
BeJC: Checking Compliance between Java Implementation
and Behavior Specification∗

Pavel Jančík1

jancik@d3s.mff.cuni.cz
Pavel Parízek1,2

parizek@d3s.mff.cuni.cz
Jan Kofroň1

kofron@d3s.mff.cuni.cz
1 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

2 School of Computer Science, University of Waterloo, Canada

ABSTRACT
An important correctness aspect of software built in a mod-
ular way is behavior specification of its particular compo-
nents. Only then one can reason about communication cor-
rectness and properties of particular components. Since it
is much more effective to do so at the level of behavior mod-
els, establishing a correspondence between behavior specifi-
cation and implementation becomes an important part. In
this paper, we present a method for verifying compliance be-
tween behavior specification of a software component and
its Java implementation. We also discuss practical experi-
ence with the BeJC tool that implements the compliance
checking algorithm and its application in the software de-
velopment process.

1. INTRODUCTION
An important correctness property of software systems

built in a modular way, i.e., from well-defined components,
is that each component behaves according to a given speci-
fication. This can involve functional (degree of parallelism,
invoked methods) as well as extra-functional (e.g., perfor-
mance, reliability) properties. As to the functional proper-
ties, the more precise behavior specification is available, the
more one can say about the component without inspecting
its implementation. Treating a particular component as a
black box, a relatively precise way is specification of allowed
sequences of method calls on other components in the system
the component performs as well as the sequences it is able
to accept. We call the property of error-free communication
among components communication correctness. The valid
sequences of method calls can be specified in a number of
ways—in the form of transition systems, e.g., LTS, interface
automata [1], or in a higher-level language, e.g., LOTOS [2],
CSP [3], Threaded Behavior Protocols (TBP) [16].

∗This work was partially supported by the Ministry of
Education of the Czech Republic (grant MSM0021620838)
and by the Grant Agency of the Czech Republic project
P202/11/0312.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCOP’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0726-0/11/06 ...$10.00.

It is a hard task to assure communication correctness on
an implementation level. However, using a suitable formal-
ism (such as TBP), it is possible to divide the task into two
simpler questions (see Fig. 1). The property of communi-
cation correctness (on an implementation level) holds for a
given system. if:

• the implementation of each component is compliant
with its behavior specification, i.e., each component
performs only the method calls and in such order that
is allowed by its specification, and

• behavior specifications of components are composable,
i.e., there are no interaction errors, such as performing
a method call unexpected by the target component.

While many techniques for detecting composability, i.e.,
communication errors at the level of behavior specifications,
were proposed in the past [4, 11], much less attention has
been paid on checking compliance between the component
implementation (e.g., in Java and C) and its behavior spec-
ification. Besides our previous work [17], we are aware only
of one existing approach for Java [12], which is, however,
only partially automated.

In this paper, we present an algorithm for checking com-
pliance between a Java implementation of a software com-
ponent and its behavior specification in the TBP language.
It implements the compliance checking algorithm proposed
in [17] with extensions needed for the TBP specification lan-
guage [5].

The rest of the paper is organized as follows. Threaded
Behavior Protocols are briefly introduced in Section 2. In
Section 3, the relation between implementation and specifi-

TBP

Compliance

Component
Implementation

Composability

TBP

.ja
va
java

Component
Implementation

.ja
va
java

Figure 1: Communication correctness

cation is described. Section 4 discusses the implementation
of our approach in the BeJC tool. Evaluation of our tool
can be found in Section 5. In Section 6, we compare our
tool to other similar approaches, while Section 7 proposes
directions of future work and concludes the paper.

2. THREADED BEHAVIOR PROTOCOLS
Threaded Behavior Protocols (TBP) are a formalism for

specification of software components’ behavior in hierarchi-
cal component systems (e.g., in SOFA [24] and Fractal [25]).
The idea is, at design time, to create behavior specification
of each component in the system under development and
verify (1) the composability of particular components and
(2) the refinement across the adjacent nesting levels. Hav-
ing these properties verified at the model level, one can ask
about the correspondence between implementation of prim-
itive (i.e., those on the lowest nesting level) components and
its specification in TBP, thus making the reasoning about
the entire system behavior complete.

TBP describes how single component (primitive or com-
posed) interacts with the rest of the system. TBP is mainly
focused on specification of the observable behavior (that is
method calls accepted on provided and emitted on required
interfaces of components).

