced Transactions in Component-
Based Software Architectures”, Ph.D. Thesis, Department of 
Software Engineering, Faculty of Mathematics and Physics, 
Charles University, Prague, Feb. 2002. 
[26] C. Pu, G. Kaiser, and N. Hutchinson, “Split-Transactions for 
Open-Ended Activities”, in Proc. VLDB Conference, Los 
Angeles, CA, Sep. 1988, pp. 26-37. 
[27] Sun Microsystems Inc., “Enterprise JavaBeans 
Specification”, Version 2.0, Final Release, Aug. 2001. 
[28] Sun Microsystems Inc., “Java Transaction API 
Specification”, Version 1.01, Apr. 1999. 
[29] X/Open Distributed Transaction Processing: The XA 
Specification, 1991. 
 

Marek Procházka is a Ph.D. 
student in the Department of 
Software Engineering, Faculty of 
Mathematics and Physics, Charles 
University, Prague. He specializes 
in component-based software, 
object-oriented systems and 
languages, transaction processing, 
and operating systems. He takes 
part in the SOFA/DCUP project 

aiming at composing software of reusable components and 
dynamic component updating at runtime, the EJB 
Comparison project dealing with evaluating performance 
and functionality of various EJB implementations, and the 
PEPiTA/ITEA project dealing with terminal-independent 
access to application server services based on EJB. He has 
published several papers and his recently finished Ph.D. 
thesis is focused on advanced transactions in component-
based software architectures. 

František Plášil is a professor and 
the vice-chair in the Department of 
Software Engineering of Charles 
University Prague. After receiving 
his Ph.D. degree from the Czech 
University of Technology in 
Prague in 1978, he was with that 
university until 1994 when he 
joined Charles University. In the 
meantime, he held several visiting 

professor positions including 2 years with the University 
of Denver, and 1 year with Wayne State University 
Detroit. Being focused on component based programming 
comprising middleware technologies, his research 
activities have been mainly carried out in framework of a 
number of projects, e.g. SOFA/DCUP, 
TOCOOS/Copernicus/Esprit, PEPiTA/ITEA/EUREKA, 
the list of industrial partners of which includes IONA 
Technologies, France Telecom, Bull Grenoble, Alcatel, 
and MLC Systeme Ratingen. 

 