A behavior specification in TBP consists of five parts:
types, variables, provisions, reactions, and threads. In the
type section, custom enumeration types are defined. These
are used as types of (component) local variables defined in
the vars section following definition of types. Variables are

component CardReader {
types {
states = {READER_ENABLED, READER_DISABLED}

}
vars { states state = READER_ENABLED }

provisions {
?CardReaderCntl.expressModeDisabled()*
|
?CardReaderCntl.expressModeEnabled()*

}

reactions {
CardReaderCntl.expressModeDisabled() {
state <- READER_DISABLED;
!LightDisplay.displayExpress()

}
CardReaderCntl.expressModeEnabled() {
state <- READER_ENABLED;
!LightDisplay.displayNormal()

}
}

threads {
T1 {
while (?) {
if (state == READER_ENABLED) {
!EventDispatcher.creditCardScanned();
!EventDispatcher.PINEntered()

}
}

}
}

}

Figure 2: Example: TBP specification

used for storing information across particular method calls.
There are no pre-defined types 1.
Provisions define permitted usage of the component, i.e.,

the sequences of method calls that the component expects
from other components—its environment. The component
must handle these sequences. Provisions can be seen as an
assumption the component makes about its environment.
On the other hand, if the environment behaves just in terms
of the component’s provisions, the component guarantees to
behave in a way that is specified in the rest of the TBP (the
reactions and threads sections) specification.

Reactions define how the component reacts to a particular
method call, in terms of invoking methods on its required
interfaces and modifying the content of its local variables.

Finally, the threads section specifies permitted behavior
of threads that are created by the component itself. Be-
havior of threads consists of, similarly to reactions, invoking
methods on required interfaces of the component and mod-
ifying content of component’s variables. All the threads are
supposed to start at the beginning, no dynamic (run-time)
creation of threads is allowed.

Let us now provide a more formal look at TBP. First, we
describe the syntax and semantics, which will be followed
by description of relations between particular TBP specifi-
cations that are subjects to verification.

2.1 Provisions
Syntax of the provisions section is similar to regular ex-

pressions over terms of the form ?itf.m that expresses accep-
tance of a method call on a provided component interface
(itf stands for an interface name and m stands for a method
name). It supports the standard regular operators (sequence
‘;’, alternative ‘+’, repetition ‘*’) and the parallel operator
‘|’ that permits any interleaving of method call sequences
defined by its operands.

Typically the ‘|’ operator is used to describe the fact that
multiple components uses the component being specified in
parallel. On the source code level all possible interleaving of
method bodies are checked.

As to the semantics of provisions, the expressions define a
regular language, i.e., a set of words (traces) over the events.
As an aside, once the expression contains the repetition op-
erator *, the set of traces is infinite.

2.2 Reactions
Reactions specify how the component reacts to the meth-

ods calls accepted on its provided interfaces. Syntax of this
section differs from the one of provisions, it resembles im-
perative programming languages, such as Java. For each
method of each provided interfaces, a (possibly empty) re-
action is specified in the form:

itf.m { body }

The body of the method reactions can contain follow-
ing types of actions: An empty action NULL, method call
!itf.m(par1, ...) (The informal meaning is invocation of a
method on a required interface.), variable assignment var

<- val, return from the method, conditional branch if and
while cycles. In conditions the ? character means nondeter-
ministics choice, the implementation is free to choose any
branch.

1except for the mutex type (not described here).

The semantics is defined by LTSA—Labeled Transition
System with Assignments. It is basically LTS enriched with
variables, guards, and assignments. More details about the
formalism of LTSA itself is beyond the scope of this paper
and can be found in [18].

2.3 Threads
The threads specify behavior of the component threads, if

there are any. Both syntax and semantics stem from those
of reactions, except for the method name at the beginning,
of course, that is replaced by a thread name.

Example.
An example of the TBP specification can be found in

Fig.2. It specifies behavior of a credit card reader at a
supermarket cash desk. The card reader is always either
enabled (represented by the READER_ENABLED value of the
state variable) or disabled (READER_DISABLED). In any case,
the component is accepting calls on its CardReaderCntl in-
terface switching between the two modes. Upon each such
a call, it changes the value of the state variable and calls
the Display component via its LightDisplay interface to
display information about the current mode. In the normal
mode (READER_ENABLED), the internal thread of the compo-
nent, named T1, issues calls on the EventDispatcher inter-
face about the events related to scanning a credit card and
entering PIN. Since we do not capture any user behavior,
the calls corresponding to particular events are issued ran-
domly in a cycle, guarded by the condition upon the state

variable value.

2.4 Composability and Refinement
Once having behavior of all components in a system spec-

ified in TBP, two correctness relations can be verified: com-
posability and refinement. Composability means correctness
of composition, in other words a set of components on a par-
ticular level of nesting is composable if there, according to
their TBP specification, no error in their mutual communi-
cation can appear. An error usually arises as a consequence
of violation of the provisions or in the form of deadlock. Vi-
olation of the component’s provisions means that methods
are called on interfaces of a component in a sequence that is
not in the set specified by the provisions.

Refinement expresses the ability of a component B to re-
place a component A. After such replacement, the compo-
nent B is required to handle all sequences of method calls
upon its provided interfaces that were handled by the origi-
nal component. The refinement relation is useful for verifica-
tion of the refinement relation between a composed compo-
nent and its subcomponents. Since a composed component
usually does not contain any implementation per se, but just
by means of its subcomponents, its behavior specification is
the only behavior model available. Verification of the re-
finement relation down the nesting hierarchy enables one to
reason about composability on higher levels of nesting, thus
viewing the system on a more abstract level. More details
on composability and refinement are beyond the scope of
this paper and can be found in [18].

Moreover, although the implementation does not feature
any provisions specification, refinement between implemen-
tation of a primitive component and its TBP specification
allows one to reason about composability of primitive com-
ponents as well, using their TBP specifications. If there is

no error in communication inside a set of components on
the TBP level, the refinement relation guarantees absence
of communication errors also on the implementation level .

This case of refinement is called compliance and is de-
scribed in the following section.

3. COMPLIANCE
Fig. 3 shows a fragment of the TBP specification for the

IpAddressManager component. The component manages IP
addresses for clients on the network. The provisions section
states that Start must be invoked first on the component
through its IDhcpServer interface; then it is possible to call
RequestAddr or ReleaseAddr repeatedly. The reactions section
specifies that, upon accepting a call of RequestAddr, the com-
ponent must invoke GetAddress and then optionally Add and
SetTimeout in this order. The example contains an incon-
sistency between the TBP specification and the Java imple-
mentation listed at the right-hand side of Fig. 3—the Set-

Timeout method is not invoked after Add in response to the
RequestAddr call.

To be more precise as to the relation between the specifica-
tion and code, the implementation of the component under
verification (i) has to accept any calls on its provided inter-
faces in the order that is specified by provisions and (ii) has
to invoke exactly those methods on its required interfaces
and in the order that are specified in the reactions.

The (i) condition holds trivially, since the implementation
does not feature any explicit provisions, i.e, any sequence
of methods calls on the component provided interfaces are
accepted.

To verify the (ii) condition, first an artificial environment
for the component implementation is created; the environ-
ment simulates all permitted usage of the component by the
environment, i.e., calls all the provided methods of the com-
ponent in the order that is specified by provisions in TBP.

As for method parameters, the user has to specify sets of
possible values for each data type in these method calls. The
environment then calls the component with all combinations
of the values. The code of the component together with its
environment is then taken as the input of verification; each
time the component calls a method on one of its required
interfaces (if any), the call is absorbed by the environment
in a dummy way (by an empty method), returned, and it is
checked that the call is at this point allowed by the reaction
of the method in TBP. Each reaction specifies a set of traces
(words over required method calls), and the implementation
is required, upon each method call, to invoke a sequence of
the set. If this holds for any combination of arguments and
any thread scheduling, the implementation complies to the
TBP specification. This way, error freedom of component
composition at the TBP level is assured also on the imple-
mentation level. For more details on the refinement and for
related proofs, we kindly refer the reader to [15].

4. IMPLEMENTATION
The compliance checking algorithm between Java code

and TBP specification is implemented in the BeJC tool.
It consists of three modules: environment generator, TBP
checker, and Java PathFinder (JPF) [14]. The architecture
of the tool and the flow of information among its modules
are shown in Fig. 4.

The input of the tool is the Java implementation, de-

component IpAddressManager {
types { }
vars { }
provisions {
?IDhcpServer.Start() ; (
?IDhcpServer.RequestAddr() +
?IDhcpServer.ReleaseAddr()

)*
}
reactions {
IDhcpServer.RequestAddr() {
!IIpMacDb.GetAddress() ;
if (?) {
!IIpMacDb.Add() ;
!ITimer.SetTimeout()

}
}

}
}

class IpAddressManagerImpl implements IDhcpServer {
private IIpMacDb db;
private ITimer timer;

String RequestAddr(byte[] mac) {
String ip = db.GetAddress(mac);
if (ip == null) {
// Mac does not have assigned pernament IP address
// allocate dynamic IP from pool
ip = allocIP();

}

Date expTime = new Date(...);
db.Add(mac, ip, expTime);
// timer.SetTimeout(expTime);

return ip;
}

}

Figure 3: Example: TBP specification and Java implementation

LOCs Running time Memory States States per sec
CLiF – BladeInsertAdapter 512 321 sec 502 MB 182,773 569
CoCoME – CashDeskApp 305 1,106 sec 306 MB 1,625,413 1470
CRE Demo – IP Address Manager 173 17,344 sec 1,197 MB 11,084,101 639
Q-ImPrESS – Pricing Manager 215 4 sec 138 MB 2,613 653

Table 1: Empirical results

scription of the component (metadata) including a value
database, and the TBP specification.

First, the environment generator creates an abstract envi-
ronment for the component from provisions in the TBP spec-
ification. The abstract environment is a non-deterministic
program that performs method calls in the sequences spec-
ified by provisions on the component provided interfaces.
Parameters of the called methods are taken from the value
database; all combinations of parameter values are checked.
The Java program composed of the abstract environment,
values database, and the Java implementation of the com-
ponent form the input for actual checking.

The process of checking involves parallel traversal of (i)
the state space of the Java program (the environment with
the component) by JPF and (ii) the state transition system

Environment
generator

Environment
generator

JPFJPF TBP checkerTBP checker

TBP

Java Environment

Result

Value DB

Code

Figure 4: Architecture of the BeJC tool

derived from the TBP specification by TBP Checker. JPF
traverses the Java program’s state space and notifies the
TBP checker about events (invocations of and returns from
the methods on component interfaces, thread creation and
termination) as they occur during program execution. The
TBP checker, implemented as a plug-in for JPF, checks for
each event if it violates the TBP specification—it traverses
the state space of the provision driven computation [18]
(which is derived from TBP specification) and checks if a
transition that matches the event exists.

During the checking JPF uses the depth-first search while
traversing the state space, while TBP checker maintains the
set of all reachable TBP states by events on the processed
trace.

If the represented set of the TBP states become empty,
the processed event is not allowed by the TBP specification,
so implementation violates the specification.

We also extended the JPF state matching algorithm to
take the TBP states into account. The program/JPF state
does not contain previous events—different program traces
can lead to the same program/JPF state. However, reach-
able TBP states depend on previous events, it means that
for a single program/JPF state may exist multiple TBP pro-
tocol states, with different permitted behavior in the future.
Therefore JPF used in the BeJC considers the same program
states with different TBP states as distinct/different.

If a protocol violation is found, JPF provides a (re-)exec-
utable trace which leads to the error.

Quality of the value database is crucial, only if values per-
mits execute all execution paths in the component, the tool
can find all errors in the implementation. Moreover, the
environment has to perform all the permitted sequences of
events on the provided interfaces. In the default settings,

repetition operators in the provisions are unrolled in the
environment (and only a few initial iterations of loops are
checked). The environment generator can be set up to per-
form unbounded number of loop iterations Such an environ-
ment typically generates more states.

Additional details about BeJC can be found in [13].

5. EVALUATION
Table 1 shows the results of application of BeJC to four

components selected from four simple yet non-trivial exam-
ples introduced below. The results include lines of code of
the tested component, the running time, memory consump-
tion, the number of states, and the number of states pro-
cessed per second by the checker.

CLIF [8] is a stress testing (benchmarking) framework
implemented in the Fractal component model. The tested
component (Blade Insert Adapter) is one of the largest core
CLIF components. It asynchronously processes requests on
the state changes of the blades (test probes and load gener-
ators). To be able to check the given component, we have
to create a TBP protocol which models the usage of the
component in a reasonable way and describe the behavior of
the implementation and communication between provided
interfaces and the internal thread. This application is fo-
cused mainly on testing the scalability of the BeJC tool—if
a complex protocol and multiple threads are used.

CoCoME—Common Component Modeling Example con-
test [6] was aimed at comparison of various component mod-
els applied on the same case study—a supply chain and order
management system of a typical supermarket. The selected
component (CashDeskApplication) models a standard cash
desk with a bar code scanner, card reader, keyboard, etc.
We used its Fractal implementation [7]. The TBP protocol
models the internal state of the component as well as its
(limited) parallel usage.

CRE—Component Reliability Extensions [9] was a project
that extended the Fractal component model with the sup-
port for Behavior Protocols. We have taken the CRE case
study—a system for providing WiFi internet access at air-
ports. We have checked the IPAddressManager component,
which implements the internal logic of a DHCP server. The
component has to accept requests from clients, timer call-
backs (that terminates the IP leased period) and requests
for configurations changes in a parallel way (three in paral-
lel used interfaces), which implies quite a large state space.

Q-ImPrESS [19] was an EU project focused on cost-effect-
ive development, modeling, and evolution of service-oriented
software. The picked Pricing simulator component is a part
of the“eSOA Showcase”. It is an example of typical business-
logic code; it computes the price of orders, applies the dis-
counts according to the volume, country, and customer type,
etc. The component provides a single interface which is used
synchronously, thus the number of the states as well as the
checking time are relatively low.

None of the tests from Table 1 found an error, so the tests
presents exploration of the whole state spaces. In our expe-
rience, the error (if present) is detected much earlier than
the whole state space is traversed. When checking the IPAd-
dressManager component, an inconsistency in its initial ver-
sion was found in 6 minutes, while the error from Fig. 3 was
detected in a second. In such a case the BeJC tool prints out
a counter-example—an execution path in the Java program
and the corresponding path in the TBP transition system (in

terms of executed provided/required interface method call-
s/returns and threads which executed particular events).

The purpose of the evaluation was to focus on the scal-
ability of BeJC, that is why only a single component from
each project has been chosen. Later on, we plan to apply
BeJC (along with the tool to check communication correct-
ness on the TBP level) on a larger case study of a real-world
component-based application to evaluate also application of
the tool in the development process.

For the verified components, the checking process finished
in a reasonable time. Nevertheless, state explosion would be
an issue for large components and in the case when a TBP
specification allows concurrent method calls on the compo-
nent provided interfaces by several threads (a complex pro-
vision section in the TBP).

6. RELATED WORK
There are a number of approaches to behavior verification

of software [2, 20, 21, 10, 22]. In this section, we only focus
on those that work directly with the code, not just with its
behavior model.

As to the tools for verification of Java code, we mention
the Extended Static Checker for Java (ESC/Java2) [10]. It
uses the JML annotations of Java source code and via the
means of static analysis, it tries to discover common run-
time errors in case of usage permitted by JML specification;
it proves things locally, with respect to classes, methods and
functions. Even though it is possible to express high level
specification in JML, the overall consistency of the specifi-
cation is to be assured by the user. Our approach is to auto-
mate the entire process as much as possible, i.e., to include
both compliance checking described in this paper together
with verification of composability at the level of the model
(TBP).

A very related to our work is, of course, the Java Path-
Finder [14] itself. The tool consists of a custom Java virtual
machine that explores the entire state space generated by
a Java program with respect to different threads’ interleav-
ing and “non-deterministic” (random) values. A significant
difference is that JPF requires a complete program (espe-
cially featuring a Main method); then it is able to discover
problems such as uncaught exceptions, deadlock, null deref-
erences, and some types of data races.

In an empirical study [23], the authors focus on Object
Protocols (OP) in the Java source codes. OP are similar to
the TBP provision in the sense they describe the “permit-
ted” sequences of method calls. In contrast to TBP which
are used to describe complex component interactions, OP
discovered in the code by the authors are quite simple. Only
seven categories were used to describe most of the protocols.
According to our experiences, components often exhibit be-
havior which does not match these categories. It is partially
due to complex internal states of the components and the be-
havior derived from precise specifications (use cases). Note
that in terms of OP, TBP protocols define both definition
as well as usage (the provision section in TBP defines OP,
while the reaction/thread sections describe usage of other
components).

The last work we shortly mention here as related are In-
terface automata [1]. Although the specification language
is not used for checking its correspondence to code, it was
an inspiration for our refinement definition based on alter-
nation simulation; by differentiating between provided and

required method calls the alternation simulation provides a
transitive relation fitting our needs.

7. FUTURE WORK AND CONCLUSION
From the perspective of the software development process,

the BeJC tool can be applied during the testing and main-
tenance phase. BeJC also fits into the integration test well,
where it can discover communication errors, incompatibili-
ties and data races unforeseen during design and implemen-
tation of particular components.

In the maintenance phase, BeJC can be used especially
for checking consistency after the implementation or speci-
fication of a component is modified, e.g., due to refactoring
and emergence of new requirements. The tool has been inte-
grated into the Q-ImPrESS development environment [19].

The need of the value database can be removed if symbolic
execution approach is applied (symbolic JPF). We have not
used this approach so far due to its scalability issues; how-
ever, we plan to try it in the future, as the required modifi-
cations of BeJC are not substantial.

Acknowledgements.
We also thank Tomas Caithaml for implementing the first
version of the TBP library, which is used to parse TBP spec-
ification.

8. REFERENCES
[1] L. de Alfaro and T. Henzinger. Interface automata. In

Proceedings of the 8th European software engineering
conference (ESEC/FSE-9). 2001. ACM, New York,
NY, USA, 109-120.

[2] T. Bolognesi and E. Brinksma, Introduction to the
ISO specification language LOTOS, Computer
Networks and ISDN Systems, vol. 14, no. 1, pp. 25-59,
1987.

[3] C. A. R. Hoare, Communicating sequential processes,
Communications of the ACM, vol. 21, no. 8, pp.
666-677, 1978.

[4] J. Adamek and F. Plasil. Component Composition
Errors and Update Atomicity: Static Analysis,
Journal of Software Maintenance, 17(5), 2005.

[5] BeJC, http://d3s.mff.cuni.cz/projects/formal_
methods/bejc

[6] CoCoME : Common Component Modeling Example,
http://www.cocome.org

[7] L. Bulej, T. Bures, T. Coupaye et al. CoCoME in
Fractal, LNCS, vol. 5153, 2008.

[8] The CLIF Project, http://clif.ow2.org/

[9] Component Reliability Extensions for Fractal
Component Model, Project of Institute of Computer
Science Academy of Sciences of the Czech Republic &
France Telecom, 2004, http://kraken.cs.cas.cz/

[10] The Extended Static Checker for Java version 2, http:
//kind.ucd.ie/products/opensource/ESCJava2/

[11] D. Giannakopoulou, J. Kramer, and S.-C. Cheung.
Behaviour Analysis of Distributed Systems Using the
Tracta Approach, Autom. Softw. Eng., 6(1), 1999.

[12] D. Giannakopoulou, C.S. Pasareanu, and J.M.
Cobleigh. Assume-Guarantee Verification of Source
Code with Design-Level Assumptions, In ICSE 2004.

[13] P. Jancik. Checking Compliance of Java
Implementation with TBP Specification, Master
Thesis, Charles University, 2010.
http://d3s.mff.cuni.cz/publications/download/

2010-Jancik-MasterThesis.pdf

[14] Java PathFinder,
http://babelfish.arc.nasa.gov/trac/jpf/

[15] J. Kofroň, P. Janč́ık, and P. Paŕızek. Refinement
between TBP and Java Implementation of
Components, Technical Report 2011/05, Charles
University in Prague, 2011.

[16] J. Kofron, T. Poch, and O. Sery. TBP: Code-Oriented
Component Behavior Specification, In SEW-32, IEEE,
2009.

[17] P. Parizek, F. Plasil, and J. Kofron. Model Checking
of Software Components: Combining Java PathFinder
and Behavior Protocol Model Checker, In SEW-30,
2006.

[18] T. Poch. Towards Thread Aware Component
Specifications, Ph.D. thesis, Charles University in
Prague, Czech Republic, 2010.

[19] The Q-ImPrESS project, http://www.q-impress.eu

[20] R. Allen and D. Garlan. A Formal Basis for
Architectural Connection, ACM Trans. on Soft. Eng.
and Meth., July 1997.

[21] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes, LNCS, vol. 6605,
2011.

[22] A. Basu, M. Bozga, and J. Sifakis. Modeling
Heterogeneous Real-time Components in BIP, IEEE
International Conference on Software Engineering. and
Formal Methods, 2006.

[23] N. E. Beckman, D. Kim, and J. Aldrich. An Empirical
Study of Object Protocols in the Wild., European
Conference on Object-Oriented Programming, 2011

[24] T. Bures et al.: Runtime support for advanced
component concepts, in Proceedings of SERA 07,
Busan, Korea, 2007

[25] E. Bruneton et al. An Open Component Model and
Its Support in Java. Proceedings of Component-based
Software Engineering, 2004

